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Abstract We propose and study a new generalized class of distributions called the Type II Exponentiated Half Logistic-
Gompertz-G Power Series (TIIEHL-Gom-GPS) distribution. Some structural properties including expansion of density,
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cases of the proposed distribution. The maximum likelihood method is used for estimating the model parameters. The
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1. Introduction

New families of distributions are widely studied and employed to describe real lifetime data sets. These
new families have found wider applicability in various areas of biology, environmental sciences, economics,
physics and hydrology. The type II transformations are very important and have led to various new families
of distributions. Some well-known type II transformations include type II exponentiated half logistic generated
family of distributions by Al-Mofleh et al. [3], type II half logistic Kumaraswamy distribution by ZeinEldin et
al. [24], type II power Topp-Leone generated family of distributions by Bantan et al. [4] and type II half logistic
family of distributions by Soliman et al. [22].

Al-Mofleh et al. [3], developed the type II exponentiated half logistic family of distributions with the cumulative
distribution function (cdf) given by

F (x;β, α, Ψ) = 1−
(
1− Ḡβ(x;Ψ)

1 + Ḡβ(x;Ψ)

)α

, (1)

where Ḡ(x;Ψ) = 1−G(x;Ψ) and G(x;Ψ) is the baseline cdf with parameter vector Ψ and β, α > 0, are the shape
parameters. In this work the parameter β is taken to be equal to 1.

The cdf and probability density function (pdf) of the Gompertz-G (Gom-G) family of distributions by Alizadeh et
al. [1] are given by

F (x;λ, γ, Ψ) = 1− exp

[
λ

γ
(1− (1−G(x;Ψ))−γ)

]
(2)
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and

f(x;λ, γ, Ψ) = λg(x;Ψ)(1−G(x;Ψ))−γ−1 exp

[
λ

γ
(1− (1−G(x;Ψ))−γ)

]
, (3)

respectively, for λ, γ > 0 and Ψ is the parameter vector from the baseline distribution. We set the parameter λ = 1
from equation (2) and (3) to avoid the problem of over parameterisation.

The pdf of the Gompertz distribution is either right or left-skewed. Work by Sanku et al. [21] studied several
properties and different methods of estimation of the unknown parameters of Gompertz distribution. The Gompertz
distribution has a monotonically increasing hazard rate function. Some of its recent generalization include the
Topp-Leone-Gompertz-G family of distributions by Oluyede et al. [19] and the Marshall-Olkin-Gompertz-G
family of distributions by Chipepa and Oluyede [11].

The study of lifetimes holds significance in numerous scientific and technological areas. Various distributions have
been proposed in existing literature to model lifetime data using compounding method. Examples include the type
II Exponentiated Half-Logistic-Topp-Leone-G power series class of distributions by Moakofi et al. [17], a new
generalized family of lifetime distributions by Goldoust et al. [13], a new two-sided class of lifetime distributions
by Kharazmi et al. [15], and the Odd Log-Logistic Transmuted-G family of distributions by Alizadeh et al. [2].

We are motivated by the applicability of the Gompertz-G family of distributions in many fields. Furthermore, the
usefulness of power series distributions and the versatility of generalized power series distributions inspired the
development of the TIIEHL-Gom-GPS class of distributions. The proposed distribution exhibit both monotonic
and non-monotonic hazard rate functions, which is a crucial improvement to the Gompertz distribution. Also,
from data modeling examples presented, the new model is a strong alternative model to reliability data. We hope
the newly developed model will get attention from various researchers.

This paper is organized as follows: The structural properties of the new TIIEHL-Gom-GPS class of distributions
are presented in Section 2. Section 3 contains some special cases of the TIIEHL-Gom-GPS class of distributions.
Monte Carlo simulation study is presented in Section 4. Applications of the proposed model to real data are given
in Section 5, followed by concluding remarks.

2. The Model and Properties

Let N be a discrete random variable following a power series distribution assumed to be truncated at zero, whose
probability mass function (pmf) is given by

P (N = n) =
anθ

n

C(θ)
, n = 1, 2, . . . , (4)

where C(θ) =
∑∞

n=1 anθ
n is finite, θ > 0, and {an}n≥1 a sequence of positive real numbers. The power series

family of distributions includes binomial, Poisson, geometric and logarithmic distributions.

We combine the type II exponentiated half logistic-Gompertz-G (TIIEHL-Gom-G) distribution and the power
series distribution to obtain a new class of distributions, namely, TIIEHL-Gom-GPS distribution. The cdf of the
TIIEHL-Gom-G family of distributions is obtained by inserting the cdf in equation (2) into the cdf in equation
(1) (with β = 1). Given N , let Y1, Y2, ..., YN be identically and independently distributed (iid) random variables
following TIIEHL-Gom-G distribution. Let X = Y(1) = min(Y1, . . . , YN ), then the conditional distribution of X
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given N = n is given by

GX|N=n(x) = 1−
n∏

i=1

(1−GTIIEHL−Gom−G(x; γ, α, Ψ)) = 1− Sn
TIIEHL−Gom−G(x; γ, α, Ψ)

= 1−

([
exp

[
1
γ (1− [1−G(x;Ψ)]−γ)

]
1 +

{
1− exp

[
1
γ (1− [1−G(x;Ψ)]−γ)

]}]α)n

.

