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Abstract Estimating the parameters (or characteristics) of a distribution, from the availability of censored samples, is one
of the most important topics in statistical inference over the past decades. This study is concerned about the E-Bayesian
estimation method to compute the estimates of the parameter, the hazard rate function and the reliability function of the
Weibull distribution when the progressive type-2 censored samples are available. The estimations are obtained based on the
Squared error loss function (as a symmetric loss) and General Entropy and LINEX loss functions (as asymmetric losses). In
addition, the asymptotic behaviour of the derived E-Bayesian estimators is discussed. Moreover, the E-Bayesian estimators
under the different loss functions have been compared through Monte Carlo simulation studies by calculating the E-MSE of
the resulting estimators, which is a new measure to compare the E-Bayesian estimators. As an application, we analyzed two
real data sets that follow from the Weibull distribution.
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1. Introduction

In statistical inference, usually the problem of estimating the parameters (or characteristics) of a distribution is
one of the favorite situations of researchers in this field. In the theory of reliability, to estimate aging indicators of
lifetime distributions such as survival functions and failure rates, available failure times from designed engineering
experiments are often used. On the other hand, there is usually some additional information, such as experts’
previous beliefs about parameter values and observation of internal parameters, etc, which can be useful for
more accurate estimation. Bayesian methods are often useful tools for modeling redundant information as prior
distributions.

Weibull distribution is one of the most popular distribution in analyzing skewed data. The probability density
and distribution functions of the Weibull distribution are defined by

f(x) = axz® te™ A" (1)

and

o

Fz)=1—e? 2)
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respectively. The reliability function R(t) and the hazard rate function A () at mission time ¢, respectively, are given
by
R(t) = e (3)

and
h(t) = axt* 1, “)

where o > 0 is the shape parameter and A > 0 is the scale parameter.

The Weibull distribution is a beneficial distribution for modeling and analyzing in different aspects of statistics,
such as lifetime studies and reliability theory; because it is a very flexible distribution and can cover all types of
aging for different values of its shape parameter. For example, as shown in Figure 1, it has an increasing, constant
and decreasing failure rate for « > 1, @ = 1 and « < 1, respectively. It should also be noted that when oo = 1, we
arrive at Exponential distribution.
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Figure 1. The plot of probability density (left) and hazard rate (right) functions of Weibull distribution for different values of
parameter c.

Many authors have investigated various aspects of Weibull distribution. For instance, Kundu and Gupta [14],
by considering independent strength and stress random variables distributed as Weibull model, have estimated the
stress-strength reliability. Pak et al. [30] have discussed different estimation procedures for the Weibull distribution
when the obtained data are fuzzy numbers. Muhammed and Almetwally [24], by considering the bivariate inverse
Weibull distribution, have obtained Maximum likelihood and Bayesian estimation for the unknown parameters of
this distribution in the presence of progressive type-1I censored data. For some applications and different methods
of estimation of the family of Weibull distribution, interested readers may refer to Almetwally et al. [3], Mastor et
al. [23], Vila and Niyazi Cankaya [33], Jana and Bera [18] and Jiang [19], to name a few.

The survival and the hazard rate functions, as two important indicators to measure the aging of systems or
components, have many applications in statistics, specially in lifetime testing and engineering. For example,
Asgharzadeh et al. [4] have considered the two-parameter generalized exponential distribution, and have studied
the stress-strength reliability of the distribution under the record data via the Bayes and maximum likelihood
methods. A reliability analysis of the proportional hazard rate models (PHM) in aeronautics have been studied
by Diamoutene et al. [11] . Demiray and Kizilaslan [10] have considered classical and Bayesian approaches to
estimate the stress-strength reliability in consecutive k-out of-n systems when the two variables follow the PHM.

In reliability and life testing analysis, the data are often censored (Balakrishnan [6]; Balakrishnan and Aggarwala
[7D).

