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1. Introduction

Measurement error models have been attracted a lot of attentions in many scientific and engineering fields, see, e.g.
Carroll et al. [2]. In this work, we consider the additive measurement error model

Y = X + ε, (1)

where X is an unobservable random variable of interest distributed with an unknown density fX , ε is an
unobservable random error distributed with a known density fε, called error density, and Y is an observable random
variable which can be viewed as a noisy version of X . Furthermore, X and ε are assumed to be independent.
Let Y1, . . . , Yn be a sample of independent and identically distributed (i.i.d.) observations from the distribution
of Y . On the basis of the observations and the completely knowledge about fε, the problem of estimating the
unknown cumulative distribution function FX of X , i.e. FX(x) := P(X ≤ x) for x ∈ R, has been studied in some
research, such as Gaffey [6], Fan [5], Dattner et al. [4], Dattner and Reiser [3] and Trong and Phuong [11]. More
concretely, Gaffey [6] considered the asymptotic mean squared error for an estimator of FX when ε has the normal
distribution with zero mean and known variance σ2. Fan [5] proposed an estimator of FX derived by integrating
the kernel deconvolution density estimator in Stefanski and Carroll [10] and then derived rates of convergence of
his estimator with respect to the mean squared error when fε is ordinary smooth or supersmooth. Here a density
f is said to be ordinary smooth (respectively, supersmooth) if the corresponding characteristic function decays
at infinity with a polynomial rate (respectively, an exponential rate). Dattner et al. [4] (respectively, Dattner and
Reiser [3]) showed the optimality of the estimator F̂X;T with T > 0, defined by

F̂X;T (x) :=
1

2
− 1

π

∫ T

0

1

t
ℑ

{
1
n

∑n
j=1 e

it(Yj−x)

ϕε(t)

}
dt, (2)
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in the case of ordinary smooth fε (respectively, supersmooth fε) under the mean squared error. It is emphasized
that the error characteristic function ϕε does not have any zeros on the real line R when fε is ordinary smooth or
supersmooth. Recently, Trong and Phuong [11] studied the problem of estimating FX in some cases of fε where
ϕε may have some isolated zeros on R. The authors also considered some asymptotic properties of their estimator
with respect to the mean squared error.

As mentioned, F̂X;T in (2) is an optimal estimator of FX with respect to the mean squared error under the
assumption that fε is ordinary smooth or supersmooth. A further question is whether F̂X;T is a strong consistent
estimator of FX under the same assumption on fε. Recall here that a deconvolution estimator F̂X(·;Y1, . . . , Yn)

of FX(·) is said to be strong consistency if F̂X(·;Y1, . . . , Yn) converges almost surely to FX(·) as n → ∞. Up to
present, we have not found any research addressing that question, and our aim in this work is thus to give an answer
for this question.

2. The main result

We first introduce some notations. The L1-norm of f ∈ L1(R) is the quantity ∥f∥1 :=
∫∞
−∞ |f(x)|dx. The

characteristic function of a random variable U is defined by ϕU (t) := E(eitU ), for t ∈ R. The notation a.s.→ represents
the almost sure convergence of a sequence of random variables. For a complex number z, the notations ℜ{z} and
ℑ{z} stand respectively for the real and imaginary parts of z.

To study the strong consistency of F̂X;T , we introduce the following assumptions on the error characteristic
function ϕε:

(A1) There exist constants K, ξ,A > 0 such that

|ϕε(t)| ≥ 1−K|t|ξ, for all t ∈ [−A,A].

(A2) There exist constants c1, c2 > 0 and α > 1 such that

c1(1 + |t|)−α ≤ |ϕε(t)| ≤ c2(1 + |t|)−α, for all t ∈ R.

(A3) There exist constants d1, d2, d, β > 0 such that

d1e
−d|t|β ≤ |ϕε(t)| ≤ d2e

−d|t|β , for all t ∈ R.

