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Abstract We investigate optimality conditions for a nonsmooth multiobjective semi-infinite programming problem subject
to switching constraints. In particular, we employ a surrogate problem and a suitable constraint qualification to state necessary
M-stationary conditions in terms of tangential subdifferentials. An example is given at the end to illustrate our main result.
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1. Introduction

We take up the following nonsmooth multiobjective semi-infinite programming problem subject to switching
constraints, NMPSC for short 

min f(x) = (f1(x), ..., fm(x)),

s.t. gs(x) ≤ 0, ∀s ∈ S,

hk(x) = 0, ∀k ∈ K = {1, ..., q},
Gi(x)Hi(x) = 0, ∀i ∈ I = {1, ..., l},

(1)

where the index set S is an arbitrary nonempty set, not necessary finite. The real-valued functions fj , j ∈ J =
{1, ...,m}, gs, s ∈ S, hk, k ∈ K, Gi and Hi, i ∈ I are defined on Rn and not necessary convex nor differentiable.
The feasible region of (1) is given by

Π := {x ∈ Rn : gs(x) ≤ 0, s ∈ S, hk(x) = 0, k ∈ K,Gi(x)Hi(x) = 0, i ∈ I}.

The terminology “switching constraints” originates from the fact that if the product of two functions is equal
to zero, then at least one of them must be equal to zero. Problems under the form (1) were recently introduced
to investigate the discretization of optimal control problems with switching constraints [1, 2, 3], and to study
mathematical programs with either-or-constraints [4, 5, 6]. Moreover, NMPSC can be seen as an extension
of another class of optimization problems, namely mathematical programming with equilibrium constraints
(MPEC) [7, 8, 9], which has the same form as NMPSC subject to an additional condition “Gi(x) ≥ 0 andHi(x) ≥ 0
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for all i ∈ I”. Although the latter condition does not appear in the problems studied in many papers of optimal
control and related fields, we find that the published results on NMPSC are very few where compared to the
MPEQ, which motivated us to deal with this type of problems as they provide a more general setting.

The major difficulty in solving (1) is that it typically violates the majority of classical constraint qualifications
(such as Mangasarian-Fromovitz constraint qualification, linear independence constraint qualification), and hence
the standard KKT conditions are not relevant in the context of mathematical programming with switching
constraints (MPSC). This led to introduce various stationarity concepts (weak, Mordukhovich, and strong
stationarity) for MPSC and to derive some associated constraint qualifications [4]. Kanzow et al. [10] proposed
several relaxation methods from the numerical treatment of MPEC to MPSC. Li and Guo extended some weak and
verifiable constraint qualifications for nonlinear programs to MPSC in [11]. Very recently, Mehlitz investigated a
second-order optimality conditions for MPSC in [12].

In this paper, we are concerned with a nonsmooth, multiobjective and semi-infinite version of MPSC, and
introduce a constraint qualification of a surrogate problem, which will guarantee an optimality condition, called
M-stationarity, to hold at a local minimum. This will be performed using the concept of tangential subdifferential
which includes many types of subdifferentials like Gâteaux derivatives, convex subdifferentials or those of Clarke
and Michel-Penot. We point out that this concept has been efficiently employed in [13] to establish necessary
optimality conditions but for a nonsmooth multiobjective bilevel programming problem without assuming neither
convexity nor locally Lipschitzity of the upper level objectives and constraint functions.

The organization of the paper is as follows: In the next section, we present needed notations and recall some
definitions. In Section 3, we propose M-stationary conditions for local efficient solutions of (1) involving an
appropriate constraint qualification of a surrogate problem and we give an example that illustrates the main result.
Finally, a conclusion is given in Section 4.

2. Preliminaries

From now on, we take the following order in the Euclidean space: a, b ∈ Rm satisfies

• a ≤ b if and only if ai ≤ bi for all i = 1, 2, . . . ,m with strict inequality for at least one i.
• a < b if and only if ai < bi for all i = 1, 2, . . . ,m.