Thus, the cdf of the life length of the whole system, X , that is, the cdf of the TIIEHL-Gom-GPS distribution which
is the marginal distribution of X = Y(1), is given by

FX(x;α, γ, θ, Ψ) =

∞∑
n=1

anθ
n

C(θ)

(
1−

([
exp

[
1
γ (1− [1−G(x;Ψ)]−γ)

]
1 +

{
1− exp

[
1
γ (1− [1−G(x;Ψ)]−γ)

]}]α)n)

= 1−
C

(
θ

[
exp
[

1
γ (1−[1−G(x;Ψ)]−γ)

]
1+
{
1−exp

[
1
γ (1−[1−G(x;Ψ)]−γ)

]}]α)
C(θ)

. (5)

The corresponding pdf and hazard rate function (hrf) are given by

fX(x;α, γ, θ, Ψ) = 2αθg(x;Ψ)[1−G(x;Ψ)]−γ−1 exp

(
1

γ
(1− [1−G(x;Ψ)]−γ)

)
×

(
1 +

(
1− exp

(
1

γ
(1− [1−G(x;Ψ)]−γ)

)))−α−1

×
C ′

(
θ

[
exp
[

1
γ (1−[1−G(x;Ψ)]−γ)

]
1+
{
1−exp

[
1
γ (1−[1−G(x;Ψ)]−γ)

]}]α)
C(θ)

(6)

and

h
F
(x) = 2αθg(x;Ψ)[1−G(x;Ψ)]−γ−1 exp

(
1

γ
(1− [1−G(x;Ψ)]−γ)

)
×

(
1 +

(
1− exp

(
1

γ
(1− [1−G(x;Ψ)]−γ)

)))−α−1

×
C ′

(
θ

[
exp
[

1
γ (1−[1−G(x;Ψ)]−γ)

]
1+
{
1−exp

[
1
γ (1−[1−G(x;Ψ)]−γ)

]}]α)

C

(
θ

[
exp
[

1
γ (1−[1−G(x;Ψ)]−γ)

]
1+
{
1−exp

[
1
γ (1−[1−G(x;Ψ)]−γ)

]}]α) , (7)

respectively, where α, γ, θ > 0 and Ψ is the parameter vector from the baseline distribution.

Table 1 shows some useful quantities including an, C(θ) and cdf for the type II exponentiated half logistic-
Gompertz-G Poisson (TIIEHL-Gom-GP), type II exponentiated half logistic-Gompertz-G geometric (TIIEHL-
Gom-GG), type II exponentiated half logistic-Gompertz-G binomial (TIIEHL-Gom-GB) and type II exponentiated
half logistic-Gompertz-G logarithmic (TIIEHL-Gom-GL) distributions.
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Table 1. Special Cases of the TIIEHL-Gom-GPS Distribution

Distribution an C(θ) cdf

TIIEHL-Gom-G Poisson (n!)−1 eθ − 1 1−
exp

(
θ

[
exp

[
1
γ

(1−[1−G(x;Ψ)]−γ )

]
1+

{
1−exp

[
1
γ

(1−[1−G(x;Ψ)]−γ )

]}]α)
−1

eθ−1

TIIEHL-Gom-G Geometric 1 θ(1− θ)−1 1−
(1−θ)

[
exp

[
1
γ

(1−[1−G(x;Ψ)]−γ )

]
1+

{
1−exp

[
1
γ

(1−[1−G(x;Ψ)]−γ )

]}]α

1−θ

[
exp

[
1
γ

(1−[1−G(x;Ψ)]−γ )

]
1+

{
1−exp

[
1
γ

(1−[1−G(x;Ψ)]−γ )

]}]α

TIIEHL-Gom-G Logarithmic n−1 − log(1− θ) 1−
log

(
1−θ

[
exp

[
1
γ

(1−[1−G(x;Ψ)]−γ )

]
1+

{
1−exp

[
1
γ

(1−[1−G(x;Ψ)]−γ )

]}]α)
log(1−θ)

TIIEHL-Gom-G Binomial
(
m
n

)
(1 + θ)m − 1 1−

(
1+θ

[
exp

[
1
γ

(1−[1−G(x;Ψ)]−γ )

]
1+

{
1−exp

[
1
γ

(1−[1−G(x;Ψ)]−γ )

]}]α)m

−1

(1+θ)m−1

2.1. Quantile Function

The quantile function of the TIIEHL-Gom-GPS class of distributions is obtained by inverting F (x;α, γ, θ, Ψ) = u,
0 ≤ u ≤ 1. This is equivalent to solving the equation

C

(
θ

[
exp
[

1
γ (1−[1−G(x;Ψ)]−γ)

]
1+
{
1−exp

[
1
γ (1−[1−G(x;Ψ)]−γ)

]}]α)
C(θ)

= 1− u, (8)

0 ≤ u ≤ 1, which can be expressed as

QX(u) = G−1

1−
1− γ ln


2

[
C−1(C(θ)(1−u))

θ

] 1
α

1 +

[
C−1(C(θ)(1−u))

θ

] 1
α


− 1

γ

 . (9)

The solution of the non-linear equation (9) gives the quantiles of the TIIEHL-Gom-GPS class of distributions.
Quantiles for selected parameter values for the type II exponentiated half logistic-Gompertz-Weibull Poisson
(TIIEHL-Gom-WP) distribution are shown in Table 2.
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Table 2. Table of Quantiles for Selected Parameters of the TIIEHL-Gom-WP Distribution

u (1.5,1.5,1.5,1.5) (1.5,1,1.5,1.5) (1.5,0.5,1.5,1) (1.5,1.5,1,1.5) (1,1.5,1,0.5)