Suppose that n independent items are put on a test and that the lifetime distribution of each item is given by
the probability density function of (1) (Jianhua et al. [20]). The ordered m-failures are observed under the type-II
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progressively censoring plan (R, ..., R,;,) where each R; > 0 and ) R; +m = n. It should be noted that, if, in
j=1

the progressive type-1I censoring scheme, we set R; =0, ¢ = 1,...,m, we arrive at the type-II censored data. If

the ordered m-failures are denoted by x(1y < 2(2) < ... < (), then the likelihood function based on the observed

sample x (1) < z(2) < ... < T(y, (for convenience, notations are denoted by z1 < 3 < ... < xy,) is

m

L(a,\) = e[ [ f@)t = F(a)]™ )
i=1
where ¢ =n(n—1—Ry)...(n — Ry — ... — Rpy—1 —m + 1). For more details, interested readers may refer to

Balakrishnan et al. [7] and Balakrishnan and Cramer [8]. Substituting (1), (2) in (5), the latter expression can

be obtained as follows,
L(O[7 )\) _ amAme(a—l) > In me—k > (Ri+1)xy ) (6)

Estimating the ageing characteristics such as the survival and the hazard rate functions in the presence of
incomplete data (such as censored and recorded data) is an attractive topic for researchers. For example, Kayal et al.
[21] have studied some inferences for Chen distribution under type-I progressive hybrid censored data. Al-Zahrani
and Ali [2] have considered the Lindley distribution, and in the presence of multiple type-II censored samples of
order statistics, have obtained the recurrence formulas for the moments. Estimating the stress-strength reliability for
two Weibull independent random variables with different shape parameters under progressive type-II censored data
have been done by Valiollahi et al. [27] . Similar results for the inverted exponential Rayleigh distribution have been
extracted by Ma et al. [22]. Ren and Gui [26], in the presence of progressive type-II censored data, have studied
the inference of competing risks model for generalized Rayleigh distribution. Feroze et al. [13], by considering
progressive type-II censored data, have obtained Bayesian estimation for some reliability characteristics of the
Topp-Leone distribution. Panahi [29], by considering independent strength and stress random variables distributed
as inverted exponentiated Rayleigh model, have estimated the stress-strength reliability parameter when type 11
hybrid censored samples are available.

The aim of the paper is to estimate the unknown parameter and the ageing indices of the Weibull distribution
using the E-Bayesian (EB) estimation method and compare them. As we have already known, Bayes is a method
that uses experts’ previous beliefs about parameter variations, called the prior distribution, to more exactly
estimate of the parameter. But in practice, since the prior distribution parameters depend on the other parameters
(hyperparameters), the E-Bayesian method is employed to model and estimate such condition. Thus, the E-
Bayesian estimation method, as an alternative method to Bayesian approach, has been proposed by Han [15].
Han [15] have derived the E-Bayesian estimation and its expected mean squared error (E-MSE) for exponential
distribution based on the scaled squared error loss function. Estimating the scale parameter and the reversed hazard
rate function of an inverse Rayleigh distribution using E-Bayesian and Hierarchical Bayesian methods under the
squared error, precautionary and entropy loss functions have been done by Athirakrishnan and Abdul-Sathar [5].
Okasha et al. [25] have derived the E-Bayesian estimations for some characteristics of the Lomax distribution
under adaptive type-1 progressive hybrid censoring scheme. Recently, Shojaee et al. [31] have compared the E-
Bayesian estimations of the parameter, the hazard rate function and the survival function of the Compound Rayleigh
distribution using the values of their E-MSE’s when progressive type-II censored data are available. See, also,
Shojaee et al. [32], where the authors have derived Bayesian estimator for Compound Rayleigh distribution under
the record data.

