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Abstract In the present paper, we introduce a compound form of the Sushila distribution which offers a flexible model
for lifetime data, the so-called Sushila-geometric (SG) distribution, and is obtained by compounding Sushila and geometric
distributions. A three-parameter SG distribution is capable of modelling upside-down bathtub, bathtub-shaped, increasing
and decreasing hazard rate functions which are widely used in engineering, economy and natural sciences. This new model
contains some known distributions such as Lindley, Lindley-Geometric, and Sushila distributions in a special cases as sub-
models. Several statistical properties of the SG distribution are derived. Simulation studies are conducted to investigate the
performance of the maximum likelihood estimators derived through the EM algorithm. The flexibility of the new model is
illustrated in the application of two real data sets.
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1. Introduction

The Sushila distribution is a lifetime distribution and was introduced by Shanker et al. [28]. This distribution,
being a modified Lindley distribution, is a mixture of the exponential and gamma distributions. The Sushila
distribution was discussed that its failure rate function and mean residual life function show flexibility over the
Lindley and exponential distributions. Moreover, the moment generating function of Sushila distribution can be
expressed in closed form. Therefore, we have been interested in using the Sushila distribution for creating a new
alternative mixed model. This model, in spite of little attention in the statistical literature, is important for studying
stress-strength reliability modeling. Besides, some researchers have proposed new classes of distributions based on
modifications of the Sushila distribution, including also their properties. Several distributions have been proposed
in the literature to model lifetime data. Lifetime distribution represents an attempt to describe, mathematically, the
length of the life of a system or a device. Lifetime distributions are most frequently used in the fields like medicine,
engineering etc.

The Poisson-Sushila distribution was introduced by Saratoon [25], which is a two-parameter discrete distribution.
Various properties have been studied and shown that the Poisson-Sushila distribution is more flexible than
Poisson distribution in real data. Elgarhy and Shawki [10], discussed exponentiated-Sushila distribution. Again
Elgarhy and Shawki [27], obtained the various properties of kumaraswamy-Sushila distribution. Recently, Borah
and Hazarika [6], discussed Poisson-Sushila distribution and its applications. Rather and Subramanian [23],
have discussed the statistical properties and applications of length-biased Sushila distribution. Rather and
Subramanian [24], introduced a new generalization of the Sushila distribution namely as weighted-Sushila
distribution with three parameters. Pudprommarat [20], introduced the hurdle Poisson-Sushila distribution as an
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extension to the Poisson-Sushila distribution and indicated this distribution is a better fit than Poisson. Borah and
Saikia [7], introduced discrete sushila distribution, de Oliveria et al. [9]used of a discrete sushila distribution in the
analysis of right-censored lifetime data. Adetunji [4], introduced a three-parameter generalization of the Sushila
distribution using the Quadratic transmuted technique and compared the performance of new distribution with the
Sushila distribution.

Adamidis and Loukas [2], introduced the two-parameter exponential-geometric (EG) distribution with
decreasing failure rate. Kus [12], introduced the exponential-Poisson distribution (following the same idea of the
EG distribution) with decreasing failure rate and discussed various of its properties. Marshall and Olkin [16],
presented a method for adding a parameter to a family of distributions with application to the exponential and
Weibull families. Adamidis et al. [3], proposed the extended exponential-geometric (EEG) distribution which
generalizes the EG distribution and discussed various of its statistical properties along with its reliability features.
The hazard function of the EEG distribution can be monotone decreasing, increasing, or constant. Peng Xu [19],
introduced the exponentiated-Lindley geometric Distribution (ELG). Bordbar and Nematollahi [8], introduced the
modified exponential-geometric distribution with decreasing or increasing failure rate.

The Sushila distribution is one of the most commonly used lifetime distributions in modeling lifetime data. In
practice, it has been shown to be very flexible in modeling various types of lifetime distributions with monotone
failure rates but it is not useful for modeling the bathtub-shaped failure rates which are common in reliability
and biological studies. In this paper, we introduce a new three-parameter lifetime distribution called Sushila-
Geometric (SG) distribution by compounding Sushila and geometric distributions which generalizes the Lindely,
Lindely-Geometric and Sushila distributions and study some of its properties. The hazard rate function of the
SG distribution can be upside-down bathtub, bathtub-shaped, increasing and decreasing which makes the SG
distribution to be superior to other lifetime distributions.

The paper is organized as follows. In section 2 we introduce the SG distribution. A comprehensive account of
mathematical properties of the new distribution is provided in sections 3–12. The properties studied include; shapes
of the probability density function and hazard rate function, stochastic orderings, quantile function, moments of
the SG distribution, residual life and reserved residual, order statistics, asymptotic distribution of extreme values,
Bonferroni and Lorenz curves, entropies, mean deviations, estimation of the parameters by maximum likelihood
via an EM-algorithm and inference for a large sample, and simulation schemes. Finally, section (13) illustrates an
application by using two real data sets and conclusions are provided in section (14).

2. Sushila-Geometric distribution

Consider the random variable Y having the Sushila distribution denoted Su(θ, α) where its PDF and CDF are given
by

f(y, θ, α) =
θ2

α(θ + 1)

(
1 +

y

α

)
e−

θ
αy; y > 0, α > 0, θ > 0 (1)

F (y, θ, α) = 1−
(
1 +

θy

α(θ + 1)

)
e−

θ
αy; y > 0, α > 0, θ > 0 (2)

Let Y1, · · · , YN be iid random variables from Sushila distribution where N is a geometric random variable
with the probability mass function P (N = n) = (1− p)pn−1 , n = 1, 2, · · · , 0 < p < 1. Consider X =
min(Y1, · · · , YN ), then the conditional CDF X|N = n is given by

FX|N (x|n) = 1−
[
(1 +

θx

α(θ + 1)
)e−

θ
αx

]n
Stat., Optim. Inf. Comput. Vol. x, Month 202x
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The Sushila-geometric (SG) distribution with three-parameter, denoted by SG(θ, α, p), is defined by the marginal
CDF of X;

F (x) =
1−

(
1 + θx

α(θ+1)

)
e−

θ
αx

1− p
(
1 + θx

α(θ+1)

)
e−

θ
αx

(3)