0.1 0.0697 0.0184 0.0005 0.0699 0.1205
0.2 0.1158 0.0394 0.0023 0.1166 0.1999
0.3 0.1597 0.0638 0.0060 0.1614 0.2749
0.4 0.2050 0.0928 0.0124 0.2081 0.3513
0.5 0.2540 0.1280 0.0234 0.2593 0.4327
0.6 0.3099 0.1725 0.0418 0.3185 0.5230
0.7 0.3773 0.2317 0.0736 0.3911 0.6280
0.8 0.4656 0.3177 0.1336 0.4885 0.7585
0.9 0.6017 0.4668 0.2722 0.6437 0.9431

2.2. Expansion of Density

In this sub-section, we present the series expansion of the TIIEHL-Gom-GPS class of distributions. The pdf in
equation (6) can be written as

fX(x;α, γ, θ, Ψ) =

∞∑
s=0

vs+1gs+1(x;Ψ),

where gs+1(x;Ψ) = (s+ 1) (G(x;Ψ))
s
g(x;Ψ) is the exponentiated-G (Exp-G) distribution with power parameter

(s+ 1) and

vs+1 =

∞∑
q,k,w,p=0

∞∑
n=1

2αθ
(αn+ k)wnanθ

n(−1)q+k+p+s

C(θ)γww!(s+ 1)

(
αn+ q

q

)(
q

k

)
×

(
w

p

)(
−γ(p+ 1)− 1

s

)
. (10)

Thus, the pdf of the TIIEHL-Gom-GPS class of distributions can be expressed as an infinite linear combination of
Exp-G distributions. For derivations visit the appendix.

2.3. Moments and Generating Function

If X follows the TIIEHL-Gom-GPS distribution and Y ∼ Exp-G(s+ 1), then the rth moment, µ′
r of the TIIEHL-

Gom-GPS class of distributions is obtained as

µ′
r = E(Xr) =

∫ ∞

−∞
xrf(x)dx =

∞∑
s=0

vs+1E(Y r),

where vs+1 is given by equation (10). The moment generating function (MGF) Mx(t) = E(etX) is given by:

MX(t) =

∞∑
s=0

vs+1MY (t),

where MY (t) is the mgf of Y and vs+1 is given by equation (10).
Furthermore, we can obtain the characteristic function given by ϕx(t) = E(eitX), where i =

√
−1 as

ϕx(t) =

∞∑
s=0

vs+1ϕs+1(t),
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Table 3. Moments of the TIIEHL-Gom-WP distribution for some parameter values

(1.5,0.5,0.5,0.02) (0.5,1.5,1,1.5) (0.5,1.5,1,1.5) (1,1.5,1,0.5) (1.3,1.5,1.5,0.5)

E(X) 0.1340 0.4072 0.4072 0.3974 0.3712
E(X2) 0.0599 0.2499 0.2499 0.2302 0.1941
E(X3) 0.0371 0.1757 0.1757 0.1553 0.1205
E(X4) 0.0266 0.1339 0.1339 0.1148 0.0832
E(X5) 0.0207 0.1075 0.1075 0.0901 0.0617

SD 0.2047 0.2900 0.2900 0.2688 0.2373
CV 1.5274 0.7122 0.7122 0.6763 0.6393
CS 2.0829 0.2239 0.2239 0.3319 0.4958
CK 6.9454 1.9566 1.9566 2.1462 2.4647

where ϕs+1(t) is the characteristic function of Exp-G distribution with power parameter (s+ 1) and vs+1 is as
defined in equation (10).
The coefficients of variation (CV), skewness (CS) and kurtosis (CK) can be readily obtained. The variance (σ2),
standard deviation (SD=σ), CV, CS and CK are given by

σ2 = µ′
2 − µ2, CV =

σ

µ
=

√
µ′
2 − µ2

µ
=

√
µ′
2

µ2
− 1,

CS =
E
[
(X − µ)3

]
[E(X − µ)2]

3/2
=

µ′
3 − 3µµ′

2 + 2µ3

(µ′
2 − µ2)3/2

,

and

CK =
E
[
(X − µ)4

]
[E(X − µ)2]

2 =
µ′
4 − 4µµ′

3 + 6µ2µ′
2 − 3µ4

(µ′
2 − µ2)2

,

respectively.
Note that the rth cumulant of the random variable X can be readily obtained from the recursive relationship:

κr = µ′
r −

∑r−1
s=1

(
r−1
s−1

)
µ′
r−sκs, where µ′

r = E(X − µ′
1)

r, so that the CS and CK are given by τ1 = κ3

κ
3/2
2

and

τ2 = κ4

κ2
2
. A table of moments, SD, CV, CS, and CK for selected parameter values of the special case of the Type II

Exponentiated Half Logistic-Gompertz-Weibull Poisson (TIIEHL-Gom-WP) distribution are given in Table 3.

2.4. Conditional Moments

The rth conditional moment of the TIIEHL-Gom-GPS class of distributions is given by

E(Xr|X ≥ t) =
1

F (t;α, γ, θ, Ψ)

∫ ∞

t

xrf(x;α, γ, θ, Ψ)dx

=
1

F (t;α, γ, θ, Ψ)

∞∑
s=0

vs+1E
(
Y rI{Y r≥t}

)
,

(11)

where

E
(
Y rI{Y r≥t}

)
=

∫ ∞

t

yrg
s+1

(y;Ψ)dy = s

∫ 1

G(u;Ψ)

[QG(u;Ψ)]
rusdu, (12)

for α, γ, θ > 0, and parameter vector Ψ.
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2.5. Order Statistics and Rényi Entropy

In this section, we present the distribution of the kth order statistic and Rényi entropy for the TIIEHL-Gom-GPS
class of distributions.