In this paper, we have employed the E-Bayesian estimation method to estimate the unknown parameter, the
survival function, and the hazard function of the Weibull distribution. Since, it is shown that the E-Bayesian
estimation is a more precise estimation than the Bayesian estimation, and also the progressive type-II censoring is
a more cost-effective plan, we obtained these estimates based on the asymmetric linear exponential (LINEX) and
general entropy (GE) and the symmetric squared error loss functions (SE) under the progressive type-II censored
data. In addition, we showed that the asymptotic behaviors of the E-Bayesian estimators based on different priors
are the same. Moreover, to compare the E-Bayesian estimators, we used the “E-MSE”of the resulting estimators,
which is a “new measure to compare the E-Bayesian estimators”(Han [15]).

The main motivations of the paper are as follows:
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e The two-parameter Weibull distribution is one of the most important and popular statistical lifetime
distributions in reliability engineering due to its simplicity and flexibility, and many components or systems
can be cited as examples whose lifetimes follow this distribution.

* The two-parameter Weibull distribution for different values of its shape parameter can cover the lifetime
distribution of systems or components with increasing, decreasing or constant failure rates.

¢ In some survival studies, the Weibull distribution has a better level of fit than the other distributions.

* Itis proven that the E-Bayesian estimator has a higher precision than the older estimators including maximum
likelihood (ML) and Bayesian estimators.

» E-Bayesian estimators cover the uncertainty in parameters more than other estimators such as maximum
likelihood and Bayesian estimators, and in fact, they are robust to parameters uncertainties.

The rest of the paper is organized as follows. In sections 2 and 3, the Bayesian and E-Bayesian estimations for
some interested characteristics of the Weibull distribution, respectively, are derived. We investigated the asymptotic
behaviour of the E-Bayesian estimators in section 4. A simulation study of the resulting E-Bayesian estimators is
carried out via the Monte Carlo simulation in section 5. In section 6, as an application, we analyzed two real data
sets following the Weibull distribution. Finally, conclusions and concluding remarks are given in section 7.

2. Baysian Estimators
To avoid complex numerical methods that are possible only through simulation and to obtain the theoretical results

presented in Section 4, when parameter « is known, we consider the natural conjugate family of prior densities for
parameter A as follows (Han [17]; Zeinhum and Hassan [12]).

1) = L a1t )

Combining the likelihood function (6) with the prior pdf (7), one can obtain the posterior density function of \ as
follows: N
o+17)"™" —1_-2
A _ )\m+a (b+T) 8
") = Fo e ‘ ®)
where T'= Y | (R; + 1)z
As we know, Bayesian estimators are obtained under different loss functions. Therefore, in this article, we will
use the squared error loss function as a symmetric loss function and general entropy and LINEX loss functions
as asymmetric loss functions to estimate the desired characteristics. Also, one can compare the obtained Bayesian
estimators by considering different loss functions. Under the squared error loss function (L(j\ A =(\- )\)2),

the Bayes estimator of A can be driven
m+a

b+T°
The LINEX loss function for A can be expressed as the following proportional

As = )
L(A) x exp(kA) — kA — 1; k#£0,

where A = (A — \) and ) is an estimate of A. The Bayes estimator of ), denoted by X1, under the LINEX loss
function is given by

- 1
AL = ~Z In Ey[exp(—kA)].

Under LINEX loss function, we obtain Bayesian estimator of the parameter A as the following form

XLzm“‘ln(Hk). (10)

k b+T
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The Bayes estimator of the reliability, Rpg, based on the squared error loss function is obtained from (3) and (8)

as
- b+T

Re — m+ta 11
s=Grryr) an
where
TF = t%.

The Bayes estimator of the hazard rate function, hpg, under the squared error loss function is obtained from (4)
and (8) as follows

~ m—+a

hg = at® .

ST T

Also, based on the LINEX loss function, the Bayes estimator of the reliability, R;, , and the hazard rate function,
hy, are given by

12)

A —1 At -1 (b—l—T)era L L
= —(InFE ke - "] vyr+s) ke m+a—1 (b+T)A 1
Ry k(n (e ) - n<I‘(m—|—a) /0 e A e dA (13)
-1 (k) b+ T i
_kn(; (i) G T )
and )
s a-1MmAta
hy =at k: In <1+b+T)' (14)
respectively.