Given a nonempty subset S of Rn, coS and clS denote the convex hull, and closure of S, respectively. Also, the
polar cone, the strictly negative polar cone and the orthogonal complement of S are respectively defined by

S◦ = {x ∈ Rn : ⟨x, d⟩ ≤ 0, ∀d ∈ S},
Ss = {x ∈ Rn : ⟨x, d⟩ < 0, ∀d ∈ S \ {0}},
S⊥ = {x ∈ Rn : ⟨x, d⟩ = 0, ∀d ∈ S}.

It can easily be shown that S⊥ = S◦ ∩ (−S)◦. Moreover, at x ∈ clS, the tangent cone, the convex cone generated
by S and the linear hull of S are respectively given by

T (S, x) =
{
υ ∈ Rn : ∃tn ↓ 0, ∃υn → υ, x+ tnυn ∈ S

}
,

cone(S) =
{
y =

k∑
i=1

λiyi : k ∈ N, λi ≥ 0, yi ∈ S, i = 1, 2, ..., k

}
,

lin(S) =
{
y =

k∑
i=1

λiyi : k ∈ N, λi ∈ R, yi ∈ S, i = 1, 2, ..., k

}
.

Recall that for any two sets S1 and S2 in Rn one has lin(S1 ∪ S2) = lin(S1) + lin(S2).
A function φ : Rn → R will be called tangentially convex at x ∈ Rn [14] if its directional derivative at x,

φ′(x, d) = lim
t↓0

φ(x+ td)− φ(x)

t
,
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is finite for any direction d ∈ Rn and convex in this argument. Observe that the directional derivative of a
tangentially convex function is sublinear as a function of the direction because it is positive homogeneous.
Moreover, φ will be called Hadamard directionally differentiable at x ∈ Rn, if its Hadamard directional derivative

φH(x, d) = lim
t↓0,d′→d

φ(x+ td′)− φ(x)

t
,

is defined for all directions d. In this case one has φH(x, d) = φ′(x, d). For the converse, φ is Hadamard
directionally differentiable at x in d if φ is locally Lipschitz at x and directionally differentiable. On the other hand,

the tangential subdifferential of φ : Rn → R at x ∈ Rn is given by ∂Tφ(x) =
{
y∗ ∈ Rn : ⟨y∗, d⟩ ≤ φ′(x, d) ∀d ∈

Rn

}
[14, 15]. For a tangentially convex function, this subdifferential is nonempty, compact, convex and its support

functional coincides with the directional derivative. Furthermore, tangentially convex functions constitute a large
class that contains convex functions on open domains where the tangential subdifferential falls into the classical
Fenchel subdifferential, Gâteaux differentiable functions on open domains with a tangential subdifferential reduced
to the gradient. This class also includes locally Lipschitz functions that are either Clarke regular [16] or Michel-
Penot regular [17], and their tangential subdifferential coincides with the Clarke subdifferential in the first case and
the Michel-Penot subdifferential in the second.

Hereafter, we assume that x ∈ Π, fj , j ∈ J is Hadamard directionally differentiable at x, and gs, s ∈ S, hk, k ∈
K, Gi and Hi, i ∈ I are tangentially convex at x. We say that x is a local (weak) efficient solution to (1) if
there is a neighbourhood V of x such that for each y ∈ V ∩Π the inequality f(y) ≤ (<)f(x) does not hold It is
straightforward to check that every local efficient solution for (1) is local weak efficient. When V = Rn, the word
local will be omitted.

We denote by R|S|
+ the collection of all functions λ : S → R taking positive values λs only at finitely many points

of S, and zero otherwise. For x ∈ Π, we let S(x) := {s ∈ S | gs(x) = 0} be the index set of all active constraints at
x and A(x) := {λ ∈ R|S|

+ | λsgs(x) = 0,∀s ∈ S} be that of active constraint multipliers at x. Notice that λ ∈ A(x)
if there exists a finite index set R ⊂ S(x) such that λs > 0 for all s ∈ R and λs = 0 for all s ∈ S \R. Let us also
define

IG = IG(x) := {i ∈ I | Gi(x) = 0,Hi(x) ̸= 0},

IH = IH(x) := {i ∈ I | Gi(x) ̸= 0,Hi(x) = 0}

and
IGH = IGH(x) := {i ∈ I | Gi(x) = 0,Hi(x) = 0}.