2.5.1. Order Statistics
Order statistics are very useful in probability and statistics. Let X1, X2, ..., Xn be a random sample from TIIEHL-
Gom-GPS class of distributions and suppose X1:n < X2:n, ... < Xn:n denote the corresponding order statistics.
The pdf of the kth order statistic is given by

fk:n(x) =

∞∑
l=0

v∗l+1gl+1(x;Ψ),

where gl+1(x;Ψ) = (l + 1)g(x;Ψ)Gl(x;Ψ) is an Exp-G pdf with power parameter (l + 1) and the linear component
v∗l+1 is given by

v∗l+1 =
n!(−1)p+m+q

(k − 1)!(n− k)!

∞∑
p,z,s,q,m,j,l=0

∞∑
n=1

n−k∑
i=0

(
n− k

i

)
2nanθ

n+zαθg(x; ξ)dz,p
Cz+1(θ)

(
k + i− 1

p

)
×

(
α(z + n) + s

s

)
(α(n+ z) + k)m

γmm!

(
δ(w + 1) + l

l

)(
s

q

)(
m

j

)(
1

l + 1

)
.

(13)

The tth moment of the distribution of the kth order statistic from TIIEHL-Gom-GPS class of distributions can be
readily obtained from equation (13). Visit the appendix for derivations of the pdf of the kth order statistic.

2.5.2. Rényi Entropy
An entropy is a measure of uncertainty or variation of a random variable. Rényi entropy [20] is a generalization
of Shannon entropy [23]. Rényi entropy for the TIIEHL-Gom-GPS distribution after some simplifications can be
written as

IR(v) =
1

1− v
log

( ∞∑
k=0

w∗
k+1e

(1−ν)IREG

)
, (14)

where IREG =
∫∞
0

[(1 + k/ν)g(x; ξ)Gk/ν ]νdx is Rényi entropy for an Exp-G distribution with power parameter
(k/ν + 1) and

w∗
k+1 =

∞∑
z,m,q,s,p=0

dz,νθ
z+ν(−1)m+q+p+k(α(z + v) + q)s(2αθ)ν

γss!
(15)

×

(
−α(z + ν)− ν

m

)(
m

q

)(
s

p

)(
−γ(p+ ν)− ν

k

)
1

(1 + k/ν)ν
. (16)

Consequently, Rényi entropy of the TIIEHL-Gom-GPS class of distributions can be readily derived from Rényi entropy of
the Exp-G. See the appendix for the derivations.
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2.6. Parameter Estimation
Let Xi ∼ TIIEHL−Gom−GPS(α, γ, θ, Ψ) and ∆ = (α, γ, θ, Ψ)T be the parameter vector. The log-likelihood ℓ = ℓ(∆)
based on a random sample of size n is given by

ℓ = ℓ(∆) = n ln(2αθ) +

n∑
i=1

ln(g(xi; ξ))− (γ + 1)

n∑
i=1

ln[1−G(x;Ψ)]− n lnC(θ)

+

(
α

γ
(1− [1−G(x;Ψ)]−γ)

)
− (α+ 1)

×
n∑

i=1

ln(1 + (1− exp(
1

γ
(1− [1−G(x;Ψ)]−γ))))

+

n∑
i=1

ln

(
C′
(
θ

[
exp

[
1
γ (1− [1−G(x;Ψ)]−γ)

]
1 +

{
1− exp

[
1
γ (1− [1−G(x;Ψ)]−γ)

]}]α)) .

The maximum likelihood estimates of the parameters, denoted by ∆̂ is obtained by solving the nonlinear equation
( ∂ℓ
∂α ,

∂ℓ
∂γ ,

∂ℓ
∂θ ,

∂ℓ
∂Ψk

)T = 0, using a numerical method such as Newton-Raphson procedure. The multivariate normal
distribution Nq+3(0, J(∆̂)−1), where the mean vector 0 = (0, 0, 0, 0)T and J(∆̂)−1 is the observed Fisher information
matrix evaluated at ∆̂, can be used to construct confidence intervals and confidence regions for the individual model
parameters.

3. Special Sub-Models of the TIIEHL-Gom-GPS Distribution

In this section, we look at some special cases of the TIIEHL-Gom-GPS class of distributions. These special cases are the type
II exponentiated half logistic-Gom-Weibull Poisson (TIIEHL-Gom-WP), type II exponentiated half logistic-Gom-Weibull
Geometric (TIIEHL-Gom-WG), type II exponentiated half logistic-Gom-Log logistic Poisson (TIIEHL-Gom-LLoGP) and
type II exponentiated half logistic-Gom-Log logistic Geometric (TIIEHL-Gom-LLoGG) distributions. The cdf and pdf of the
Weibull distribution are given by G(x; b) = 1− exp(−xb) and g(x; b) = bxb−1 exp(−xb), for b > 0 and for the log-logistic
distribution are given by G(x; c) = 1− (1 + xc)−1 and g(x; c) = cxc−1(1 + xc)−2, for c > 0.