The general entropy loss function is asymmetric and has the following form for A
L(6) =0 — qIn(é) — L3¢ # 0, (15)

where 6:% and ) is an estimator of \ (Varian [28]). The Bayes estimator of A, under the general entropy loss
function is .
Ag= B (16)

Under general entropy loss function, we obtain Bayes estimators of A, R(¢) and h(t) by combining (8) and (16),
respectively, as follows:

. _(Tim+a—q) i —1
/\G_<F(m—|—a)> (T+b) ", (17)
e
to~( 55 gm) o
» a1 D(mta—q) K —1

3. E-Bayesian Estimators

In the reliability theory, the failure rate of a high reliability product is less than that of a low-quality product. For
this reason and According to Han [17], a and b should be selected such that g()\) is a decreasing function of A, in
the E-Bayesian estimations. For more detail, we refer to Han [17]. The derivative of g(\) with respect to A is

M_ b” a—2€—b/\ a— _
0 = i [(a—1) —bAl.
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Note that a > 0,5 > 0, and A > 0, it follows 0 < a < 1, b > 0 due to < 0; and therefore g()) is a decreasing
function of A. Assuming that a and b are independent with bivariate density function

m(a,b) = w1 (a)ma(b)

then, the E-Bayesian estimator of A (expectation of the Bayesian estimator of A) can be written as

dg(N)
A)

Aps = EQX) = / / A (a,b)m(a,b)dbda (20)

where \ g(a,b) is the Bayes estimator of A given by (9), (10) and (17). In addition, to evaluate the precision of the
E-Bayesian estimators, we have used the E-MSE that has been proposed by Han [15]:

E — MSE (XEB) - / / MSE[Ap(a,b)]n(a, b)dbda
D

To check the effect of different prior distributions of the hyperparameters a and b on the E-Bayesian estimations, we
have derived the E-Bayesian estimations under three following different distributions. The following distributions
of a and b may be used.
™ (a,0) =251 0 < a<1, 0<b<c
T (a,b) =21, 0<a<l, 0<b<c (21)
73 (a,b) :3—3, 0<a<l, 0<b<ec.

3.1. E-Bayesian Estimators Under the Square Error Loss Function

The E-Bayesian estimations of A is derived from (9) and (21) as

A —//X( b)m1 (a, b)dbd —/1 Tmta2c—b),., (22)
EBS1 = DSCM i@, a—o y T+b a
1
_ 2m:_ (c]n(T+c)—clnT—Tln(T+C)—T1nT>7

. . +1
)\EBSQZ/ / As(a,b)ms(a, b)dbda:m 21n(1 + 5)7 (23)
D C T
and T
. A 2 1
AEBSS:/ / As(a, b)ms(a, b)dbda=—" <c — Tln(— C)) . 24)
D c T
Also, the E-Bayesian estimations of R from (11) and (21) can be obtained as follows
1 c m+a
A T+b 2(c—b)
R = dbda, 25
EBS1 /0 /o (T+b+T*) 2 a (25)
T+b \""1
= - 2
Rppsa= / / (T bt T*> Cdbda, (26)
and nta
T+b 2b
= —dbda. 27
Rppss= / / (T+b+T*> 2 dbda 27
Further, the E-Bayesian estimations of i from (12) and (21) can be given as follows
. to=1)(2 1
heps1= (a )(2 m+1) <cln(T +¢)—cIlnT — TIn(T 4+ c)) (28)
C
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(ot !)(m + 3)

BEBSQZfln(l + %)7 (29)
and )
. o= 1)(2m + 1 T+
hppss="2 )C(2 m+1) <c ~ Tin(—; C)). (30)