The PDF of SG distribution for θ > 0, α > 0, and 0 < p < 1 is given by

f(x) =
θ2

α(θ + 1)

(
1 +

x

α

)
(1− p)e−

θ
αx

(
1− p

(
1 +

θx

α(θ + 1)

)
e−

θ
αx

)−2

, x > 0. (4)

It should be noted that the PDF in (4) is still a well-defined density function when p < 0 Thus, we can define the
SG distribution to any p < 1. The SG distribution includes several submodels. If α = 1, it becomes the Lindley-
geometric (LG) distribution introduced by Zakerzadeh and Mahmoudi [30]. When p = 0 it changes to the Sushila
distribution due to Shanker et al. [28]. If α = 1, p = 0 it turns out to be the Lindley distribution due to Lindley [15].
It converges a distribution degenerating at the point 0 when p → 1−. Using the series expansion

(1− z)−k =

∞∑
j=0

Γ(k + j)

Γ(k)j!
zj , |z| < 1, k > 0, (5)

the density function (4) can be written as follows

f(x) =
θ2

α(θ + 1)
(1− p)(1 +

x

α
)e−

θ
αx

∞∑
j=0

(j + 1)pj
(
1 +

θx

α(θ + 1)

)j

e−
θ
α jx (6)

Various mathematical properties of the SG distribution can be derived from (6).
Figure (1) shows different shapes of (4) for selected values of parameters. Since α is a scale parameter, when

α increases, the kurtosis of (4) decreases. Also acorrding to Theorem 1 of Zakerzadeh and Mahmoudi [30], the
density function of the SG distribution is (i) decreasing for p > 1−θ2

1+θ2 and all values of θ and (ii) unimodal for
p ≤ 1−θ2

1+θ2 and all values for θ.

3. Survival and hazard rate functions

The survival function and hazard rate function of the SG distribution, are given respectively

S(x) =

(
1 + θx

α(θ+1)

)
(1− p)e−

θ
αx

1− p
(
1 + θx

α(θ+1)

)
e−

θ
αx

and

h(x) =
θ2

(
1 + x

α

)
α(θ + 1) + θx

(
1− p

(
1 +

θx

α(θ + 1)

)
e−

θ
αx

)−1

(7)

for x > 0, θ > 0, α > 0, p < 1. It follows from (7) that

d log h(x)

dx
=

αe
θ
αx(1 + θ)− p(α(1 + θ) + θx)

(
1 + (1 + x

α )
2θ2

)
(1 + x

α ) (α(1 + θ) + θx)
[
αe

θ
αx(1 + θ)− p(α(1 + θ) + θx)

] . (8)
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Figure 1. Plots of PDF of SG for selected values of parameters.

Note also that as the hazard rate function of the SG distribution in (7) tends to θ
α and θ2

α(θ+1)(1−p) when x → ∞ and
x → 0 , respectively. So, both the initial and ultimate hazard rates are constant. Figure 2 illustrates possible shapes
of (7) for selected values of parameters. The shapes appear monotonically increasing for p < 0 and small p. For p
values are close to 1 and small θ values and α values that are not small, the shape is upside down bathtub. When p
values are close to 1, and θ and α values are almost large, the shape is decreasing, in this case, if the α values are not
large, the hazard rate function is bathtub-shaped. But does not exhibit a constant hazard rate, which makes the SG
distribution to be superior to other lifetime distributions, which exhibit only monotonically increasing/decreasing,
or constant hazard rate.

4. Stochastic orderings

For positive continuous random variables, stochastic ordering is an important tool for judging the comparative
behavior. A random variable X is said to be smaller than a random variable Y in the

• stochastic order (X ≤st Y ) if FX(x) ≥ FY (x) for all x.
• hazard rate order (X ≤hr Y ) if hX(x) ≥ hY (x) for all x.
• mean residual life order (X ≤mrl Y ) if mX(x) ≤ mY (x) for all x.
• likelihood ratio order (X ≤lr Y ) if fX(x)

fY (x) decreases in x.

From Shaked and Shanthikumar [26] we have the following implications:

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤mrl Y

⇓ (9)
X ≤st Y

The following theorem shows that the SG distribution is ordered with respect to the strongest “likelihood ratio”
ordering.
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Figure 2. Plots of the hazard rate function for selected values of parameters

Theorem 4.1
Let X ∼ SG(θ, α, p1) and Y ∼ SG(θ, α, p2). If p1 > p2 then X ≤lr Y and hence X ≤hr Y , X ≤mrl Y and
X ≤st Y.

Proof
First note that

fX(x)

fY (x)
=

(
1− p1
1− p2

)1− p1

(
1 + θx

α(θ+1)

)
e−

θ
αx

1− p2

(
1 + θx

α(θ+1)

)
e−

θ
αx

−2

.

Now

log

(
fX(x)

fY (x)

)
= log

(
1− p1
1− p2

)
− 2 log

1− p1

(
1 + θx

α(θ+1)

)
e−

θ
αx

1− p2

(
1 + θx

α(θ+1)

)
e−

θ
αx

 .

Then

d

dx
log

(
fX(x)

fY (x)

)
= 2

p1

(
θ

α(θ+1) −
θ
α (1 +

θx
α(θ+1) )

)
e−

θ
αx

1− p1(1 +
θx

α(θ+1) )e
− θ

αx
−

p2

(
θ

α(θ+1) −
θ
α (1 +

θx
α(θ+1) )

)
e−

θ
αx

1− p2(1 +
θx

α(θ+1) )e
− θ

αx


fX(x)
fY (x) is decreasing in x. That is X ≤lr Y. The remaining statements follow from the implications in (9). □
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5. Quantile Function

Theorem 5.1
Let Y ∼ Su(θ, α).The quantile function of Y is

F−1(u) = −α− α

θ
− α

θ
W−1

(
− (θ + 1)

eθ+1
(1− u)

)
(10)

where W−1 denotes the negative branch of the Lambert W function.

Proof
For any fixed θ > 0, α > 0 and 0 < u < 1, we solve FY (y) = u with respect to y, for y > 0. From (2), we get

(θ + 1 +
θ

α
y)e−

θ
αy = (1− u)(θ + 1).