The assumption (A1) describes local behavior of the function ϕε around the point t = 0. It is satisfied if ϕε

is smooth at that point. For example, if ε has the normal distribution with zero mean and variance σ2, then
ϕε(t) = e−σ2t2/2 for all t ∈ R, so we apply the elementary inequality ex ≥ 1 + x for all x ∈ R to obtain that
|ϕε(t)| ≥ 1− σ2t2/2 for all t ∈ R. Hence, ϕε satisfies (A1) with K ≡ σ2/2, ξ ≡ 2 and A > 0 arbitrarily. Another
example is the case fε(x) =

1
2e

−|x| for x ∈ R, i.e. ε has the Laplace distribution with location 0 and scale 1.
In that case, ϕε(t) = 1/(1 + t2) for all t ∈ R, so ϕε satisfies (A1) with K ≡ 1, ξ ≡ 2 and A > 0 arbitrarily. The
assumptions (A2) and (A3) are quite standard in the field of nonparametric deconvolution. The assumption (A2) is
satisfied with many usual distributions, such as the Laplace and Gamma distributions. The normal and Cauchy
distributions are typical examples for the assumption (A3). Under (A2), the error density fε is continuously
differentiable on R up to order ⌊α⌋, the biggest integer number less than or equal to α, and so fε is called an
ordinary smooth density. While, the density fε from (A3) is infinitely continuously differentiable on R, so it is
called a supersmooth density. The ordinary smooth and supersmooth terms were first introduced in Fan [5].

The main result of the present work is the following theorem.

Theorem 1
Consider the estimator F̂X;T given by (2). Assume

∫∞
R

t−1|ϕX(t)|dt < ∞, for some R > 0.
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(a) Under (A1) and (A2), choosing T = k na with k > 0, 0 < a < 1/(4α− 1) gives F̂X;T (x)
a.s.→ FX(x) as

n → ∞, for all x ∈ R.

(b) Under (A1) and (A3), choosing T = (b lnn)1/β with 0 < b < 1/(6d) gives F̂X;T (x)
a.s.→ FX(x) as n → ∞,

for all x ∈ R.

To prove Theorem 1, we need the following lemmas.

Lemma 1 (see Corollary C.1(ii) in Härdle et al. [8])
Let U1, . . . , Un be i.i.d. random variables such that E(Uj) = 0 for all j, and that there exists a constant M > 0 so
that |Uj | ≤ M almost surely, for all j. Then, for any ρ ≥ 0,

P

(∣∣∣∣∣ 1n
n∑

j=1

Uj

∣∣∣∣∣ ≥ ρ

)
≤ 2 exp

{
− nρ2

2
(
E|U1|2 + Mρ

3

)} .

Lemma 2 (see Proposition 7.2.3(a) in Athreya and Lahiri [1])
Let {An}n≥1 be a sequence of random variables on some probability space (Ω,F ,P). If

∑∞
n=1 P(|An| > ϵ) < ∞,

for all ϵ > 0, then
P( lim

n→∞
An = 0) = 1.

Proof of Theorem 1
Fix x ∈ R. We have

|F̂X;T (x)− FX(x)| ≤ |F̂X;T (x)− EF̂X;T (x)|+ |EF̂X;T (x)− FX(x)|. (3)

By the Fubini theorem,

EF̂X;T (x) =
1

2
− 1

π

∫ T

0

1

t
ℑ

{
1
n

∑n
j=1 E(eitYj )e−itx

ϕε(t)

}
dt

=
1

2
− 1

π

∫ T

0

1

t
ℑ{ϕX(t)e−itx}dt.

Since X is a random variable of continuous type, one has (see, e.g. Gil-Pelaez [7])

FX(x) =
1

2
− 1

π

∫ ∞

0

1

t
ℑ{ϕX(t)e−itx}dt.

Therefore,

|EF̂X;T (x)− FX(x)| =
∣∣∣∣ 1π
∫ ∞

T

1

t
ℑ{ϕX(t)e−itx}dt

∣∣∣∣ ≤ 1

π

∫ ∞

T

|ϕX(t)|
t

dt.