We suppose that IGH is a nonempty set and denote by P(IGH) the set of all disjoint bipartitions of IGH ; i.e.,
P(IGH) = {(B1, B2) : B1 ∪B2 = IGH , B1 ∩B2 = ∅}. The point x is called weakly stationary, W-stationary for
short, if there exist multipliers solving the system

0 ∈
∑
j∈J

λj∂T fj(x) +
∑

s∈S(x)

λgs∂T gs(x) +
∑
k∈K

λhk∂Thk(x)

+
∑
i∈I

λGi ∂TGi(x) +
∑
i∈I

λHi ∂THi(x),

∀s ∈ S(x) : λgs ≥ 0, ∀i ∈ IH(x) : λGi = 0, ∀i ∈ IG(x) : λ
H
i = 0.

(2)

It is called Mordukhovich-stationary, M-stationary for short, if in addition to (2), λGi λ
H
i = 0 for all i ∈ IGH(x).

Finally, it is strongly stationary, S-stationary for short, if in addition to (2), λGi = 0 and λHi = 0 for all i ∈ IGH(x).
Clearly, S-stationarity yields M-stationarity, which yields W-stationarity.

Now, we present two useful lemmas which we need to prove our main result.
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Lemma 2.1 ([18]). Let {Sj | j ∈ J} be a family of nonempty convex sets in Rn. Then, every nonzero vector of
C = cone(

∪
j∈J

Sj) can be written as a non-negative linear combination of at most n linear independent vectors,

each belonging to a different Sj .

Lemma 2.2 ([19]). Let S, T and P be three arbitrary nonempty index sets (possibly infinite). Consider the maps
φ : S → Rn, ϕ : T → Rn and ψ : P → Rn. If the set co{φ(s), s ∈ S}+ cone{ϕ(t), t ∈ T}+ lin{ψ(p), p ∈ P} is
closed, the following two assertions are equivalent:

(i)


⟨φ(s), d⟩ < 0, s ∈ S,

⟨ϕ(t), d⟩ ≤ 0, t ∈ T,

⟨ψ(p), d⟩ = 0, p ∈ P,

has no solution d ∈ Rn;

(ii) 0 ∈ co{φ(s), s ∈ S}+ cone{ϕ(t), t ∈ T}+ lin{ψ(p), p ∈ P}.

3. M-stationary conditions for local efficient solutions

In this section, we derive M-stationary conditions for local efficient solutions of (1). To proceed, we consider the
following nonlinear programming problem with respect to a partition (B1, B2) of IGH .

min f(x) = (f1(x), ..., fm(x)),

s.t. gs(x) ≤ 0, ∀s ∈ S,

hk(x) = 0, ∀k ∈ K,

Gi(x) = 0, ∀i ∈ IG ∪B1,

Hi(x) = 0, ∀i ∈ IH ∪B2.

(3)

The feasible set of (3) is given by

ΥB1,B2 := {x ∈ Rn : gs(x) ≤ 0, s ∈ S, hk(x) = 0, k ∈ K,Gi(x) = 0, i ∈ IG ∪B1,Hi(x) = 0, i ∈ IH ∪B2}.

It is easy to show that ΥB1,B2
⊂ Π.

Let us define the following Abadie type constraint qualifications:

∂T -ACQ(B1, B2) : Λ(B1,B2)(x) ⊆ T (ΥB1,B2 , x),

where

Λ(B1,B2)(x) = (
∪
s∈S

∂T gs(x))
− ∩ (

∪
k∈K

∂Thk(x))
⊥

∩ (
∪

i∈IG∪B1

∂TGi(x))
⊥ ∩ (

∪
i∈IH∪B2

∂THi(x))
⊥.

We are now in position to give necessary optimality conditions for local efficient solutions of (1).