3.1. Type II Exponentiated Half Logistic-Gompertz-Weibull Poisson (TIIEHL-Gom-WP) Distribution
The cdf and pdf of the TIIEHL-Gom-WP distribution are given by

FTIIEHL−Gom−WP (x) = 1−

exp

(
θ

[
exp( 1

γ (1−[1−(1−e−xb
)]−γ))

1+(1−exp( 1
γ (1−[1−(1−e−xb )]−γ)))

]α)
− 1

eθ − 1

and

fTIIEHL−Gom−WP (x) = 2αθbxb−1e−xb

[1− (1− e−xb

))]−γ−1

× exp

(
α

γ
(1− [1− (1− e−xb

)]−γ)

)
×

(
1 +

(
1− exp

(
1

γ
(1− [1− (1− e−xb

)]−γ)

)))−α−1

×

exp

(
θ

[
exp( 1

γ (1−[1−(1−e−xb
)]−γ))

1+(1−exp( 1
γ (1−[1−(1−e−xb )]−γ)))

]α)
exp(θ)− 1

for α, γ, θ and b > 0.

Stat., Optim. Inf. Comput. Vol. 12, March 2024



S. CHAMUNORWA, B. OLUYEDE, T. MOAKOFI AND F. CHIPEPA 389

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
.0

0
.5

1
.0

1
.5

x

d
e
n
s
it
y

α=8.0,γ=0.7,θ=0.5,b=4.4

α=6.3,γ=9.6,θ=0.15,b=9.4

α=8.0,γ=5.7,θ=0.19,b=4.4

α=0.1,γ=2.7,θ=0.1,b=8.4

α=9.0,γ=2.7,θ=0.4,b=0.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
1

2
3

x

h
(x

)

α=1.0,γ=1.0,θ=2.0,b=1.0

α=3.0,γ=0.01,θ=0.9,b=8.0

α=0.2,γ=0.4,θ=0.6,b=4.0

α=9.0,γ=0.1,θ=3.0,b=2.0

α=2.0,γ=0.01,θ=0.6,b=0.5

Figure 1. Plots of the pdf and hrf for the TIIEHL-Gom-WP distribution
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Figure 2. Plots of skewness and kurtosis for the TIIEHL-Gom-WP distribution

The plots of pdf and hrf for the TIIEHL-Gom-WP distribution are shown in Figure 1. The pdf is almost symmetric,
right or left-skewed. The hazard rate function exhibits both increasing, decreasing, upside bathtub followed by
bathtub and bathtub shapes. 3D plots of skewness and kurtosis of TIIEHL-Gom-WP distribution for some fixed
values of parameters are shown in Figure 2.
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3.2. Type II Exponentiated Half Logistic-Gompertz-Weibull Geometric (TIIEHL-Gom-WG) Distribution

The cdf and pdf of the TIIEHL-Gom-WG distribution are given by

FTIIEHL−Gom−WG(x) = 1−
(1− θ)

[
exp( 1

γ (1−[1−(1−e−xb
)]−γ))

1+(1−exp( 1
γ (1−[1−(1−e−xb )]−γ)))

]α
(
1− θ

[
exp( 1

γ (1−[1−(1−e−xb )]−γ))

1+(1−exp( 1
γ (1−[1−(1−e−xb )]−γ)))

]α)

and

fTIIEHL−Gom−WG(x) = 2αθbxb−1e−xb

[1− (1− e−xb

))]−γ−1

× exp

(
α

γ
(1− [1− (1− e−xb

)]−γ)

)
×

(
1 +

(
1− exp

(
1

γ
(1− [1− (1− e−xb

)]−γ)

)))−α−1

×

(
1−

(
θ

[
exp( 1

γ (1−[1−(1−e−xb
)]−γ))

1+(1−exp( 1
γ (1−[1−(1−e−xb )]−γ)))

]α))−2

(1− θ)−1

for α, γ, b > 0 and 0 < θ < 1.
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Figure 3. Plots of the pdf and hrf for the TIIEHL-Gom-WG distribution
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Figure 4. Plots of skewness and kurtosis for the TIIEHL-Gom-WG distribution

Figure 3 shows the pdf and hrf plots for selected parameter values for the TIIEHL-Gom-WG distribution. The
distribution is almost symmetric, right or left-skewed. The hazard rate function exhibits bathtub, upside bathtub
followed by bathtub, increasing, decreasing and J shapes. Figure 4 shows 3D plots of skewness and kurtosis of
TIIEHL-Gom-WG distribution for some fixed values of parameters. As we fix θ and b we can see that the skewness
and kurtosis are increasing.

3.3. Type II Exponentiated Half Logistic-Gompertz-Log Logistic Poisson (TIIEHL-Gom-LLoGP) Distribution

The cdf and pdf of the TIIEHL-Gom-LLoGP distribution are given by

FTIIEHL−Gom−LLoGP (x) = 1−
exp

(
θ

[
exp( 1

γ (1−[(1+xc)−1]−γ))

1+(1−exp( 1
γ (1−[(1+xc)−1]−γ)))

]α)
− 1

eθ − 1

and

fTIIEHL−Gom−LLoGP (x) = αθcxc−1(1 + xc)−2[(1 + xc)−1]−γ−1

× exp

(
α

γ
(1− [(1 + xc)−1]−γ)

)
×

(
1 +

(
1− exp

(
1

γ
(1− [(1 + xc)−1]−γ)

)))−α−1

×

exp

(
θ

[
exp( 1

γ (1−[(1+xc)−1]−γ))

1+(1−exp( 1
γ (1−[(1+xc)−1]−γ)))

]α)
exp(θ)− 1

for α, γ, c > 0 and θ > 0.
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Figure 5. Plots of the pdf and hrf for the TIIEHL-Gom-LLoGP distribution
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Figure 6. Plots of skewness and kurtosis for the TIIEHL-Gom-LLoGP distribution