Since limn→∞ T = ∞ and
∫∞
R

t−1|ϕX(t)|dt < ∞, we apply the Lebesgue dominated convergence theorem to
give limn→∞

∫∞
T

t−1|ϕX(t)|dt = 0, which implies |EF̂X;T (x)− FX(x)| → 0 as n → ∞. From this result and the
estimate (3), it remains to show that |F̂X;T (x)− EF̂X;T (x)|

a.s.→ 0 as n → ∞.
For that purpose, we write

|F̂X;T (x)− EF̂X;T (x)| =

∣∣∣∣∣ 1π
∫ T

0

1

t
ℑ

{
1
n

∑n
j=1 e

it(Yj−x) − ϕY (t)e
−itx

ϕε(t)

}
dt

∣∣∣∣∣
=

∣∣∣∣∣g(T )n

n∑
j=1

Wj,T (x)

∣∣∣∣∣ , (4)

Stat., Optim. Inf. Comput. Vol. 11, September 2023



BUI THUY TRANG AND CAO XUAN PHUONG 925

where

g(T ) :=

{
Tα under (A2),
T−βed Tβ

under (A3),

Wj,T (x) :=
1

πg(T )

∫ T

0

1

t|ϕε(t)|2
ℑ{(eitYj − ϕY (t))ϕε(−t)e−itx}dt.

By the Fubibi theorem, we have for any j ∈ {1, . . . , n} that

EWj,T (x) =
1

πg(T )

∫ T

0

1

t|ϕε(t)|2
ℑ{(E(eitYj )− ϕY (t))ϕε(−t)e−itx}dt = 0. (5)

Our next goal is to show that there is a constant C > 0 such that |Wj,T (x)| ≤ C, for all x, j. Indeed, we have

|Wj,T (x)| ≤
1

πg(T )
(V1 + V2) (6)

with

V1 :=

∣∣∣∣∫ ϱ

0

1

t|ϕε(t)|2
ℑ{(eitYj − ϕY (t))ϕε(−t)e−itx}dt

∣∣∣∣ ,
V2 :=

∣∣∣∣∣
∫ T

ϱ

1

t|ϕε(t)|2
ℑ{(eitYj − ϕY (t))ϕε(−t)e−itx}dt

∣∣∣∣∣ ,
ϱ := min{A; (4K)−1/ξ}.

Now we estimate V1. We first have

V1 ≤
∣∣∣∣∫ ϱ

0

1

t|ϕε(t)|2
ℑ{ϕε(−t)eit(Yj−x)}dt

∣∣∣∣+ ∣∣∣∣∫ ϱ

0

1

t|ϕε(t)|2
ℑ{ϕY (t)ϕε(−t)e−itx}dt

∣∣∣∣ =: V1,1 + V1,2. (7)

Fix a t ∈ (0, ϱ). Using the assumption (A1) gives |ϕε(t)|2 ≥ (1−Ktξ)2 ≥ 1− 2Ktξ, so 0 ≤ 1− |ϕε(t)|2 ≤
2Ktξ ≤ 2Kϱξ ≤ 1/2. Hence, we have the Taylor expansion |ϕε(t)|−2 = 1 +

∑∞
ℓ=1(1− |ϕε(t)|2)ℓ. From the

expansion, the Fubini theorem, the estimate supm>0 |
∫m

0
τ−1 sin(τ)dτ | < 2 (see, e.g. Kawata [9, page 61]) and

the equality
∑∞

ℓ=1
xℓ

ℓ = − ln(1− x) for all x ∈ (0, 1), we get

V1,1 =

∣∣∣∣∣
∫ ϱ

0

1

t

(
1 +

∞∑
ℓ=1

(1− |ϕε(t)|2)ℓ
)
ℑ{ϕε(−t)eit(Yj−x)}dt

∣∣∣∣∣
≤
∣∣∣∣∫ ϱ

0

1

t
ℑ{ϕε(−t)eit(Yj−x)}dt

∣∣∣∣+ ∫ ϱ

0

1

t

∞∑
ℓ=1

(1− |ϕε(t)|2)ℓdt

≤
∣∣∣∣∫ ϱ

0

1

t

(∫ ∞

−∞
fε(u) sin(t(Yj − x− u))du

)
dt

∣∣∣∣+ ∫ ϱ

0

1

t

∞∑
ℓ=1

(2Ktξ)ℓdt

≤
∫ ∞

−∞
fε(u)

∣∣∣∣∫ ϱ

0

sin(t(Yj − x− u))

t
dt

∣∣∣∣du+
1

ξ

∞∑
ℓ=1

(2Kϱξ)ℓ

ℓ

≤ 2 +
1

ξ
ln

(
1

1− 2Kϱξ

)
.