Multiplying by − exp(−θ − 1) both sides of above Equation, we have

−(θ + 1 +
θ

α
y)e−( θ

αy+θ+1) = −(1− u)(θ + 1)e−θ−1 (11)

From W (z)exp(W (z)) = z, (see Adler [5] in detail), we notice that −(θ + 1 + θ
αy) is the Lambert W function of

the real argument −(θ + 1)(1− u) exp(−θ − 1). Then, we have

W

(
− (θ + 1)

eθ+1
(1− u)

)
= −θ − 1− θ

α
y. (12)

Moreover, for any θ > 0, α > 0 and y > 0 it is immediate that (θ + 1 + θ
αy) > 1 and it can also be checked that

(u− 1)(θ + 1) exp(−θ − 1) ∈ (− 1
e , 0) since 0 < u < 1. Therefore, by taking into account the properties of the

negative branch of the Lambert W function Equation (12) becomes

W−1

(
− (θ + 1)

eθ+1
(1− u)

)
= −θ − 1− θ

α
y (13)

which in turn implies the result. □

Let X be a SG random variable with the CDF in (3). By inverting F (x) = u for 0 < u < 1, we obtain(
u− pu

1− pu

)
= 1− α(θ + 1) + θx

α(θ + 1)
e−

θ
αx (14)

It follows from (13) that the quantile function of the SG distribution is given by

F−1(u) = −α− α

θ
− α

θ
W−1

(
−θ + 1

eθ+1

[
1−

(
u− pu

1− pu

)])
(15)

note that − 1
e <

(
− θ+1

eθ+1

[
1−

(
u−pu
1−pu

)])
< 0 so the W−1 is unique, which implies that F−1(u) is also unique.

Thus, one can use (15) for generating random data from the SG distribution. In addition, the qth quantile xq of
SG(θ, α, p) is given by

xq = −α− α

θ
− α

θ
W−1

(
−θ + 1

eθ+1

[
1−

(
q − pq

1− pq

)])
; 0 < q < 1. (16)

In particular, we obtain Median by putting q = 0.5 in (16). Table 1 displays the median of SG distribution for
different values of parameters.
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6 IMAGE RECONSTRUCTION FROM INCOMPLETE CONVOLUTION DATA

6. Moments of the SG distribution

Let X ∼ SG(θ, α, p). Using (6) and applying the binomial expansion for (1 + θx
α(θ+1) )

j , the rth moment of X is
given by

E(Xr) =
θ2(1− p)

α(θ + 1)

∞∑
j=0

j∑
i=0

(
j

i

)
(j + 1)pj

(
θ

α(θ + 1)

)i
Γ(r + i+ 1)(
θ
α (j + 1)

)r+i+1

[
1 +

r + i+ 1

θ(j + 1)

]
.

Then

E(X) =
θ2(1− p)

α(θ + 1)

∞∑
j=0

j∑
i=0

(j + 1)!

(j − i)!
pj

(
θ

α(θ + 1)

)i
(i+ 1)(

θ
α (j + 1)

)i+2

[
1 +

i+ 2

θ(j + 1)

]
, (17)

and

E(X2) =
θ2(1− p)

α(θ + 1)

∞∑
j=0

j∑
i=0

(j + 1)!

(j − i)!
pj

(
θ

α(θ + 1)

)i
(i+ 1)(i+ 2)(
θ
α (j + 1)

)i+3

[
1 +

i+ 3

θ(j + 1)

]
.

For selected values of parameters, the mean and variance of X are presented in Table 1.

Table 1. Median, Mean and variance of SG distribution for different values of parameters

θ α p Median E(X) Var(X)
1.5 0.2 −0.1 0.1479 0.1952 0.0304
1.5 0.2 −0.2 0.1564 0.2031 0.0316
0.5 0.2 0.2 0.4644 0.6041 0.2754
0.5 0.2 0.1 0.4987 0.6367 0.2895
0.3 0.5 0.9 0.5131 0.9368 1.5763
0.3 0.5 0.7 1.1437 1.6917 3.0827
0.3 0.5 −0.3 2.7560 3.2811 5.9623

7. Residual life time and reversed residual life time of the SG distribution

Given that a component of a system survives up to time t > 0 , the residual life will be the period beyond t until
the time of failure occurs in the system and is thus defined by the conditional random variable X − t|X > t. The
mean residual life plays an important role in survival analysis and reliability of characterizing lifetime, because it
can be used to determine a unique corresponding lifetime distribution. The rth moment of the residual life of the
SG distribution can be obtained by the general formula.

µr(t) = E[(X − t)r|X > t] =
1

S(t)

∫ ∞

t

(x− t)rf(x)dx,

where S(t) is the survival function. Using the binominal expansion to (x− t)r gives

µr(t) =
θ2(1− p)

α(θ + 1)s(t)

r∑
i=0

∞∑
j=0

j∑
k=0

(−1)i
(
j

k

)
tjpj(j + 1)

(
θ

α(θ + 1)

)k
[(

α

θ(j + 1)

)r+k−i+2

×
(
Γ

(
r + k − i+ 2;

θ

α
t(j + 1)

)
+

θ

α
(j + 1)

(
Γ(r + k − i+ 1;

θ

α
t(j + 1)

))]
,
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where Γ(s; t) =
∫∞
t

xs−1e−xdx shows the upper incomplete gamma function. The mean residual life time of the
SG distribution is given by

µ(t) =
θ2(1− p)

α(θ + 1)s(t)

∞∑
j=0

j∑
k=0

(
j

k

)
(j + 1)pj

(
θ

α(θ + 1)

)k
[(

α

θ(j + 1)

)k+3

×Γ

(
k + 3;

θ

α
t(j + 1)

)
+

θ

α
(j + 1)Γ

(
k + 2;

θ

α
t(j + 1)

)]
− t.

In particular we have

µ(0) = E(X) =
θ2(1− p)

(θ + 1)

∞∑
j=0

j∑
i=0

(j + 1)!

(j − i)!
pj

(
θ

α(θ + 1)

)i

×
(

α

θ(j + 1)

)i+2

(i+ 1)

(
1 +

(i+ 2)

θ(j + 1)

)
.