3.2. E-Bayesian Estimators Under the General Entropy Loss Function

Under the general entropy loss function, the E-Bayesian estimation of A, R and & is computed from (17)-(19),
respectively, and (21). The estimators are as follows:

1/q
(m+a-— 2(c—b
)\EBGl—/ / ( m+aq)) (T+b)"" (C >dbd 31
1/q
m+a— 11
AEBGQ—/ / < m+aq)> (T +b) "' dbda, (32)
1/q
— 2
)\EBGB—/ / ( mﬂ:iaq)> (T + )™ = dbda, (33)
T+b \ 5 2c—0)
q C —
REBGl—/ / (T+b qT*) 2 dbda, (34)
T+ e 1
REBc;z—/ / <T+b—qT*> Edbda, (35)
T+b \ 7 2
REBG3—/ / <T+b—qT*> gdbda7 (36)
1/q
- 2c
hepor1=(at® 1/ / ( m;iaq» (T +b)~" (C %) dhda, (37)
(m+a—q) 1/a 11
hEepGa=(at®™ 1/ /( Tm+a) ) (T +b) Edbda, (38)
1/q
- 12
hpas=(at®™) / / < m;i@”) (T +b) 10—2dbda. (39)

3.3. E-Bayesian Estimators Under the LINEX Loss Function

The E-Bayesian estimations of A under the LINEX loss function can be derived from (10) and (21) as follows

1 c
. —(m+a) T+b \2(c—b)
- 1 4
ArpLi /0 /o P M\ ryeer) @ dhde (40)
1 c
. f(era T+b 1
AppLo— ~dbda, 41
EBL?2 /0 /0 ’ T bk (41)
and )
< B c —(m+a T+b \2b
)\EBLg—/O A L T+b+]€ dbd (42)
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Also, the E-Bayesian estimations of R from (13) and (21) can be obtained as follows

Rppri= / / ln( <_(]3i(b+bT++TiT*)m+“)Q(CCQb)dbda,

1 c oo ;
) 1 (—k)  b+T 1
— 1 m+a | —
Reprs /0 /0 k n(; T(i) Grrra) >cdbda’

REBLS*/ / 1H< (—(Izii(b+bT++TiT*)m+a> debd a.

Further, the E-Bayesian estimations of h from (14) and (21) can be given as follows

1 c
- —(m+a) T+b 2(c—b)
h = 1 dbd,
EBLL /0/0 . O\Trbtkato1) &2 @
1 c

- —(era T+b

h = dbd

bBL2 /0 /0 K T+b+ kato—1 @

1 c
- —(m+a) T+0b 2b
hppLs= 1 5 dbd
EBL3 /0/0 kK C\T+0b+ kato? “

4. Asymptotic Behaviours of the E-Bayesian Estimators

and

and

969

(43)

(44)

(45)

(46)

(47)

(48)

In this section, we discuss asymptotic behaviour of the E-Bayesian estimators. For the sake of brevity, we only
present theorems for square error loss function. For general entropy and LINEX loss functions, the results can be

easily derived by the corresponding relations.

4.1. Asymptotic Behaviours of \ppg; (i = 1,2,3)

Theorem 1 R
Let0 < ¢ < T and Agps; (i = 1,2, 3) be given by (22)-(24), then:

1. Aepss < Apps2 < Appsi.
2. limg o0 Appst = limy oo Appsa = limp 00 Azpss.

Proof

1. Itis easy to see that from (22)-(24), we have:

\ \ 3 3 1 1 c+2T c+T
)\EBSZ_)\EBSSZ)\Ele—)\EBSQZE <m+) |: 1H<

Now, based on Mac laurin series, we have:

Stat., Optim. Inf. Comput.