By the same arguments as in the estimate of V1,1, we also derive that

V1,2 ≤ 2 +
1

ξ
ln

(
1

1− 2Kϱξ

)
.
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It follows from (7) and the estimates of V1,1, V1,2 that

V1 ≤ 4 +
2

ξ
ln

(
1

1− 2Kϱξ

)
. (8)

We next estimate V2. We have

V2 ≤ 2

∫ T

ϱ

1

t|ϕε(t)|
dt.

Under (A2),

V2 ≤ 2

c1

∫ T

ϱ

(1 + t)α

t
dt =

2

c1

(∫ 1

ϱ

(1 + t)α

t
dt+

∫ T

1

(1 + t)α

t
dt

)

≤ 2

c1

(∫ 1

ϱ

(1 + t)α

t
dt+ 2α

∫ T

1

tα−1dt

)
≤ C1T

α,

where C1 is a positive constant depending on c1, α, ϱ.

Under (A3),

V2 ≤ 2

d1

∫ T

ϱ

ed tβ

t
dt.

By the L’Hospital rule,

lim
T→∞

∫ T

ϱ
t−1ed tβdt

T−βed Tβ = lim
T→∞

1

dβ − βT−β
=

1

dβ
,

so, for large sufficiently T , ∫ T

ϱ

ed tβ

t
dt ≤

(
1 +

1

dβ

)
T−βed Tβ

.

From there we derive V2 ≤ C2T
−βed Tβ

, where C2 is a positive constant depending on d1, d, β, ϱ.

Hence, we have shown that

V2 ≤

{
C1T

α under (A2),
C2T

−βed Tβ

under (A3).
(9)

From (6), (8) and (9), we conclude that

|Wj,T (x)| ≤

{
C3 under (A2),
C4 under (A3),

(10)

where C3 ≡ C3(c1, α, ϱ, ξ,K) > 0, C4 ≡ C4(d1, d, β, ϱ, ξ,K) > 0 are constants.
Fix an arbitrary ϑ > 0. From (4), (5), (10) and the fact that W1,T (x), . . . ,Wn,T (x) are i.i.d. random variables,

we apply Lemma 1 to derive

P(|F̂X;T (x)− EF̂X;T (x)| > ϑ) = P

(∣∣∣∣∣ 1n
n∑

j=1

Wj,T (x)

∣∣∣∣∣ > ϑ

g(T )

)

≤


2 exp

{
−

n( ϑ
g(T ) )

2

2(E|Wj,T (x)|2+ C3ϑ

3g(T ) )

}
under (A2),

2 exp

{
−

n( ϑ
g(T ) )

2

2(E|Wj,T (x)|2+ C4ϑ

3g(T ) )

}
under (A3).

(11)
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Next we estimate E|Wj,T (x)|2. Thanks to the inequality VarU ≤ E|U |2 and the inequality (u+ v)2 ≤ 2(u2 +
v2), for all u, v ∈ R, we get

E|Wj,T (x)|2 =
1

π2(g(T ))2
E

∣∣∣∣∣
∫ T

0

1

t|ϕε(t)|2
ℑ{(eitYj − ϕY (t))ϕε(−t)e−itx}dt

∣∣∣∣∣
2

=
1

π2(g(T ))2
Var

(∫ T

0

1

t|ϕε(t)|2
ℑ{ϕε(−t)eit(Yj−x)}dt

)

≤ 1

π2(g(T ))2
E

∣∣∣∣∣
∫ T

0

1

t|ϕε(t)|2
ℑ{ϕε(−t)eit(Yj−x)}dt

∣∣∣∣∣
2

≤ 2

π2(g(T ))2
(Q1 +Q2), (12)

with

Q1 := E
∣∣∣∣∫ ϱ

0

1

t|ϕε(t)|2
ℑ{ϕε(−t)eit(Yj−x)}dt

∣∣∣∣2 ,
Q2 := E

∣∣∣∣∣
∫ T

ϱ

1

t|ϕε(t)|2
ℑ{ϕε(−t)eit(Yj−x)}dt

∣∣∣∣∣
2

.