The variance of the residual life time of the SG distribution can be obtained easily by using µ2(t) and µ(t).
The reversed residual life time can be defined as the conditional random variable X − t|X < t which denotes the

time elapsed from the failure of a component given that its life time is less than or equal to t. This random variable
may also be called the inactivity time (or time since failure); (for more details see Kundu and Nanda [11]; Nanda
et al [18]). The rth-order moment of the reversed residual life time can be obtained by

mr(t) = E[(t−X)r|X < t] =
1

F (t)

∫ t

0

(t− x)rf(x)dx

hence

mr(t) =
θ2(1− p)

α(θ + 1)F (t)

r∑
i=0

∞∑
j=0

j∑
k=0

(−1)r−i

(
j

k

)
tjpj(j + 1)

(
θ

α(θ + 1)

)k
[(

α

θ(j + 1)

)r+k−i+2

×
(
γ

(
r + k − i+ 2;

θ

α
t(j + 1)

)
+

θ

α
(j + 1)γ

(
r + k − i+ 1;

θ

α
t(j + 1)

))]
where γ(s; t) =

∫ t

0
xs−1e−xdx shows the lower incomplete gamma function. The reserved residual life of the SG

distribution is given by

m(t) = t− θ2(1− p)

α(θ + 1)F (t)

∞∑
j=0

j∑
k=0

(
j

k

)
(j + 1)pj

(
θ

α(θ + 1)

)k
[(

α

θ(j + 1)

)k+3

× γ

(
k + 3;

θ

α
t(j + 1)

)
+

θ

α
(j + 1)γ

(
k + 2;

θ

α
t(j + 1)

)]
. (18)

Using m(t) and m2(t) the variance and the coefficient of variation of the reversed residual life time of the SG
distribution can be obtained.

8. Order statistics

Order statistics deal with the properties and applications of ordered random variables and their functions. In
the study of many natural problems related to flood, longevity, breaking strength, atmospheric temperature,
atmospheric pressure, wind etc., the future possibilities in the recurrence of extreme situations are of much
importance and accordingly the problem of interest in these cases reduces to that of the extreme observations. In this
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8 IMAGE RECONSTRUCTION FROM INCOMPLETE CONVOLUTION DATA

section we get the probability density function and the cumulative distribution function of the kth order statistic of
the SG distribution. Suppose X1, X2, · · · , Xn is a random sample from (4). Let X1:n < X2:n < · · · < Xn:n denote
the corresponding order statistics. The PDF and CDF of the kth order statistic, say Y = Xk:n, are given by

fY (y) =
n!θ2(1− p)

α(θ + 1)(k − 1)!(n− k)!

(
1 +

y

α

)
e−

θ
αy

×
n−k∑
l=0

(
n− k

l

) (−1)l
[
1−

(
1 + θy

α(θ+1)

)
e−

θ
αy

]k+l−1

[
1− p

(
1 + θy

α(θ+1)

)
e−

θ
αy

]k+l+1

and

FY (y) =

n∑
j=k

(
n

j

)
F j(y) [1− F (y)]

n−j

=

n∑
j=k

n−j∑
l=0

(
n

j

)(
n− j

l

)
(−1)l

 1−
(
1 + θy

α(θ+1)

)
e−

θ
αy

1− p
(
1 + θy

α(θ+1)

)
e−

θ
αy

j+l

.

If X1, · · · , Xn is a random sample from (4) and X̄ = X1+X2+···+Xn

n denotes the sample mean, by the central

limit theorem as n → ∞ then
√
n(X−E(X))√

V ar(X)
approaches the standard normal distribution. Sometimes one would be

interested in the asymptotics of the extreme values Mn = max (X1, · · · , Xn) and mn = min(X1, · · · , Xn). For the
CDF in (3), by using L’Hospital’s rule, we have

lim
t→∞

1− F (t+ x)

1− F (t)
= lim

t→∞

f(t+ x)

f(t)

= lim
t→∞

1−
(
1− α(θ+1)+θ(t+x)

α(θ+1) e−
θ
α (t+x)

)
1−

(
1− α(θ+1)+θt

α(θ+1) e−
θ
α t
)

= e−
θ
αx.

In addition, by using L’Hospital’s rule, it can be easily shown that

lim
t→0

F (tx)

F (t)
= lim

t→0

xf(tx)

f(t)

= lim
t→0

(
1− α(θ+1)+θtx

α(θ+1) e−
θ
α tx

)
1−

(
1− α(θ+1)+θt

α(θ+1) e
−θ
α t

)
= x.

By following Theorem 1.6.2 in Leadbetter et al. [13], we observe that there must be some normalizing constants
an > 0, bn,cn > 0 and dn, such that

Pr[an(Mn − bn) ≤ x] → exp
(
−e−

θ
αx

)
Pr[cn(mn − dn) ≤ x] → 1− exp(−x)

as n → ∞. The form of the normalizing constants can be determined by using Corollary 1.6.3 in Leadbetter et al.
[13]. As an illustration, one can see that an = 1 and bn = F−1(1− 1

n ) whereF−1(·) denotes the inverse function
of F (·).
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9. Bonferroni and Lorenz Curves

The Bonferroni and Lorenz curves have many practical applications not only in economics and poverty, but also in
other fields like reliability, life time testing, insurance, and medicine. For a random variable X with CDF (3), the
Bonferroni curve is defined by

BF [F (x)] =
1

µF (x)

∫ x

0

uf(u)du,

where
∫ x

0
uf(u)du is incomplete moment of X , that for SG distribution is given by∫ x

0

uf(u)du =
θ2(1− p)

α(θ + 1)

∞∑
j=0

j∑
k=0

(
j

k

)
(j + 1)pj

(
θ

α(θ + 1)

)k
[(

α

θ(j + 1)

)k+3

× γ

(
k + 3;

θ

α
x(j + 1)

)
+

θ

α
(j + 1)γ

(
k + 2;

θ

α
x(j + 1)

)]
.

where γ(·; ·) is the lower incomplete gamma function. Hence, the Bonferroni curve of the SG distribution is given
by

BF [F (x)] =
θ2(1− p)

[
1− p

(
1 + θx

α(θ+1)

)
e

−θ
α x

]
µα(θ + 1)

[
1−

(
1 + θx

α(θ+1)

)
e

−θ
α x

]
×

∞∑
j=0

j∑
k=0

(
j

k

)
(j + 1)pj

(
θ

α(θ + 1)

)k
[(

α

θ(j + 1)

)k+3

× γ

(
k + 3;

θ

α
x(j + 1)

)
+

θ

α
(j + 1)γ

(
k + 2;

θ

α
x(j + 1)

)]
where µ is given in (17).