)l e

m(l+4z) =a2— S+ ——+--=> (-)2"k  |ao[<L

(50)

Vol. 12, July 2024



970 E-BAYESIAN ESTIMATION FOR SOME CHARACTERISTICS OF WEIBULL DISTRIBUTION

Thus, it suffices to replace = by ¢/T in (50). Also, note that when 0 < ¢ < T, then we have 0 < ¢/T < 1,
and:

[c+2Tln<T;c) 2] c+2T <( /T)ii(c/T) (C/T)S, i(c/T)4+é(c/T)5m> -2

C

1 4 1
¢/T) — = c/T) (c/T)3 -1/ + g(c/T)5_ . > -2

(
< (¢/T) + 2(e/T)" - Z(C/T)3+§(C/T)4—...>
(

/6T — 3/6T3) (3c*/6T* — 2¢° /15T°) +
4

6T2 (1—¢/T)+ 6§T4 (9—8¢/T)+... . 1)

Consequently, (49) and (51) yield:

AEBS2 — AEBS3 = AEBS1 — AEBS2 > 0,

or
AeBS3 < AEBs2 < AEBS1-

2. From (49) and (51), we obtain:

lim (Agps2 — Appss) = lim (Appsi — Aess2),
T—o0 T—o0

or
lim )\E‘BSl = lim )\EBSQ = lim )\EBSS~.
T—o0 T—o0 T—o0
O

The first part of Theorem | states that with different densities of prior distributions, (21), the E-Bayesian
estimations Agpg; (1 = 1,2,3) are also different and can be ordered. Part (2) shows that Aggs; (i = 1,2,3) are
asymptotically equal when 7' is large.

4.2. Asymptotic Behaviours of Rpps; (i = 1,2,3)

Theorem 2 R
Let0 < ¢ < T and Rgps; (i = 1,2, 3) be given by (25)-(27), then:

limr o REBs1 < limr_ o RERs2 < limp_ o REBSS.

Proof
From (25)-(27), we have:

I (R “R )— I (R “R )—i i [ O G " b
TgT;o EBS3 EBS2 —Tgréo EBS2 EBS1 T2 Tgﬂoo A c T+b+T" a.

Here, applying the monotone convergence theorem and equivalence rule:
lim REBSI = lim REBSQ = lim REBS3 A
T—o00 T—o0 T—o00
O

The first part of Theorem 2 states that with different densities of prior distributions, (21), the E-Bayesian
estimations Rgpg; (i = 1,2, 3) are also different and can be ordered.
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Remark 1
From (25)-(27), we have

R . R R T + b m+a
Ripss — Reps1 = Repss — Repse = / / Trbr T dbda. (52)

The equation (52) has not a closed form. Therefore, numerical methods are used for calculating it, by R software.
The results (Table 3) implied that the following relation

Reps1 < Reps2 < Repsi-

4.3. Asymptotic Behaviours of hepsi (i=1,2,3)

Theorem 3 .
Let0 < c<Tand hgpg; (1 = 1,2,3) be given by (28)-(30), then:

1. hppss < hppss < hepsi.
2. limg o0 hppst = limr o hppse = limr o hppss.

Proof

1. From (28)-(30), it is eay to see that:

A - - - 1 1 2T T
hepse —hepss = heps1 — hepse = Ozta_lg (m + 2) {C +C In (C; ) - 2} . (53)

Now, based on (53), (49) and (51), one can obtain:

hgps2 — hgps3 = hgps1 — heps2 > 0,

or:
heps3 < heps2<hgpsi.

2. According to (53), (49) and (51), we have:

lim (hgpsa — hppss) = lim (iLE351 — iLEBSZ)
T— o0 T—o0

I
e

a1l 1 02 ct

lim hEBSl = lim hEBS2 = lim hEBS3 § |
T—o0 T— o0 T— 00

O

The first part of Theorem 3 states that with different densities of prior distributions, (21), the E-Bayesian
estimations hggg; (1 = 1,2, 3) are also different and can be ordered. Part (2) shows that hgpg; (i = 1,2,3) are
asymptotically equal when T is large.
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5. Simulation Study

To generate a progressive type-II censored sample from a Weibull distribution, we use the algorithm of
Balakrishnan et al. [7] as follows:

1.