We have ∣∣∣∣∫ ϱ

0

1

t|ϕε(t)|2
ℑ{ϕε(−t)eit(Yj−x)}dt

∣∣∣∣ ≡ V1,1 ≤ 2 +
1

ξ
ln

(
1

1− 2Kϱξ

)
,

so

Q1 ≤
(
2 +

1

ξ
ln

(
1

1− 2Kϱξ

))2

. (13)

For estimating Q2, we apply the Fubini theorem to give that

Q2 =

∣∣∣∣∣E
∫ T

ϱ

∫ T

ϱ

ℑ{ϕε(−t)eit(Yj−x)}ℑ{ϕε(−s)eis(Yj−x)}
ts|ϕε(t)|2|ϕε(s)|2

dtds

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

ϱ

∫ T

ϱ

A(t, s, x)

ts|ϕε(t)|2|ϕε(s)|2
dtds

∣∣∣∣∣
≤
∫ T

ϱ

∫ T

ϱ

|A(t, s, x)|
ts|ϕε(t)|2|ϕε(s)|2

dtds,

where

A(t, s, x) :=

∫ ∞

−∞
fY (y)ℑ{ϕε(−t)eit(y−x)}ℑ{ϕε(−s)eis(y−x)}dy.

By the Fubini theorem and the formula sin(u) sin(v) = [cos(u− v)− cos(u+ v)]/2, we get

A(t, s, x) =

∫ ∞

−∞
fY (y)

(∫ ∞

−∞

∫ ∞

−∞
fε(u)fε(v) sin(t(y − x− u)) sin(s(y − x− v))dudv

)
dy

=

∫ ∞

−∞

∫ ∞

−∞
fε(u)fε(v)

(∫ ∞

−∞
fY (y) sin(t(y − x− u)) sin(s(y − x− v))dy

)
dudv

=
1

2

∫ ∞

−∞

∫ ∞

−∞
fε(u)fε(v)ℜ{ei[x(s−t)−ut+vs]ϕY (t− s)}dudv

− 1

2

∫ ∞

−∞

∫ ∞

−∞
fε(u)fε(v)ℜ{ei[−x(s+t)−ut−vs]ϕY (t+ s)}dudv,
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and this yields

|A(t, s, x)| ≤ 1

2
|ϕY (t− s)|+ 1

2
|ϕY (t+ s)|.

Hence,

Q2 ≤ 1

2

∫ T

ϱ

∫ T

ϱ

|ϕY (t− s)|
ts|ϕε(t)|2|ϕε(s)|2

dtds+
1

2

∫ T

ϱ

∫ T

ϱ

|ϕY (t+ s)|
ts|ϕε(t)|2|ϕε(s)|2

dtds.

Furthermore, we have by the Cauchy-Schwarz inequality and the Fubini theorem that∫ T

ϱ

∫ T

ϱ

|ϕY (t− s)|
ts|ϕε(t)|2|ϕε(s)|2

dtds ≤

√∫ T

ϱ

∫ T

ϱ

|ϕY (t− s)|
t2|ϕε(t)|4

dtds

∫ T

ϱ

∫ T

ϱ

|ϕY (t− s)|
s2|ϕε(s)|4

dtds.

