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Abstract This study signifies the endpoint of thorough cryptographic experimentation, leading to the creation of an
innovative color image encryption scheme. It embodies a fusion of mathematical concepts rooted in both group theory
and chaos theory. The novel encryption procedure entails the creation of cube faces, to depict the relative positions of pixels
within a given stream, thereby generating six distinct channels. Within our algorithm, each monochromatic layer of an
image is independently encrypted using digraph encryption. This involves a technique of rotating the four faces, followed by
another rotation to encrypt the second digraph. Subsequently, matrices derived from Heisenberg theory are integrated with
the monochromatic layer from the preceding step to fine-tune the image’s parameters and introduce blur. Impressively, our
approach has yielded promising outcomes across various images and evaluation criteria, demonstrating resilience against
differential attacks and statistical analyses. Furthermore, comparative evaluations have highlighted the superiority of our
method over existing algorithms.
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1. Introduction

As social networks increasingly host a wealth of multimedia content, ensuring security has become a pressing
priority to safeguard the privacy of users and organizations against potential illicit intrusions. Images, in
particular, are susceptible to falling into the wrong hands, highlighting the critical importance of preserving their
confidentiality. This has prompted a concerted effort among security researchers to develop robust encryption
techniques tailored specifically for images, despite the plethora of existing algorithms documented in the literature
([25]-[37]). Researchers faced a significant challenge in achieving encryption comparable to that of text ([10]-[12]),
as traditional methods proved inadequate due to the distinctive features of images, including their size,repetition of
information, and stronger correlations. Consequently, the field of cryptography has witnessed a shift towards novel
encryption methodologies, including those grounded in chaos theory ([1]-[7]), quantum theory, DNA coding, and
optical systems. This shift can be attributed to the exceptional properties of chaos theory, such as determinism,
sensitivity to initial conditions, and ergodicity, making it particularly attractive in recent years, especially in the
realm of high-dimensional chaotic maps.
Chaotic systems can be generally classified into two categories: low-dimensional chaotic maps and high-
dimensional chaotic maps. Low-dimensional maps are characterized by their simple structure and minimal number
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of variables, making them predictable and vulnerable to exploitation. Conversely, high-dimensional maps boast
complex structures that render them highly resistant to analysis and manipulation, thereby enhancing their
suitability for cryptographic applications. Consequently, researchers have increasingly focused on harnessing the
robustness of chaotic systems in cryptography, with high-dimensional chaotic maps emerging as a favored choice.
For instance, Hua et al. ([14], [15]) introduced a two-dimensional sine chaotification system (2D-SCS) in 2019,
aimed at increasing the complexity and expanding the chaotic ranges of 2D chaotic maps. By applying 2D-SCS
to two existing chaotic maps, they demonstrated the creation of enhanced maps with significantly larger and more
robust chaotic behaviors. They also detailed the development of a microcontroller-based platform for implementing
these maps in hardware and explored their application in designing a pseudorandom number generator. In 2020,
they introduced a two-dimensional modular chaotification system (2D-MCS) to further enhance the complexity
of 2D chaotic maps, addressing observed limitations such as discontinuous chaotic ranges and incomplete output
distributions. Through the bounded modular operation, 2D-MCS enabled chaotic behaviors over wide parameter
ranges.Similarly, Wang et al. ([13]) developed a novel chaotic image encryption algorithm that integrates pseudo-
random bit sequences and DNA planes. They utilized a coupled map lattice (CML) to design a pseudo-random
bit sequence generation (PBSG) system, essential for generating the required random sequence during encryption.
Initial values and parameters were determined using the SHA-256 hash algorithm along with designated keys.
The image was segmented into four DNA planes according to encoding rules, followed by row and column
circular permutations, and diffusion operations. Mollaeefar and Al ([18]) introduces a color image encryption
method based on advanced chaotic maps (”Cosinus-Arcsinus” and ”Sinus-Power Logistic”). It involves pixel
shuffling and diffusion phases, featuring an efficient permutation method tailored to the image, ensuring lower
correlation and uniform color histograms for resistance against attacks. Borgia et al. ([9]) implemented a new
one-dimensional chaotic map for real-time image encryption, confirmed chaotic and ergodic through theoretical
analysis. Its cryptographic strength is validated using NIST statistical tests. Additionally, we propose an image
encryption scheme employing two such maps for confusion and diffusion, showcasing strong cryptographic
performance, while Talhaoui et al. ([16]) proposed a novel one-dimensional cosine fractional chaotic map (1-
DCF) with robust cryptographic properties validated through chaos-theory analysis. Utilizing 1-DCF, we devise
a rapid image encryption scheme featuring a permutation-less architecture for enhanced speed, alongside secure
substitution and randomized encryption order for heightened security.
Inspired by recent advancements in encryption methodologies and driven by the shortcomings inherent in current
techniques, we embarked on a journey to pioneer a novel encryption scheme. This innovative approach is rooted in
the intricate dynamics of the Heisenberg group and the utilization of 4D chaotic maps. Our algorithm harnesses the
inherent chaos embedded within the 4D chaotic laser system, exploiting its unpredictability to generate sequences
imbued with randomness. This foundational randomness forms the cornerstone for the creation of four distinct
boxes and the establishment of two critical Heisenberg matrices. Through this intricate interplay of mathematical
constructs and chaotic dynamics, our encryption scheme stands poised at the forefront of cryptographic innovation.
It not only addresses the deficiencies encountered in traditional encryption methods but also represents a paradigm
shift towards robust and secure data protection. By marrying the complexities of modern mathematics with the
chaotic nature of dynamical systems, our approach offers a promising avenue for safeguarding sensitive information
in an increasingly digitized world. These elements are integral to the permutation phase of image pixels, wherein
each pixel pair is encrypted by references in diagonal boxes, deepening the encryption’s robustness. Furthermore,
the multiplication of image planes by Heisenberg matrices adds an additional layer of security.
Our algorithm’s effectiveness and robustness were rigorously tested against various attacks and compared favorably
with existing approaches documented in the literature, affirming its viability as a potent encryption solution. Our
research is structured to provide a comprehensive understanding of the study’s key aspects. We begin by elucidating
the mathematical instruments utilized in the innovative framework in Section 2, supported by illustrative examples
to enhance comprehension. Following this, Section 3 offers an in-depth explanation of our innovative encryption
scheme, which is derived from the intricate dynamics of a four-dimensional chaotic laser system. Section 4
evaluates the experimental results, showcasing the robustness of our algorithm through a detailed examination
based on various criteria and a diverse array of images. In Section 5, we conduct a comparative analysis, positioning
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our technique against alternative approaches and highlighting its distinct advantages. Finally, Section 6 concludes
with a summary of our findings and their implications, encapsulating the study’s key insights and contributions.