2.

Simulate m independent exponential random variables Zi, Zs, ..., Z,,. This can be done using inverse
transformation Z;, = — In(1 — U;) where U; are independent uniform (0, 1) random variables.

Set Z Z A Z
x4 2 3 i
) n+n—R1—1+n—R1—R2—2+ +7’L—R1—R2—"'—Ri,1—i+1

fori = 1,2 ..., m. This is the standard exponential progressive type-II censored sample.

. Finally, set Y; = F~*(1 —exp(—X;)), for i =1,2,...,m, where F~!(.) is the inverse of cumulative

distribution function of Weibull distribution. Y7, Y5, ,Y,, is the required progressive type-II censored sample
from F(.).

. The E-Bayesian estimations of parameter A and survival function R(¢) and hazard rate h(t), can be computed,

respectively, by (22)-(48).

. The mentioned steps are repeated 2000 times and the E-MSEs of estimates are calculated as:

E — MSE (Q) - ﬁ Z/ /MSE[QB (a,b)]7(a, b)dbda,

where @ is an estimate of parameter ().

To estimate the parameters via simulation, we use the following values as starting points in Table 1. The results are

Table 1. Initial values of the parameters for Monte Carlo simulation.

o A k q a b c t | Hazard rate | Reliability
1.9 | 1.247675 | 0.25 | 1.2 | 0.5060425 | 0.3919524 | 1.4 | 0.5 | 1.270364 | 0.7158345

displayed in Tables 2-4. Further, the corresponding figures are depicted in Figures 2-4. It is clear from Tables 2-4
and Figures 2-4 that the E-Bayesian estimators, are robust and satisfy the Theorems 1, 2, and 3.
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m=50% of n

m =70% of n

E-MSE for A
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Figure 2. The values of E-MSEs to estimate parameter A based on (50, 70 and 100)% of samples.

6. Real Data Analysis

In this section, we present a data analysis of the strength data reported by Kundu and Gupta [14]. The data represent
the strength data measured in GPA, for single carbon fibers and impregnated 1000-carbon fiber tows. Single fibers
were tested under tension at gauge lengths of 1, 10, 20, and 5S0mm. Impregnated tows of 1000 fibers were tested at
gauge lengths of 20, 50, 150 and 300 mm. For illustrative purpose, we will be considering the single fibers of 20
mm (Data Set I) and 10 mm (Data Set II) in gauge length, with sample sizes n; = 69 and no = 63, respectively.
The two real data sets are as follows.

Data Set I
1.312,1.314,1.479,1.552,1.700,1.803,1.861,1.865,1.944,1.958,1.966,1.997,2.006,2.021,2.027,2.055,
2.063,2.098,2.140,2.179,2.224,2.240,2.253,2.270,2.272,2.274,2.301,2.301,2.359,2.382,2.382,2.426,
2.434,2.435,2.478,2.490,2.511,2.514,2.535,2.554,2.566,2.570,2.586,2.629,2.633,2.642,2.648,2.684,
2.697,2.726,2.770,2.773,2.800,2.809,2.818,2.821,2.848,2.880,2.954,3.012,3.067,3.084,3.090,3.096,
3.128,3.233,3.433,3.585,3.585.

Data Set I1
1.901,2.132,2.203,2.228,2.257,2.350,2.361,2.396,2.397,2.445,2.454,2.474,2.518,2.522,2.525,2.532,
2.575,2.614,2.616,2.618,2.624,2.659,2.675,2.738,2.740,2.856,2.917,2.928,2.937,2.937,2.977,2.996,
3.030,3.125,3.139,3.145,3.220,3.223,3.235,3.243,3.264,3.272,3.294,3.332,3.346,3.377,3.408,3.435,
3.493,3.501,3.537,3.554,3.562,3.628,3.852,3.871,3.886,3.971,4.024,4.027,4.225,4.395,5.020.
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Figure 3. The values of E-MSEs to estimate R(t) based on (50, 70 and 100)% of samples.