Note that ∫ T

ϱ

∫ T

ϱ

|ϕY (t− s)|
t2|ϕε(t)|4

dtds =

∫ T

ϱ

1

t2|ϕε(t)|4

(∫ T

ϱ

|ϕY (t− s)|ds

)
dt

=

∫ T

ϱ

1

t2|ϕε(t)|4

(∫ t−ϱ

t−T

|ϕY (v)|dv
)
dt

≤ ∥ϕε∥1
∫ T

ϱ

1

t2|ϕε(t)|4
dt,

and by the same arguments, we also obtain∫ T

ϱ

∫ T

ϱ

|ϕY (t− s)|
s2|ϕε(s)|4

dtds ≤ ∥ϕε∥1
∫ T

ϱ

1

t2|ϕε(t)|4
dt.

Hence, ∫ T

ϱ

∫ T

ϱ

|ϕY (t− s)|
ts|ϕε(t)|2|ϕε(s)|2

dtds ≤ ∥ϕε∥1
∫ T

ϱ

1

t2|ϕε(t)|4
dt.

Similarly, ∫ T

ϱ

∫ T

ϱ

|ϕY (t+ s)|
ts|ϕε(t)|2|ϕε(s)|2

dtds ≤ ∥ϕε∥1
∫ T

ϱ

1

t2|ϕε(t)|4
dt.

Thus we derive

Q2 ≤ ∥ϕε∥1
∫ T

ϱ

1

t2|ϕε(t)|4
dt. (14)

Combining (12) with (13) and (14), we obtain that

E|Wj,T (x)|2 ≤ 2

π2(g(T ))2

[(
2 +

1

ξ
ln

(
1

1− 2Kϱξ

))2

+ ∥ϕε∥1
∫ T

ϱ

1

t2|ϕε(t)|4
dt

]
. (15)

• Under (A2), the estimate (15) becomes

E|Wj,T (x)|2 ≤ 2

π2T 2α

[(
2 +

1

ξ
ln

(
1

1− 2Kϱξ

))2

+
∥ϕε∥1
c41

∫ T

ϱ

(1 + t)4α

t2
dt

]
.

We see that

∥ϕε∥1 =

∫ ∞

−∞
|ϕε(t)|dt ≤ c2

∫ ∞

−∞
(1 + |t|)−αdt < ∞,
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∫ T

ϱ

(1 + t)4α

t2
dt =

∫ 1

ϱ

(1 + t)4α

t2
dt+

∫ T

1

(1 + t)4α

t2
dt ≤

∫ 1

ϱ

(1 + t)4α

t2
dt+

24α

4α− 1
T 4α−1.

Therefore, there is a positive constant C5 depending on c1, c2, α, K, ξ and ϱ such that

E|Wj,T (x)|2 ≤ C5T
2α−1.

Combining the latter estimate with (11), we obtain that

P(|F̂X;T (x)− EF̂X;T (x)| > ϑ)≤2 exp

{
− n(ϑT−α)2

2 (C5T 2α−1 + C3ϑT−α/3)

}
≤ 2 exp

{
− ϑ2

2(C5 + C3ϑ/3)
nT 1−4α

}
.

For T = k na with k > 0, 0 < a < 1/(4α− 1), we have

P(|F̂X;T (x)− EF̂X;T (x)| > ϑ)≤2 exp

{
− ϑ2k1−4α

2(C5 + C3ϑ/3)
n1+a(1−4α)

}
.

Under the constraint 0 < a < 1/(4α− 1), we have

∞∑
n=1

exp

{
− ϑ2k1−4α

2(C5 + C3ϑ/3)
n1+a(1−4α)

}
< ∞,

so
∞∑

n=1

P(|F̂X;T (x)− EF̂X;T (x)| > ϑ) < ∞,

which together with Lemma 2 to imply |F̂X;T (x)− EF̂X;T (x)|
a.s.→ 0 as n → ∞.

• Under (A3), the estimate (15) becomes

E|Wj,T (x)|2 ≤ 2

π2T−2βe2dTβ

[(
2 +

1

ξ
ln

(
1

1− 2Kϱξ

))2

+
∥ϕε∥1
d41

∫ T

ϱ

e4d tβ

t2
dt

]
.

We see that

∥ϕε∥1 =

∫ ∞

−∞
|ϕε(t)|dt ≤ d2

∫ ∞

−∞
e−d|t|βdt < ∞.