The TIIEHL-Gom-LLoGP distribution applies to data sets that are almost symmetric, reverse-J left-skewed as shown in
Figure 5. The hrf function exhibits both monotonic and non-monotonic shapes including decreasing, increasing, bathtub and
upside down bathtub shapes. 3D plots of skewness and kurtosis of TIIEHL-Gom-LLoGP distribution for some fixed values
of parameters are shown in Figure 6. It can be seen that the TIIEHL-Gom-LLoP distribution is capable of modelling various
data sets with different levels of skewness and kurtosis.
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3.4. Exponentiated Half Logistic-Gompertz-Log Logistic Geometric (TIIEHL-Gom-LLoGG) Distribution
The cdf and pdf of the TIIEHL-Gom-LLoGG distribution are given by

FTIIEHL−Gom−LLoGG(x) = 1−

(1− θ)

[
exp( 1

γ (1−[(1+xc)−1]−γ))

1+(1−exp( 1
γ (1−[(1+xc)−1]−γ)))

]α
(
1− θ

[
exp( 1

γ (1−[(1+xc)−1]−γ))

1+(1−exp( 1
γ (1−[(1+xc)−1]−γ)))

]α)

and

fTIIEHL−Gom−LLoGG(x) = αθcxc−1(1 + xc)−2[(1 + xc)−1]−γ−1

× exp

(
α

γ
(1− [(1 + xc)−1]−γ)

)
×

(
1 +

(
1− exp

(
1

γ
(1− [(1 + xc)−1]−γ)

)))−α−1

×

(
1−

(
θ

[
exp( 1

γ (1−[(1+xc)−1]−γ))

1+(1−exp( 1
γ (1−[(1+xc)−1]−γ)))

]α))−2

(1− θ)−1
,

for α, γ, c > 0 and 0 < θ < 1.
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Figure 7. Plots of the pdf and hrf for the TIIEHL-Gom-LLoGG distribution
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Figure 8. Plots of skewness and kurtosis for the TIIEHL-Gom-LLoGG distribution

The TIIEHL-Gom-LLoGG distribution pdf exhibits extreme tails, almost symmetric and reverse-J shapes. The shapes of
the hrf can be monotonic and non-monotonic as shown in Figure 7. Figure 8 shows 3D plots of skewness and kurtosis of
TIIEHL-Gom-LLoGG distribution for some fixed values of parameters.

4. Simulation Study

In this section, we examine the performance of the TIIEHL-Gom-WP distribution by conducting various simulations
for different sample sizes (n= 25, 50, 100, 200 and 400) via the R package. We simulate 1000 samples for the true
parameter values given in Tables 4 and 5. The average bias (ABIAS) and root mean square error (RMSE) are given by:

ABIAS(θ̂) =
∑N

i=1 θ̂i
N − θ, and RMSE(θ̂) =

√∑N
i=1(θ̂i−θ)2

N , respectively.

Table 4. Monte Carlo Simulation Results for TIIEHL-Gom-WP Distribution: Mean, RMSE and Average Bias

α=0.01,γ=1.2,θ=0.01,b=1.5 α=0.01,γ=0.8,θ=0.01,b=1.5
Parameter n Mean RMSE Average Bias Mean RMSE Average Bias

25 0.010822 0.004842 0.000822 0.010796 0.004735 0.000796
50 0.010930 0.003877 0.000930 0.010702 0.003798 0.000702

α 100 0.010635 0.002903 0.000635 0.010488 0.003034 0.000488
200 0.010177 0.002058 0.000177 0.010256 0.002018 0.000256
400 0.010172 0.001512 0.000172 0.010057 0.001373 0.000057
25 1.210573 0.234757 0.010573 0.809479 0.160512 0.009479
50 1.198392 0.170154 -0.001608 0.796206 0.147584 -0.003794

γ 100 1.195340 0.096566 -0.004660 0.797243 0.066258 -0.002757
200 1.189819 0.090303 -0.010181 0.798395 0.039011 -0.001605
400 1.190100 0.074019 -0.009900 0.794101 0.033666 -0.005899
25 0.094061 0.327488 0.084061 0.086575 0.362279 0.076575
50 0.056291 0.214830 0.046291 0.052126 0.205742 0.042126

θ 100 0.026892 0.119394 0.016892 0.027746 0.102226 0.017746
200 0.032370 0.177735 0.022370 0.020659 0.065037 0.010659
400 0.020478 0.049292 0.010478 0.022446 0.076965 0.012446
25 1.515869 0.219857 0.015869 1.507290 0.169216 0.007290
50 1.506467 0.179714 0.006467 1.511052 0.194726 0.011052

b 100 1.496844 0.108543 -0.003156 1.495076 0.106088 -0.004924
200 1.503533 0.117583 0.003533 1.491970 0.033871 -0.008030
400 1.501284 0.070689 0.001284 1.499246 0.032021 -0.000754
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Table 5. Monte Carlo Simulation Results for TIIEHL-Gom-WP Distribution: Mean, RMSE and Average Bias

α=0.01,γ=1.2,θ=0.8,b=1.5 α=0.01,γ=0.8,θ=0.8,b=1.5
Parameter n Mean RMSE Average Bias Mean RMSE Average Bias

25 0.011965 0.006708 0.001965 0.012026 0.006175 0.002026
50 0.011463 0.004396 0.001463 0.011388 0.004119 0.001388

α 100 0.010927 0.003370 0.000927 0.010702 0.003070 0.000702
200 0.010650 0.002240 0.000650 0.010501 0.002339 0.000501
400 0.010476 0.001854 0.000476 0.010455 0.001598 0.000455
25 1.155489 0.317692 -0.044511 0.749518 0.274033 -0.050482
50 1.157539 0.232309 -0.042461 0.789786 0.175535 -0.010214