Theorem 3.1. Let x be a local efficient solution of (1). Assume that there exists a partition (B1, B2) ∈ P(IGH)
such that ∂T -ACQ(B1, B2) holds for x and

D = cone

( ∪
s∈S

∂T gs(x)

)
+ lin

( ∪
k∈K

∂Thk(x) ∪
∪

i∈IG∪IB1

∂TGi(x) ∪
∪

i∈IH∪IB2

∂THi(x)

) (4)

is closed, then x is an M-stationary point of (1).
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Proof
We claim that ( ∪

j∈J

∂T fj(x)
)s ∩ T (Π, x) = ∅. (5)

Indeed, suppose that there exists y∗ ∈
(∪

j∈J ∂T fj(x)
)s ∩ T (Π, x). Then, from y∗ ∈

(∪
j∈J ∂T fj(x)

)s
, it follows

that

⟨x∗, y∗⟩ < 0, ∀x∗ ∈ ∂T fj(x) \ {0}, ∀j ∈ J. (6)

For each j ∈ J , define φj : ∂T fj(x) ⊂ Rn → R as φj(x
∗) = ⟨x∗, y∗⟩ for all x∗ ∈ ∂T fj(x). The continuity of φj

on ∂T fj(x), which is compact, implies the existence of x∗j ∈ ∂T fj(x) with φj(x
∗
j ) = max

x∗∈∂T fj(x)
⟨x∗, y∗⟩. Hence,

according to (6), we obtain for every j ∈ J

f ′j(x, y
∗) = max

x∗∈∂T fj(x)
⟨x∗, y∗⟩ = ⟨x∗j , y∗⟩ < 0. (7)

Now, since y∗ ∈ T (Π, x), there is tk ↓ 0 and y∗k → y∗ satisfying x+ tky
∗
k ∈ Π for all k. Because x is local efficient

solution of (1), there is x+ tky
∗
k ∈ B(x, r), for some r > 0 and for k high enough, such that there is j0 ∈ J

verifying fj0(x+ tky
∗
k) ≥ fj0(x). In combining this with the fact that

f ′j0(x, y
∗) = fHj0 (x, y

∗) = lim
k→∞

fj0(x+ tky
∗
k)− fj0(x)

tk
,

we obtain f ′j0(x, y
∗) ≥ 0, which contradicts (7), and consequently, (5) is fulfilled.

On the basis of ∂T -ACQ(B1, B2) and taking into account that T (ΥB1,B2 , x) ⊂ T (Π, x), we have( ∪
j∈J

(∂T fj(x)

)s

∩
( ∪

s∈S(x)

∂T gs(x)

)◦

∩
( ∪

k∈K

∂Thk(x)

)⊥

∩
( ∪

i∈IG∪B1

∂TGi(x)

)⊥

∩
( ∪

i∈IH∪B2

∂THi(x)

)⊥

= ∅.

Then, we see that the system 

⟨ζj , y∗⟩ < 0, ∀j ∈ J, ∀ζj ∈ ∂T fj(x),

⟨ϑt, y∗⟩ ≤ 0, ∀s ∈ S, ∀ϑs ∈ ∂T gs(x),

⟨ηk, y∗⟩ = 0, ∀k ∈ K, ∀ηk ∈ ∂Thk(x)

⟨θi, y∗⟩ = 0, ∀i ∈ IG ∪B1, ∀θi ∈ ∂TGi(x),

⟨ξi, y∗⟩ = 0, ∀i ∈ IH ∪B2, ∀ξi ∈ ∂THi(x),

has no solution y∗ ∈ Rn. On the other hand, since ∂T fj(x) is compact for all j ∈ J , the set
m∪
j=1

∂T fj(x) is also

compact, and hence
m∪
j=1

∂T fj(x) +D is closed because so is D. Thus, by virtue of Lemma 2.2, we are led to

0 ∈ co

( ∪
j∈J

∂T fj(x)

)
+ cone

( ∪
s∈S(x)

∂T gs(x)

)
+ lin

( ∪
k∈K

∂Thk(x)

)

+ lin

( ∪
i∈IG∪B1

∂TGi(x)

)
+ lin

( ∪
i∈IH∪B2

∂THi(x)