The Lorenz curve of F that follows the SG distribution can be obtained via the expression LF [F (y)] =
F (y)BF [F (y)]. The scaled total time and cumulative total time on test transform of a distribution function F
(Pundir et al., [21]) respectively are defined by

SF [F (t)] =
1

µ

∫ t

0

S(u)du

CF =

∫ 1

0

SF [F (t)]f(t)dt,

where S(·) and F (·) denotes the survival function and CDF of X . Then, for SG distribution we get

SF [F (t)] =
1− p

µ

∞∑
j=0

j+1∑
k=0

(
j + 1

k

)
pj

(
θ

α(θ + 1)

)k (
α

θ(j + 1)

)k+1

γ

(
k + 1;

θ

α
t(j + 1)

)
.

The Gini index can be derived from the G = 1− CF .

10. Entropies

An entropy of a random variable X is a measure of variation of the uncertainty. The Rényi entropy is defined as

JR(γ) =
1

1− γ
log

[∫
fγ(x)dx

]
, γ > 0, γ ̸= 1.
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Suppose X ∼ SG(θ, α, p), Then, one can calculate∫
fγ(x)dx =

θ2γ

(α(θ + 1))
γ (1− p)γ

∫ ∞

0

(1 +
x

α
)γe−

θ
αγx

(
1− p

(
1 +

θx

α(θ + 1)

)
e−

θx
α

)−2γ

dx

=
θ2γ

(α(θ + 1))
γ (1− p)γ

∞∑
j=0

Γ(2γ + j)

Γ(2γ)j!
pj

×
∫ ∞

0

(1 +
x

α
)γe−

θ
αγx

(
1 +

θx

α(θ + 1)

)j

e−
θ
αxjdx

=
θ2γ

(α(θ + 1))
γ (1− p)γ

×
∞∑
j=0

j∑
k=0

(
j

k

)
Γ(2γ + j)

Γ(2γ)j!
(

p

θ + 1
)j

αeθ(γ+j)

θγ(γ + j)γ+k

∫ ∞

θ(γ+j)

uk+γe−udu

=
θ2γ

(α(θ + 1))
γ (1− p)γ

×
∞∑
j=0

j∑
k=0

(
j

k

)
Γ(2γ + j)

Γ(2γ)j!
(

p

θ + 1
)j

αeθ(γ+j)

θγ(γ + j)γ+k
Γ(γ + k + 1; θ(γ + j))

whereΓ(·; ·) is the upper incomplete gamma function. So, one obtains the Rényi entropy of SG distribution as

JR(γ) =
γ

1− γ
log

(
θ2(1− p)

α(θ + 1)

)
+

α

1− γ

× log

[ ∞∑
j=0

j∑
k=0

(
j

k

)
Γ(2γ + j)

Γ(2γ)j!
(

p

θ + 1
)j

αeθ(γ+j)

θγ(γ + j)γ+k
Γ (γ + k + 1; θ(γ + j))

]
. (19)

Shannon entropy defined by −E[log f(X)] is the particular case of (19) for γ ↑ 1. Limiting γ ↑ 1 in (19) and using
L’Hospital’s rule, after considerable algebraic manipulation we get

E[− log f(X)] = − log

(
θ2

θ + 1

)
+

θ

α
E(X) +

∞∑
k=1

(−1)k

kαk
E(XK)

− 2θ2

θ + 1
(1− p)

∞∑
k=1

∞∑
l=0

∞∑
j=0

j∑
i=0

(
k

l

)(
j + 1

k

)(
θ

α(θ + 1)

)l+i

pj+k

× Γ(l + i+ 1)(
θ
α (k + j + 1)

)l+i+1

(
1 +

l + i+ 1

θ(k + j + 1)

)
. (20)

Finally, consider the cumulative residual entropy (Rao [22] ) defined by

JC = −
∫

Pr(X > x) logPr(X > x)dx.

Let V (x) = 1−
(
1 + θx

α(θ+1)

)
e−

θ
αx, and using the series expansion, log(1− z) = −

∑∞
k=1

zk

k and (5), one can
calculate

JC = (1− p)

∞∑
i=1

1

i

∫ ∞

0

V (x)(1− V (x))i(1− pV (x))−(i+1)dx

=
α(1− p)

θ

∞∑
i=1

i∑
l=0

∞∑
j=0

l+j∑
k=0

k∑
m=0

(−1)l+k

(
i

l

)(
l + j

k

)(
k

m

)
× pj

i(k(θ + 1))m+1
× Γ(i+ j + 1)m!

Γ(i+ 1)j!
. (21)
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11. Mean deviations

The amount of scatter in a population can be measured by the totality of deviations from the mean and median. For
a random variable X, with µ = E(X) and M = Median(X), the mean deviation about the mean and the mean
deviation about the median, are defined respectively by

δ1 =

∫ ∞

0

|x− µ|f(x)dx = 2µF (µ)− 2I(µ),

δ2 =

∫ ∞

0

|x−M |f(x)dx = µ− 2I(M),

where I(b) =
∫ b

0
xf(x)dx. For the SG distribution we have

I(b) =
θ2(1− p)

(θ + 1)

∞∑
j=0

j∑
k=0

(
j

k

)
(j + 1)pj

(
θ

α(θ + 1)

)k
[(

α

θ(j + 1)

)k+3

×
(
γ(k + 3;

θ

α
b(j + 1)) +

θ

α
(j + 1)γ(k + 2;

θ

α
b(j + 1))

)]
. (22)

The Mean deviations of the SG distribution respectively are given by

δ1 = 2µ

 1−
(
1 + θµ

α(θ+1)

)
e−

θ
αµ

1− p
(
1 + θµ

α(θ+1)

)
e−

θ
αµ

− 2I(µ),

and
δ2 = µ− 2I(M),

where µ and M are defined in (17) and (16) respectively.