γ 100 1.171611 0.157030 -0.028389 0.782921 0.132250 -0.017079
200 1.180602 0.113626 -0.019398 0.775298 0.124071 -0.024702
400 1.180315 0.101410 -0.019685 0.775047 0.112987 -0.024953
25 0.886980 0.900470 0.086980 0.828553 0.332643 0.028553
50 0.825923 0.279713 0.025923 0.839576 0.254904 0.039576

θ 100 0.819588 0.218065 0.019588 0.813814 0.131566 0.013814
200 0.821583 0.203216 0.021583 0.821756 0.184034 0.021756
400 0.799501 0.053815 -0.000499 0.818072 0.096017 0.018072
25 1.571533 0.331907 0.071533 1.594972 0.348022 0.094972
50 1.541545 0.238883 0.041545 1.513078 0.198906 0.013078

b 100 1.518828 0.152648 0.018828 1.516933 0.177904 0.016933
200 1.505426 0.109504 0.005426 1.521366 0.163856 0.021366
400 1.504392 0.086049 0.004392 1.520081 0.151288 0.020081

From the results, we can observe that as the sample size n increases, the mean estimates of the parameters tend to be
closer to the true parameter values, since RMSEs decay toward zero. Clearly, the model produces consistent estimates.

5. Applications

In this section, we present applications and empirically establish the flexibility of the TIIEHL-Gom-WP distribution
by means of two real data sets. We compared the TIIEHL-Gom-WP distribution to various non-nested models. We
use R software to estimate model parameters and standard errors. We assessed model performance using the following
goodness-of-fit statistics: -2loglikelihood (-2 log L), Akaike Information Criterion (AIC), Consistent Akaike Information
Criterion (AICC), Bayesian Information Criterion (BIC), Cramér-von Mises (W ∗), Andersen-Darling (A∗) (see Chen and
Balakrishnan [7], for details), and Kolmogorov-Smirnov (K-S) statistic (and its p-value). Tables 6, and 7 shows model
parameters estimates (standard errors in parentheses) and several goodness-of-fit statistics. We also provide fitted densities,
fitted cdf, Kaplan-Meier (K-M) survival curves, Total Time on Test (TTT) plots and probability plots (as described by
Chambers et al. [6]) to demonstrate how well our model fits the selected data sets.

The non-nested models considered in this paper are the Kumaraswamy-Weibull (KwW) distribution by Cordeiro
et al. [12], odd Weibull-Topp-Leone-Log logistic logarithmic (OW-TL-LLoGL) distribution by Oluyede et al. [18],
Topp-Leone- Gompertz-Weibull (TLGW) distribution by Oluyede et al. [19], Exponentiated Half Logistic Odd Weibull-
Topp-Leone-Burr XII distribution by Chipepa et al. [8] and beta odd Lindley-Uniform (BOL-U) distribution by Chipepa et
al. [9]. See the appendix for the pdfs of the non-nested models.

5.1. Glass Fibre Data
The first data set is on strengths of 1.5 cm glass fibres. The data set was also analyzed by Makubate et al. [16]. The data are:
0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.00, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66,
1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.50,
1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84, 1.24, 1.30, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.70, 1.78, 1.89.
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Table 6. Parameter estimates and goodness-of-fit statistics for various models fitted for glass fibre data set

Estimates Statistics
Model α γ θ b −2 log (L) AIC AICC BIC W ∗ A∗ K-S p-value

TIIEHL-Gom-WP 0.0055 1.5505 5.8958 1.8765 24.1 32.1 32.8 40.7 0.0900 0.5524 0.1171 0.3534
(0.0021) (0.0564) (2.0707) (0.0604)

θ γ b λ
TL-Gom-LLoG 0.0325 2.2164 1.7307 1.1523 28.3 36.3 37.0 44.8 0.1621 0.9130 0.1312 0.2286

(0.1033) (3.5108) (0.9681) (0.9531)
α λ γ θ

OW-TL-LLoGL 1.4468 1.1576 3.7647 1.0770×10−8 73.8 81.8 82.5 90.4 0.4950 2.7121 0.4135 8.7840×10−10

(0.3635) (0.1865) (0.2744) (0.0147)
b β δ c

EHL-OW-TL-LLoG 1.1293 0.1464 4.3716 7.8796 34.9 42.9 43.6 51.3 0.3372 1.8409 0.1868 0.0246
(0.7335) (0.0736) (1.0252) (3.8532)

a b α β
KWW 7.3919 4.7793×104 0.1359 0.8776 31.2 39.2 39.9 47.7 0.2563 1.4056 0.1634 0.0693

(2.6561) (3.3847×10−5) (0.0446) (0.2414)
a b λ θ

BOL-U 3.7867 67.3210 0.2030 2.9970 30.0 38.0 38.6 46.5 0.2026 1.1312 0.1427 0.1536
(1.1993) (0.0003) (0.0669) (0.2907)

The estimated variance-covariance matrix is given by

 0.000004 −0.000010 −0.003494 −0.000026
−0.000010 0.003184 −0.029950 0.000458
−0.003494 −0.029951 4.287808 −0.023831
−0.000026 0.000458 −0.023831 0.003651



and the 95% confidence intervals for the model parameters are given by
α ∈ [0.0055± 0.0041], γ ∈ [1.5505± 0.1106], θ ∈ [5.8958± 4.0586] and b ∈ [1.8765± 0.1184].