2. The Mathematical Instruments Utilized in the Innovative Framework

2.1. 4D chaotic laser system

The given system represents a 4D chaotic laser system defined by a set of ordinary differential equations (ODEs).
Let’s break down the system:

The state variables are x1, x2, x3, and x4, representing different aspects of the laser system.
The parameters s, d, r, and b are constants that determine the behavior of the system.
The equations governing the dynamics of the system are as follows:

ẋ1 = s(y1 − x1)

ẋ2 = rx1 − x2 − x1x3

ẋ3 = x1x2 − bx3

ẋ4 = d(x1 − x4)

The system of differential equations is given by:

dx1

dt
= s(x2 − x1)

dx2

dt
= −x2 − dx3 + (r − x4)x1

dx3

dt
= dx2 − x3

dx4

dt
= −bx4 + x1x2

Here’s a brief explanation of each equation:
- The first equation represents the rate of change of x1, which depends on the difference between x2 and x1

multiplied by the parameter s.
- The second equation represents the rate of change of x2, which depends on the current value of x2, x3, x4, and

x1, as well as the parameters d and r.
- The third equation represents the rate of change of x3, which depends on the current values of x2 and x3, and

the parameter d.
- The fourth equation represents the rate of change of x4, which depends on the current values of x1, x2, and the

parameter b, as well as their product. The behavior of this 4D chaotic laser system can be analyzed by studying the
solutions of these differential equations, often through numerical simulation techniques. Parameters s, d, r, and b
can be varied to explore different regimes of behavior, including chaotic dynamics.Figure 1 represents the Behavior
of x1 under different regimes.

2.2. the Heisenberg group

The Heisenberg group is a fundamental concept in mathematics, particularly in the study of Lie groups and quantum
mechanics. It’s named after Werner Heisenberg, one of the pioneers of quantum mechanics. The Heisenberg group,
denoted as H(n) or Hn(R), is a specific type of non-abelian group that arises naturally in various mathematical
contexts.

The Heisenberg group can be defined in several equivalent ways ([42], [43]), but one common representation is
as the set of n× n upper-triangular matrices with real entries and 1’s along the diagonal, and with the additional
constraint that the entries above the diagonal are also real. Formally, the Heisenberg group H(n) consists of matrices
of the form:

Stat., Optim. Inf. Comput. Vol. 12, November 2024



F. ELAZZABY, KH.SABOUR, N. EL AKKAD, B. ZOUHAIRI, S. KABBAJ 1959

Figure 1. Behavior of x1 under different regimes.