)
.
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On the basis of Lemma 2.1, we deduce that there exist λ = (λ1, ..., λm) ∈ Rm
+ with

m∑
j=1

λj = 1, λg ∈ A(x),

λh = (λh1 , ..., λ
h
q ) ∈ Rq, ρ = (ρ1, ..., ρl) ∈ Rl and σ = (σ1, ..., σl) ∈ Rl such that

0 ∈
∑
j∈J

λj∂T fj(x) +
∑

s∈S(x)

λgs∂T gs(x) +
∑
k∈K

λhk∂Thk(x)

+
∑

i∈IG∪B1

ρi∂TGi(x) +
∑

i∈IH∪B2

σi∂THi(x).

By taking

λGi =

{
ρi, i ∈ IG(x) ∪B1,
0, i ∈ IH(x) ∪B2,

λHi =

{
0, i ∈ IG(x) ∪B1,
σi, i ∈ IH(x) ∪B2,

and using the fact that for all s ∈ S(x) : λgs ≥ 0, we deduce that x is an M-stationary point of (1).

To illustrate Theorem 3.1, we present the following example of (1).

Example 3.2. Consider the functions f = (f1, f2) : R2 → R2, gs : R2 → R, ∀s ∈ S = [0,+∞), h : R2 → R,
G = (G1, G2, G3) : R2 → R3, H = (H1,H2, H3) : R2 → R3 defined by

f1(x, y) =

{
x3

y − x, y ̸= 0,

−x, y = 0,
f2(x, y) = |x|+ y,

gs(x, y) = −x− s (s ∈ S), h(x, y) =

{
0, y ≥ 0,
−y, y < 0,

G1(x, y) =

{
y, y ≥ 0,
0, y < 0,

, H1(x, y) =

{
y, y ≥ 0,
0, y < 0,

,

G2(x, y) =

{
y, y ≥ 0,
0, y < 0,

, H2(x, y) =

{
1, y ≥ 0,
1− y, y < 0,

,

G3(x, y) =

{
1, y ≥ 0,
1− y, y < 0,

, H3(x, y) =

{
y, y ≥ 0,
0, y < 0,

.

We have Π = R+ × {0} and x = (0, 0) ∈ Π is a local efficient solution of (1). It is easily seen that

∂T f1(x) = {(−1, 0)}, ∂T f2(x) = [−1, 1]× {0}, ∂T gs(x) = {(−1, 0)} ∀s ∈ S,

∂Th(x) = ∂TG3(x) = ∂TH2(x) = {0} × [−1, 0],

∂TG1(x) = ∂TG2(x) = ∂TH1(x) = ∂TH3(x) = {0} × [0, 1],

T (Π, x) = R+ × {0}, IGH(x) = {1}, IG(x) = {2}, IH(x) = {3}.

In choosing B1 = ∅ and B2 = IGH(x), we can easily check that the constraint qualification ∂T -ACQ(B1, B2)
holds at x and that D, defined by (4), is closed. Consequently, x satisfies the assumptions of Theorem 3.1. In
taking λ1 = λg = 1

2 , λ2 = λh = 1, λG1 = λG2 = λH3 = 1
3 and λG3 = λH1 = λH2 = 0, the condition (2) is verified with

λG1 λ
H
1 = 0, which means that x is an M-stationary point of (1).

Remark 1. The use of tangential subdifferentials instead of other subdifferentials such as Clarke subdifferentials
presents some advantages. Indeed, for our problem, the functions are not necessarily locally Lipschitz at the local
efficient solution of (1), as is the case with the function f1 in the above example.
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4. Conclusion

In this work, we have established necessary M-stationary conditions for a nonsmooth multiobjective semi-infinite
programming with switching constraints by using a surrogate problem and tangential subdifferentials. Moreover,
we have employed Abadie-type constraint qualifications that are weaker than most of known nonsmooth constraint
qualifications like those of Slater, Cottle, Zangwill, etc. To the best of our knowledge, this is the first work that
treats the nonsmooth and semi-infinite case for multiobjective programming with switching constraints. For future
research, we can derive optimality conditions for the same problem we studied using weaker subdifferentials such
as convexificators.
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