12. Maximum Likelihood Estimation

It is well known that the MLE is often used to estimate the unknown parameters of a distribution because of its
attractive properties, such as consistency and asymptotic normality. In this section the MLEs of the parameters
θ ,α and p are derived. LetX1, · · · , Xn be a random sample from the SG distribution with unknown vector of
parameters θ = (θ, α, p)′. Then the log-likelihood function is given by

log f(x;θ) = 2n log(θ)− n log(1 + θ) + n log(1− p)− n log(α) +

n∑
i=1

log
(
1 +

xi

α

)
− θ

α

n∑
i=1

xi − 2

n∑
i=1

log

(
1− p

(
1 +

θxi

α(θ + 1)

)
e−

θ
αxi

)
. (23)

The MLEs of the unknown parameters can be obtained by taking the first partial derivatives of (23) with respect to
θ, α and p. We get the following likelihood equations

∂ log f(x;θ)

∂p
=

−n

1− p
+ 2

n∑
i=1

(
1 + θxi

α(θ+1)

)
e−

θ
αxi

1− p
(
1 + θxi

α(θ+1)

)
e−

θ
αxi

= 0

∂ log f(x;θ)

∂θ
=

2n

θ
− n

1 + θ
− 1

α

n∑
i=1

xi − 2p

n∑
i=1

(
1
α + θxi

α2(θ+1) −
1

α(θ+1)2

)
xie

− θ
αxi

1− p
(
1 + θxi

α(θ+1)

)
e−

θ
αxi

= 0

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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∂ log f(x;θ)

∂α
=

−n

α
− 1

α

n∑
i=1

(
xi

α+ xi

)
+

θ

α2

n∑
i=1

xi

−2p

n∑
i=1

(
θ

α2(θ+1) −
θ
α2 − θ2xi

α3(θ+1)

)
xie

− θ
αxi

1− p
(
1 + θxi

α(θ+1)

)
e−

θ
αxi

= 0.

The solutions of these nonlinear equations do not have a closed form, so numerical methods can be employed to
get the MLEs.

12.1. Expectation-Maximization Algorithm

An EM algorithm is used to estimate the parameters when some observations are treated as incomplete data.
Suppose that X = (X1, X2, · · · , Xn) and Z = (Z1, Z2, · · · , Zn) represent the observed and hypothetical data,
respectively. Here, the hypothetical data can be thought of as missing data because Z1, Z2, · · · , Zn are not
observable. We formulate the problem of finding the MLEs as an incomplete data problem, and thus, the EM
algorithm is applicable to determine the MLEs of the SG distribution. Let W = (X,Z) denote the complete data.
To start this algorithm, define the PDF of each (Xi, Zi) for i = 1, ..., n as

f(x, z;θ) = (1− p)
θ2z

α(θ + 1)

(
1 +

x

α

)
e−

θ
αx

(
p

(
1 +

θx

α(θ + 1)

)
e−

θ
αx

)z−1

where θ = (θ, α, p), x > 0, z ∈ N.
Under the formulation, the E-step of an EM cycle requires the expectation of (Z|X;θr) where θ(r) =
(θ(r), α(r), p(r)), is the current estimate (in the rth iteration) of θ.
The PDF of Z given X is given by

f(z|x) = z

(
p

(
1 +

θx

α(θ + 1)

)
e−

θ
αx

)z−1 (
1− p

(
1 +

θx

α(θ + 1)

)
e−

θ
αx

)2

.

Therefore, its expected value is given by

E(Z|X;θ) =

(
1 + p

(
1 + θx

α(θ+1)

)
e−

θ
αx

)
(
1− p

(
1 + θx

α(θ+1)

)
e−

θ
αx

) .
The EM cycle is completed with the M-step by using the maximum likelihood estimation over θ, with the missing
Z ′s replaced by their conditional expectations given above. The log-likelihood for the complete-data is

ln∗(x, z,θ) =

n∑
i=1

log zi + 2n log(θ)− n log(1 + θ) + n log(1− p)− n log(α)

+

n∑
i=1

log(1 +
xi

α
)− θ

α

n∑
i=1

xi

−
n∑

i=1

(zi − 1) log

(
p

(
1 +

θxi

α(θ + 1)

)
e−

θ
αxi

)
.

The components of the score function are given by

∂l

∂p
=

n∑
i=1

zi − 1

p
− n

1− p
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∂l

∂θ
=

2n

θ
− n

1 + θ
− 1

α

n∑
i=1

xi −
n∑

i=1

(zi − 1)

(
−1
α + θxi

α2(θ+1) +
1

α(θ+1)2

)
xie

− θ
αxi(

1 + θxi

α(θ+1)

)
e−

θ
αxi

∂l

∂α
=

−n

α
− 1

α

n∑
i=1

(
xi

α+ xi

)
+

θ

α2

n∑
i=1

xi −
n∑

i=1

(1− zi)

(
− θ

α2(θ+1) +
θ
α2 + θ2xi

α3(θ+1)

)
xie

− θ
αxi(

1 + θxi

α(θ+1)

)
e−

θ
αxi

.

From a nonlinear system of equations U∗(θ) = 0 , we obtain the interative procedure of the EM algorithm as

p̂(r+1) = 1− n∑n
i=1 z

(r)
i

2n

θ̂(r+1)
− n

1 + θ̂(r+1)
− 1

α̂(r+1)

n∑
i=1

xi

−
n∑

i=1

(z
(r)
i − 1)

(
−1

α̂(r+1) +
θ̂(r+1)xi

α̂2(r+1)(θ̂(r+1)+1)
+ 1

α̂(r+1)(θ̂(r+1)+1)2

)
xie

− θ̂(r+1)

α̂(r+1)
xi(

1 + θ̂(r+1)xi

α̂(r+1)(θ̂(r+1)+1)

)
e
− θ̂(r+1)

α̂(r+1)
xi

−n

α̂(r+1)
− 1

α̂(r+1)

n∑
i=1

(
xi

α̂(r+1) + xi

)
+

θ̂(r+1)