A =


1 x1 x2 · · · xn−1

0 1 y1 · · · yn−2

0 0 1 · · · yn−3

...
...

...
. . .

...
0 0 0 · · · 1

 ,

where xi, yi ∈ R.
The Heisenberg group exhibits intriguing properties, particularly in the context of symplectic geometry,

representation theory, and harmonic analysis. It serves as a fundamental example of a non-commutative group
and has applications in quantum mechanics, signal processing, and cryptography.

One classical example where the Heisenberg group naturally appears is in the study of the Schrödinger equation
in quantum mechanics. The canonical commutation relation between position and momentum operators gives rise
to a Lie algebra isomorphic to the Lie algebra of the Heisenberg group. This connection between the Heisenberg
group and quantum mechanics is foundational in understanding the uncertainty principle, which states that certain
pairs of physical properties, like position and momentum, cannot be simultaneously measured precisely.

The identity matrix serves as the neutral element in the Heisenberg group, while inverses are determined by

A−1 =


1 −x1 x1y1 − x2 · · · (−1)n−1xn−2yn−2 − xn−1

0 1 −y1 · · · (−1)n−2yn−3

0 0 1 · · · (−1)n−3

...
...

...
. . .

...
0 0 0 · · · 1

 .

3. Proposed methodology

The technique we propose is grounded in the four-dimensional chaotic system and is implemented in two distinct
phases:Phase one enables the substitution of pixels utilizing the facets of a cube, constructed using four-dimensional
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maps. The second phase, we help blur the image through the coupling of prior results involving the Heisenberg
group. For the purpose of image encryption, you must first encrypt each extracted plane of the three color channels
(red, green, and blue) and merge them to provide us with an encrypted RGB image. Figure 6 represents the
flowchart of the proposed scheme.

Figure 2. The retrieval of numerical values from the three planes of a basic image

Upon receiving an original RGB image designated for encryption, We partition this image into three distinct
monochromatic components. Subsequently, we proceed to extract the matrix of each color, containing numerical
values between 0 to 255, as illustrated in Figure 2

Subsequently, a sequence is generated through the utilization of system (S) as illustrated in Figure 3. It is based
on the principles outlined in the Lorenz-Haken equations. This system features three balances and two quadratic
nonlinearities. Extensive research has thoroughly explored the intricate dynamics of the chaotic regions within this
4D system, as detailed in [17].
Moreover, we trim four one-dimensional chaotic streams of magnitude 1, denoted as (Ei)0≤i≤3, from the
previously generated four-dimensional sequence, where E0 = {X0, X1, X2, . . . , Xn}, E1 = {Y0, Y1, Y2, . . . , Yn},
E2 = {Z0, Z1, Z2, . . . , Zn}, E3 = {T0, T1, T2, . . . , Tn}, E4 = {X0 ⊗ Y0, X1 ⊗ Y1, X2 ⊗ Y2, . . . , Xn ⊗ Yn}, and
E5 = {Z0 ⊗ T0, Z1 ⊗ T1, Z2 ⊗ T2, . . . , Zn ⊗ Tn}, with n = {0, 1, 2, . . . , N}.

Then we try to build six faces of a cube based on these streams in which each face is a 16× 16 whose values are
the order of each pixel to similar pixels in the same stream that gives us six random channels E′

0, E′
1, E′

2, E′
3, E′

4

and E′
5 .

Following the population of the six facets of the cube (E0′, E1′, E2′, E3′, E4′, and E5′), and the subsequent
extraction of the three planes housing numerical values corresponding to the colors red, green, and blue,
respectively, the process of diagraphic encryption commences. This encryption technique involves the replacement
of pairs of pixels (digrams) by another pair, with each substitution being influenced by four facets. The red
monochromatic plane uses the faces E0′, E1′, E5′, E3′. The green monochromatic plane uses the faces E1′, E2′,
E3′, E4′, whereas the blue monochromatic plane uses the faces E0′, E4′, E5′, E2′. See Fig. 4.
We shall immediately begin the encryption procedure. Let N ∈ N⋆.