From the results shown in Table 6, we can conclude that the TIIEHL-Gom-WP model performs better on glass fibre
data compared to the several competing non-nested models included in this paper. Based on Figures 9(a) and 9(b), we
observe that TIIEHL-Gom-WP offers more flexibility on fitting the glass fibre data set. From Figure 10, the closeness of the
fitted Kaplan-Meier survival curve and fitted cdf using TIIEHL-Gom-WP to the empirical Kaplan-Meier and empirical cdf
is clear. The TTT plot indicates an increasing hazard rate function which means that the TIIEHL-Gom-WP distribution can
be used to model this data.
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Figure 9. Fitted densities and probability plots for glass fibre data
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Figure 10. Kaplan-Meier (K-M) survival, estimated cdf (ECDF) plots and the total time on test (TTT) plot of the TIIEHL-
Gom-WP distribution for the glass fibre data set

5.2. Carbon Fibre Data
The second data set was analyzed by Chipepa et al. [10]. The observations represents breaking stress of carbon fibres of 50
mm length (GPa). The data are: 0.39, 0.85, 1.08, 1.25, 1.47, 1.57, 1.61, 1.61, 1.69, 1.80, 1.84, 1.87, 1.89, 2.03, 2.03, 2.05,
2.12, 2.35, 2.41, 2.43, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.79, 2.81, 2.82, 2.85, 2.87, 2.88, 2.93, 2.95,
2.96, 2.97, 3.09 ,3.11, 3.11, 3.15, 3.15, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39, 3.56, 3.60, 3.65, 3.68, 3.70,
3.75, 4.20, 4.38, 4.42, 4.70, 4.90.

Table 7. Parameter estimates and goodness-of-fit statistics for various models fitted for carbon fibre data set

Estimates Statistics
Model α γ θ b −2 log (L) AIC AICC BIC W ∗ A∗ K-S p-value

TIIEHL-Gom-WP 0.0047 1.5781 3.2868 0.9437 170.7 178.7 179.3 187.4 0.6062 0.8358 0.0765 0.8344
(0.0020) (0.0525) (1.6600) (0.0275)

θ γ b λ
TL-Gom-LLoG 0.0218 2.3710 1.9934 0.5625 171.0 179.0 179.7 187.8 0.0709 0.4292 0.0794 0.8002

(0.1038) (5.0027) (1.5507) (0.6062)
α λ γ θ

OW-TL-LLoGL 0.5102 0.8758 4.0200 1.3525×10−8 306.5 314.5 315.1 323.2 0.1841 0.9905 0.5805 2.2×10−16

(0.0898) (0.1077) (0.6913) (0.0197)
b β δ c

EHL-OW-TL-LLoG 0.8420 0.1469 7.0243 3.7621 179.6 187.6 188.3 196.3 0.2288 1.2080 0.1309 0.2078
(0.8155) (0.0925) (1.8991) (2.2797)

a b α β
KWW 1.2155 2.5866×103 0.0333 2.8328 172.1 180.1 180.8 188.9 0.0930 0.52626 0.0823 0.7622

(1.7552) (6.6212×10−5) (0.0071) (4.0695)
a b λ θ

BOL-U 3.1503 71.3211 0.2964 8.4350 172.4 180.4 181.1 189.2 0.0944 0.5629 0.0876 0.691
(0.9477) (0.0038) (0.1109) (1.6137)

The estimated variance-covariance matrix is given by 0.000004 −0.000008 −0.002678 −0.000012
−0.000008 0.002756 −0.023301 0.000240
−0.002678 −0.023301 2.755515 −0.008631
−0.000012 0.000240 −0.008631 0.000756


and the 95% confidence intervals for the model parameters are given by
α ∈ [0.0047± 0.0039], γ ∈ [1.5781± 0.1029], θ ∈ [3.2868± 3.2535] and b ∈ [0.9437± 0.0539].

Table 7 presents model parameters estimates (standard errors in parentheses) and several goodness-of-fit statistics of
the TIIEHL-Gom-WP distribution and the non-nested distributions. The K-S value is smallest and p-value corresponding
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to the K-S test statistic is largest for TIIEHL-Gom-WP model compared to the other non-nested models considered in
this paper. Hence, it is the ”best” model. Moreso, from Figures 11(a) and 11(b) it can be observed that TIIEHL-Gom-WP
displays the flexibility enjoyed by fitting the carbon fibre data set. From Figure 12, the Kaplan-Meier survival and ECDF
plots give enough information about the closest fit of the TIIEHL-Gom-WP to the current data set. The TTT plot indicates
an increasing hazard rate function.
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Figure 11. Fitted densities and probability plots for carbon fibre data
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Figure 12. Kaplan-Meier (K-M) survival, estimated cdf (ECDF) plots and the total time on test (TTT) plot of the TIIEHL-
Gom-WP distribution for the carbon fibre data set.

6. Concluding Remarks

A new class of distributions referred to as the Type II Exponentiated Half Logistic-Gompertz-G power series distribution
is proposed. The new distribution can handle monotone as well as non-monotone hazard rate functions. The proposed
distribution can be expressed as an infinite linear combination of the Exp-G distributions. We applied a special case of
the new class of distributions to two real data sets and our model perform better than the competing non-nested models as
shown in Tables 6 and 7.
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Appendix

The following URL contains derivations of statistical properties and elements of the score vector.
https://drive.google.com/file/d/107HLSubp0ilDbA6Gf6KYtXKyzbku1rCL/view?usp=sharing
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