α̂2(r+1)

n∑
i=1

xi

−
n∑

i=1

(1− z
(r)
i )

(
− θ̂(r+1)

α2(r+1)(θ̂(r+1)+1)
+ θ̂(r+1)

α̂2(r+1) +
θ̂2(r+1)xi

α̂3(r+1)(θ̂(r+1)+1)

)
xie

− θ̂(r+1)

α̂(r+1)
xi(

1 + θ̂(r+1)xi

α̂(r+1)(θ̂(r+1)+1)

)
e
− θ̂(r+1)

α̂(r+1)
xi

where θ̂(r+1) and α̂(r+1) are found numerically. Hence for i = 1, ..., n we have

z
(r)
i =

(
1 + p̂(r)

(
1 + θ̂(r)xi

α̂(r)(θ̂(r)+1)

)
e
− θ̂(r)

α̂(r)
xi

)
(
1− p̂(r)

(
1 + θ̂(r)xi

α̂(r)(θ̂(r)+1)

)
e
− θ̂(r)

α̂(r)
xi

) .

13. Simulation study

In this section, the performance of the MLEs is assessed via simulation in terms of the sample size n. Also,
the empirical bias and empirical mean square error (MSE), for different values of parameters are calculated. Let
θ = (θ, α, p)′ be the parameters vector. Given n and θ, the following algorithm to calculate the biases and MSEs,
for i = 1, 2, 3 is applied.
Algorithm 1
(i) Generate the values x1, x2, · · · , xn from the SG(θ, α, p) using (15).
(ii) Compute θ̂ = (θ̂, α̂, p̂)′ for x1, · · · , xn.
(iii) Repeat the steps (i) and (ii) for 10000 times.
(iv) Obtain the bias using the formulas bias(θ̂i)= 1

10000

∑10000
j=1 θ̂ij − θi and

MSE(θ̂i)= 1
10000

∑10000
j=1 (θ̂ij − θi)

2 where θ̂ij denote the MLE of θi in the jth replication, for i = 1, 2, 3 and
j = 1, ..., 10000. Table (2) gives the biases and the MSE of θ̂, α̂, p̂. It can be concluded from the table that the
efficiency of the MLE estimation method increased with the increase of the sample size where the bias and the
MSE got smaller.
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Table 2. The biase and MSE (in parentheses) of MLEs

(α, p, θ) n α̂ p̂ θ̂

(1, 0.5, 0.5) 20 −0.4087(0.3428) −0.0104(0.1097) −0.1857(0.1085)
50 −0.3276(0.2474) 0.05(0.0742) −0.1469(0.0726)
100 −0.296(0.2063) 0.0572(0.0509) −0.1397(0.0543)
200 −0.2484(0.1535) 0.0645(0.0297) −0.1163(0.0367)
500 −0.2095(0.1114) 0.0554(0.016) −0.0995(0.0262)
1000 −0.1677(0.0746) 0.0441(0.0101) −0.0803(0.0174)

(0.5, 0.5, 0.8) 20 −0.1345(0.1102) −0.0648(0.1238) −0.2503(0.236)
50 −0.0911(0.0787) 0.0209(0.0869) −0.1657(0.1647)
100 −0.0609(0.0579) 0.014(0.0561) −0.1007(0.1136)
200 −0.0386(0.0432) −0.0024(0.0384) −0.0731(0.0856)
500 −0.0253(0.028) 0.0096(0.0199) −0.0421(0.0559)
1000 −0.008(0.0191) 0.0056(0.011) −0.0132(0.0386)

(1,−0.5, 1.5) 20 −0.6398(0.5599) 0.6861(0.5462) −0.8589(1.2468)
50 −0.6134(0.4812) 0.645(0.4691) −0.8323(1.0426)
100 −0.5725(0.4084) 0.5782(0.3583) −0.7886(0.8819)
200 −0.5498(0.3579) 0.5508(0.3171) −0.7541(0.7522)
500 −0.5429(0.3152) 0.5215(0.2764) −0.7607(0.6428)
1000 −0.5423(0.3039) 0.5085(0.2598) −0.7643(0.6152)

(0.8, 0.2, 1.5) 20 −0.3237(0.2778) 0.1377(0.1288) −0.5418(0.972)
50 −0.2306(0.195) 0.1063(0.099) −0.3949(0.6862)
100 −0.1813(0.1604) 0.0985(0.0776) −0.3148(0.5583)
200 −0.1275(0.1216) 0.0775(0.0559) −0.214(0.418)
500 −0.0484(0.0883) 0.035(0.0352) −0.085(0.2923)
1000 −0.0253(0.0693) 0.0201(0.0244) −0.0466(0.222)

14. Application to Real-Data

In this section, the comparison of the SG with some continuous life time distributions is considerd. For this purpose,
we consider two real data set to analyze. In the first data set, we show that the SG is a good competitor for
four important life time distributions, Gamma, Weibull , Weibull-Geometric(WG) and Lindley-Poisson(LP). In the
second set, it is observed that the SG distribution performs well comparing to its special submodels. In order to
identify the shape of the hazard rate function of the data, we consider a graphical method based on the Total Time
on Test (TTT) plot. As we know, the empirical TTT plot is given by

G
( r

n

)
=

(
∑r

i=1 Xi:n + (n− r)Xr:n)∑n
i=1 Xi:n

where Xi:n denotes the ith order statistic of the sample. If the empirical TTT transform is convex, concave, convex
then concave and concave then convex, the shape of the corresponding hazard rate function is, respectively,
decreasing, increasing, bathtub-shaped and upside-down bathtub, see Aarset [1]. To compare the SG with
the four distributions (i) Gamma(α, β), (ii) Weibull(α, β), (iii) Weibull −Geometric(α, β, p), (iv) Lindley −
Poisson(θ, λ) with PDF listed

f1(x) =
βα

Γ(α)
xα−1e−βx; α, β > 0

f2(x) =
β

α

(x

α

)β−1

e−(
x
α )

β

; α, β > 0

f3(x) = αβα(1− p)xα−1e−(βx)α
[
1− pe−(βx)α

]−2

; α, β > 0, p < 1
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f4(x) =
λθ2(x+ 1)e

λe−θx(θx+θ+1)
(θ+1)

−θx

(θ + 1)(eλ − 1)
; θ, λ > 0

the values of the log-likelihood(− logL), Akaike Information Criterion (AIC), the Bayesian Information Criterion
(BIC), and the AIC with a correction (AICc) for the real data set are calculated. The better distribution corresponds
to smaller -logL, AIC, BIC, and AICc. In addition, we apply the Kolmogrov-Smirnov statistic (and associated
p-value) to verify which distribution fits better to data.