By the L’Hospital rule,

lim
T→∞

∫ T

ϱ
t−2e4d tβdt

T−(β+1)e4d Tβ = lim
T→∞

1

4dβ − (β + 1)T−β
=

1

4dβ
,

so, for large sufficiently T , ∫ T

ϱ

e4d tβ

t2
dt ≤

(
1 +

1

4dβ

)
T−(β+1)e4d Tβ

.

Therefore, we can find a positive constant C6 depending on d1, d2, d, β, K, ξ, ϱ such that

E|Wj,T (x)|2 ≤ C6T
β−1e4d Tβ

.
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Combining the latter estimate with (11), we obtain that

P(|F̂X;T (x)− EF̂X;T (x)| > ϑ)≤2 exp

{
− n(ϑT βe−dTβ

)2

2
(
C6T β−1e4d Tβ + C4ϑT βe−dTβ/3

)}

≤ 2 exp

{
− ϑ2

2(C6 + C4ϑ/3)
ne−6dTβ

}
.

For T = (b lnn)1/β with 0 < b < 1/(6d), we infer that

P(|F̂X;T (x)− EF̂X;T (x)| > ϑ)≤2 exp

{
− ϑ2

2(C6 + C4ϑ/3)
n1−6db

}
.

Under the constraint 0 < b < 1/(6d), we have

∞∑
n=1

exp

{
− ϑ2

2(C6 + C4ϑ/3)
n1−6db

}
< ∞,

so
∞∑

n=1

P(|F̂X;T (x)− EF̂X;T (x)| > ϑ) < ∞,

which together with Lemma 2 to give |F̂X;T (x)− EF̂X;T (x)|
a.s.→ 0 as n → ∞.

The theorem is proved.

3. Numerical example

We present in this section the two following numerical examples to illustrate the convergence of the estimator F̂X;T

according to the sample size n. We use the R language for all numerical setups.

(E1) X ∼ 0.5N (0, 1/4) + 0.5N (2, 1/4). In this example, we consider two cases of ε:

• ε ∼ L(0,
√

5/8). In that case, ϕε satisfies (A2) with α = 2.

• ε ∼ N (0, 5/4). In that case, ϕε satisfies (A3) with d = 5/8, β = 2.

(E2) X ∼ 0.5G(4, 1/2) + 0.5G(3, 1/
√
3). In this example, we consider two cases of ε:

• ε ∼ L(0, 0.7134). In that case, ϕε satisfies (A2) with α = 2.

• ε ∼ N (0, 1.0179). In that case, ϕε satisfies (A3) with d = 0.5089, β = 2.

Here N (µ, v) denotes the normal distribution with mean µ ∈ R and variance v > 0, G(m, s) stands for the Gamma
distribution with shape parameter m ∈ R and scale parameter s > 0, and L(p, q) represents the Laplace distribution
with location parameter p ∈ R and scale parameter q > 0.

To set up F̂X;T , in each example of X and in each case of ε, we generate randomly a sample X1, . . . , Xn from
fX and a sample ε1, . . . , εn from fε. After that, based on the model (1), we obtain the sample Y1, . . . , Yn , with
Yj = Xj + εj , j = 1, . . . , n. Besides the sample Y1, . . . , Yn, we have to choose the parameter T concretely. In view
of Theorem 1, for each example, we choose T = 1.25n1/8 for the case of the Laplace error, and T = (b log n)1/2

with b = 17/(120d) for the case of the normal error.
A competitor of F̂X;T is the estimator F̂X;Ker defined by

F̂X;Ker(x) :=

∫ x

−∞
f̂X;Ker(u)du, x ∈ R,
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where

f̂X;Ker(u) :=
1

2π

∫ ∞

−∞

ϕK(ht) 1n
∑n

j=1 e
itYj

ϕε(t)
e−itudt.