Kundu and Gupta [14] have shown that the Weibull distribution is acceptable for these data. Using equations (22)-
(48), different estimates are computed and reported in Table 6. The first column is the censor scheme. For example,
R = (8%3,2,0%30)means (8,8,8,8,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0). We
use the following initial values (Table 5) to estimate the parameters.

Table 5. Initial values for two real data sets.

k

q

t

a(Data set 1)

a(Data set 2)

1.4

0.25

1.2

0.5

3.8428

3.9090

The results of Table 6 indicates that E-Bayesian estimates are robust and satisfy the Theorems 1, 2 and 3.

7. Conclusions and Concluding Remark

The two-parameter Weibull distribution is one of the most important statistical lifetime distributions in reliability
engineering due to its simplicity and flexibility. On the other hand, E-Bayesian estimators cover the uncertainty in
parameters more than other estimators such as maximum likelihood and Bayesian estimators, and in fact, they are

robust to parameters uncertainties.

We have obtained the E-Bayesian estimation of the parameter, the reliability, and the hazard functions of
Weibull distribution when the progressive type-II censored data are available. Our interest in this stems from the
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Figure 4. The values of E-MSEs to estimate h(t) based on (50, 70 and 100)% of samples.

fact that we have predicted the different estimators to be differently affected by the availability of the progressive
type-1I censored samples in a known statistical distribution such as Weibull distribution. To compare the E-Bayesian
estimators, we have used the E-MSE of the resulting estimators, which is a new measure to compare the E-Bayesian
estimators. The E-MSE of the E-Bayesian estimators have obtained using Monte Carlo simulation studies with
different censor schemes to compare the E-MSE of the resulting estimators. Asymptotic behaviours of the E-
Bayesian have shown that the E-Bayesian estimations can be ordered and asymptotically equal when 7' is large. In
contrast to our anticipation, we found that:

e The obtained E-Bayesian estimations from various prior parameters are more close to each other when
the sample size increases. By various priors, the E-Bayesian estimators are robust, and also satisfy the
corresponding theorems.

* The E-MSE:s of the E-Bayesian estimators decrease when the sample size n increases.

» This paper states that the E-Bayesian estimation in all scenarios, as well as the simplicity of calculations, it
also has high efficiency.

e From Table 2 and Figure 2, the E-MSEs of estimates decreases as sample size increases. The E-MSEs of
E-Bayesian estimators are ordered as follows:

a. E— MSE(%E353)<E — MSE(SLEBSQ)<E — MSE(;\AEB81)7
b. E - MSE(%\EBG?))<E — MSE(?\EBGQ><E — MSE(}‘EBGI)a
c. E— MSE(AEBL3)<E — MSE()\EBLQ)<E — MSE(AEBLI)
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From Table 3 and Figure 3, the E-MSEs of estimates decrease as sample size increases. The E-MSEs of
E-Bayesian estimators are ordered as follows:

a. E— MSE(Rgpss)<E — MSE(Rggs2) <E — MSE(Ress1),

b. E — MSE(BEBG3)<E — MSE(BEBG2)<E — MSE(BEBG1)7

c. E— MSE(REBL3)<E — MSE(REBL2)<E — MSE(REBLl)

* From Table 4 and Figure 4, the E-MSEs of estimates decrease as sample size increases. The E-MSEs of

E-Bayesian estimators are ordered as follows:

a. E — MSE(hgpss)<E — MSE(hgps2) <E — MSE(hggs1),

b. E— MSE(}}EBG3)<E — MSE(pEBG2)<E — MSE(AhEBGl);

c. E— MSE(hEBL3)<E — MSE(hEBL2)<E — MSE(hEBLl).

* The E-Bayesian estimates, based on general entropy loss function have smaller E-MSEs than the others.
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