The first data set is about the remission time (in months) of a random sample of 128 bladder cancer patients. This
data set was studied by [14] in fitting the extended Lomax distribution and [29] for the modified Weibull geometric
distribution. The first data set is given by as follows:
0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06,
7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76,
26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18,
5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12,
46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14 ,79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71,
7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54,
8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.
From Figure 3, we can notice that, the hazard rate of the data set is upside down bathtub. We observe from Table
(3) and Table (4) that the SG distribution provide an improved fit over other distributions that are fitting lifetime
data. The fitted density, the empirical CDF plot and p-p plot of the SG distribution model are presented in Figure
5. The Figure indicates a desirable fit of the SG distribution.

The second data set studied by Maguire et al. [17], represent the time intervals between two deadly accidents in
the mines of the Division no.5, of Great Britain National Cole Board in 1950. The second data set is given by as
follows:
21, 2, 15, 1, 5, 1, 9, 1, 0, 17, 0, 1, 24, 14, 4, 9, 20, 14, 1, 1, 44, 4, 5, 1, 13, 6, 9, 3.
We intend to illustrate the applicability of the new distribution, hence we fit SG distribution for the data. We
compare the SG distribution with two continuous life time distributions that are sepecial submodels of SG
distribution (i) Lindley(θ), (ii) Lindley −Geometric(θ, p) with PDF listed

f1(x) =
θ2

θ + 1
(1 + x) e−

θ
x ; θ > 0

f2(x) =
θ2

θ + 1
(1 + x)(1− p)e−θx

(
1− p

(
1 +

θx

θ + 1

)
e−θx

)−2

; θ > 0, 0 < p < 1

From Figure 4, we can notice that, the hazard rate of the data set is decreasing. We observe from Table (5) that the
SG distribution provides an improved fit over other distributions that are commonly used for fitting lifetime data.

To test the null hypothesis H0: Lindley-Geometric versus H1: SG or equivalently H0 : α = 1 versus H1 : α ̸= 1,
we use the likelihood ratio test statistic whose value is 4.4696 (p-value=0.0345). As result, the null model LG is
rejected in favore of the alternative model SG at any level> 0.0345. To test the null hypothesis H0: Lindley versus
H1: SG or equivalently H0 : α = 1, p = 0 versus H1 : α ̸= 1, p ̸= 0, we use the likelihood ratio test statistic whose
value is 11.077 (p-value=0.0039). So, the null model Lindley is rejected in favore of the alternative model SG
at any level> 0.0039, the results are shown in Table (6). The fitted density and the empirical cdf plot of the SG
distribution model are presented in Figure 6. The figure represent a desirable fit of the SG distribution.

15. Conclusion

A new three-parameter distribution named the SG distribution is proposed. This new model contains Lindley,
Lindley-Geometric, and Sushila distributions as submodels. The hazard rate function of the SG distribution can
be an upside-down bathtub, bathtub-shaped, increasing, and decreasing which are widely used in applications.
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Some mathematical properties such as density expansion, hazard rate function, quantile function, moments, mean
deviations, order statistics, and the Shannon and Rényi entropies in the closed forms in terms of some well-
known mathematical functions are obtained. The log-likelihood equations were obtained and the EM algorithm
was presented to calculate the MLEs of parameters. The performance of the MLEs was investigated for different
values of sample sizes and different values of the parameters using simulation. The simulation results show that
the MLEs perform well in terms of bias and MSE criteria. Finally, we fitted the SG model to two real data sets to
show the potential of the new proposed distribution.

Table 3. MLEs of the parameters, standard errors (in parentheses) and corresponding criteria for data set 1.

Model parameters − logL AIC BIC AICc

Gamma α̂ = 1.1726(0.131) 413.3678 830.7356 836.4396 830.8316

β̂ = 0.1252(0.017)
Weibull α̂ = 9.5607(0.853) 414.0869 832.1738 837.8778 832.2698

β̂ = 1.0478(0.068)
WG α̂ = 1.6042(0.159) 410.0921 826.1842 834.7403 826.3777

β̂ = 0.0286(0.012)
p̂ = 0.9362(0.059)

LP θ̂ = 0.1103(0.019) 411.3845 826.7691 833.4732 826.8651

λ̂ = 3.1743(0.996)

SG θ̂ = 0.0469(0.039) 409.3992 824.7984 833.3045 824.9919
α̂ = 0.6444(0.462)
p̂ = 0.9023(0.086)

Table 4. K-S test for data set 1.

Model K − S p− value

Gamma 0.073209 0.4989

Weibull 0.070037 0.5566

WG 0.032507 0.9993

LP 0.059978 0.7465

SG 0.31345 0.9996
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Table 5. MLEs of the parameters, standard errors (in parentheses) and corresponding criteria for data set 2.

Model parameters − logL AIC BIC AICc

Lindley θ̂ = 0.2088(2.188) 94.31056 190.6211 191.9533 190.775

LG θ̂ = 0.1022(0.051) 91.0067 186.0134 188.6778 186.4934
p̂ = 0.8677(0.867)

SG θ̂ = 0.2921(0.312) 88.77188 181.5438 184.2082 182.0238
α̂ = 8.4412(6.438)
p̂ = 0.9555(0.154)

Table 6. K-S test for data set 2.

Model K − S p−value
Lindely 0.27316 0.03064

LG 0.22807 0.1086

SG 0.16569 0.4356
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Figure 3. The empirical TTT plot of the data set 1.
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Figure 4. The empirical TTT plot of the data set 2.
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Figure 5. Plots of the estimated pdf and cdf and p-p plot of the SG model for data set1
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Figure 6. Plots of the estimated pdf and cdf and p-p plot of the SG model for data set2
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