Here K is a symmetric kernel with compactly supported Fourier transform ϕK (ϕK(t) :=
∫∞
−∞ K(x)eitxdx, t ∈ R),

and h > 0 is a bandwidth parameter depending on n. The quantity f̂X;Ker is known as the deconvolution kernel
density estimator of fX (see Stefanski and Carroll [10]). Therefore, F̂X;Ker is called the deconvolution kernel
estimator of FX . Computing directly gives

F̂X;Ker(x) =
1

2
− 1

π

∫ ∞

0

1

t
ℑ

{
ϕK(ht) 1n

∑n
j=1 e

itYj

ϕε(t)
e−itx

}
dt.

To compute F̂X;Ker, we have to choose h and K. Concerning h, based on Theorems 1 and 2 in Fan [5], we
take h = c n−1/(2α+5) for some constant c > 0 under (A2), and h = (4d)1/β(lnn)−1/β under (A3). Precisely, if
ε ∼ L(0, s) with s > 0, we take c = (5s4)1/9. Regarding K, we choose K in the form

K(x) :=
48 cos(x)

πx4

(
1− 15

x2

)
− 144 sin(x)

πx5

(
2− 5

x2

)
.

This is a symmetric kernel of order 2 with the Fourier transform ϕK(t) = (1− t2)3I[−1,1](t), in which I[−1,1] is
the indicator function on [−1, 1]. This kernel K has been popularly used in the deconvolution literature. For this
kernel, F̂X;Ker(x) becomes

F̂X;Ker(x) =
1

2
− 1

π

∫ 1/h

0

1

t
ℑ

{
(1− (ht)2)3 1

n

∑n
j=1 e

itYj

ϕε(t)
e−itx

}
dt. (16)

Some performances of F̂X;Ker at (16) will be compared with those of F̂X;T .
In Figures 1 and 2, the left sub-figures are respect to the Laplace error, whereas the right sub-figures are respect

to the normal error. In each sub-figure, we plot five curves with different colors, in which the black curve is the
graph of the target function FX , and the curves with green, violet, red and blue colors are the graphs of F̂X;T

with respect to n = 50, 200, 800 and 3200. It is obvious that the curves become closer when n is increased, and
this confirms surely the convergence of the estimator F̂X;T . Observe that the smoothness of the error variable ε,
characterized by the decaying rate of the characteristic function ϕε, also affects to the convergence of F̂X;T . In
fact, in Figures 1 and 2, the convergence trend of the curves in the left sub-figures seems to be more obvious than
the one in the right sub-figures. This can be explained by the fact that the Laplace error is less smoother than the
normal error.

To compare performances of F̂X;T and F̂X;Ker, we show some their curves with respect to n = 50 and n = 200 in
Figures 3, 4, 5 and 6. In each sub-figure of these figures, the curves with black, red and blue colors are respectively
the graphs of FX , F̂X;T and F̂X;Ker. The left sub-figures are respect to the Laplace error and the right sub-figures
are respect to the normal error. In both examples of X , we see that the performances of F̂X;T are better than those of
F̂X;Ker in the two cases of ε. Note that we present here the results only for n = 50 and n = 200, but our conclusions
extend to simulation results with another sample sizes n, namely, n = 800 and n = 3200.
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Figure 1. Graphs of the estimator F̂X;T with respect to n = 50, 200, 800, 3200 and of the target function FX in (E1).

−10 −5 0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FX

FX;T, n = 50
FX;T, n = 200
FX;T, n = 800
FX;T, n = 3200

−10 −5 0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FX

FX;T, n = 50
FX;T, n = 200
FX;T, n = 800
FX;T, n = 3200

Figure 2. Graphs of the estimator F̂X;T with respect to n = 50, 200, 800, 3200 and of the target function FX in (E2).
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Figure 3. Graphs of F̂X;T , F̂X;Ker with respect to n = 50 and of the target function FX in (E1).
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Figure 4. Graphs of F̂X;T , F̂X;Ker with respect to n = 200 and of the target function FX in (E1).
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Figure 5. Graphs of F̂X;T , F̂X;Ker with respect to n = 50 and of the target function FX in (E2).
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Figure 6. Graphs of F̂X;T , F̂X;Ker with respect to n = 200 and of the target function FX in (E2).
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