Let I = (Iij) 0≤i≤N−1
0≤j≤N−1

∈ MN×N

(
{0, 1, 2, . . . 255}3

)
, I ∈ {IR, IG, IB}

Consider the application defined by
φ : {0, 1, 2, . . . , 255}3 −→

{
{0, 1, 2, . . . , 255}4

}3

(IR(i, j), IG(i, j), IB(i, j)) 7−→ φ(X) , where φ(X) =
(
I ′R , I ′G , I ′B

)
Stat., Optim. Inf. Comput. Vol. 12, November 2024
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Figure 3. Plot the chaotic attractor from different orientations s = 10, d = 0.1, r = 28, b = 8/3 and with the initial values (1.0,
1.0, 1.0, 1.0)

Figure 4. Faces of the cube generated by 4D chaotic laser system.

f(X) is the permutation of pixels by cube faces; for example, we can extract the digraph (A,B). from the red
monochromatic of the color image and we looked the first value A in the face E′

0 and the value B in the faceE′
3

then we looked for their perpondicular in the faces E′
1 and E′

5 so that the digraph (A,B) is crypted by (A′,B′).
This process is repeated with each couple of the image to be encrypted with a circular rotation of the faces i.e.
for cipher the second couple we seeked the first value in the E′

1 face and the second value in the E′
0 face with

this we overcome the fact that a pixel is encrypted with the same value so that our Technique is not vulnerable to
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differential attacks see fig 5 . For the confusion part, we employ three Heisenberg matrices whose input parameters

Figure 5. Example of digraph encryption process.

are calculated by the formulas below the horizontal and vertical parameters, and then we perform an ordinary
product between each Heisenberg matrix and each channel from the preceding step (I’r, I’g and I’b).

I
′

R = (aij) 0≤i≤N−1
0≤j≤N−1

I
′

G = (bij) 0≤i≤N−1
0≤j≤N−1

I
′

B = (cij) 0≤i≤N−1
0≤j≤N−1

xi =
∑n−1

j=1 aji ;x′
i =

∑n−1
j=1 bji ;x′′

i =
∑n−1

j=1 cji

yi =
∑n−1

j=1 aij ; y′i =
∑n−1

j=1 bij ; y′′i =
∑n−1

j=1 cij
z =

∑n
i=0

∑n
j=0 aij ; z′ =

∑n
i=0

∑n
j=0 bij ; z′′ =

∑n
i=0

∑n
j=0 cij

H1 :=





1 x1 x2 . . . xn z
0 1 0 . . . 0 y1
0 0 1 . . . 0 y2
...

...
...

...
...

...
0 0 0 . . . 1 yn
0 0 0 . . . 0 1




H2 :=





1 x
′

1 x
′

2 . . . x
′

n z
′

0 1 0 . . . 0 y
′

1

0 0 1 . . . 0 y
′

2
...

...
...

...
...

...
0 0 0 . . . 1 y

′

n

0 0 0 . . . 0 1





H3 :=





1 x
′′

1 x
′′

2 . . . x
′′

n z
′′

0 1 0 . . . 0 y
′′

1

0 0 1 . . . 0 y
′′

2
...

...
...

...
...

...
0 0 0 . . . 1 y

′′

n

0 0 0 . . . 0 1




For n = 1, the Heisenberg group H2n+1 is the Heisenberg group of order 3, denoted H3. This group consists of

3× 3 matrices whose entries are integers and whose determinant is equal to 1.
The definition of H3 is as follows:

H3 =


1 a c
0 1 b
0 0 1

 : a, b, c ∈ Z11
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To illustrate this, here is an example of such a matrix in H3 with n = 1:

A =

1 3 8
0 1 2
0 0 1


We can also compute the inverse of this matrix in H3. The inverse of a matrix in H3 can be found by undoing the
effect of the matrix on the basis vectors. In this case, the inverse of A would be:

A−1 =

1 −3 −2
0 1 −2
0 0 1


Here is an example of 3 x 3

Heisenberg matrix Red channel 1 3 8
0 1 2
0 0 1

 ·

 50 150 200
100 175 225
75 125 250

 =

 950 1675 2875
250 425 725
75 125 250


After applying modulo 256 to the result to ensure values between 0 and 255: 950 1675 22875

250 425 725
75 125 250

 =

 182 139 59
250 169 213
75 125 250

 mod [256]

For decryption
Step1
To find the inverse of the Heisenberg matrix:  1 3 8

0 1 2
0 0 1


We can use the fact that it is an upper triangular matrix. The inverse of an upper triangular matrix with 1s on the

diagonal is also an upper triangular matrix, and its elements can be computed systematically. The inverse A−1 is:

A−1 =

1 −3 −2
0 1 −2
0 0 1



A−1 ==

1 −3 −2
0 1 −2
0 0 1

 , B =

182 139 59
250 169 213
75 125 250


AB = A ·B =

−718 −618 −1080
100 −81 −287
75 125 250



AB mod 256 =

−718 mod 256 −618 mod 256 −1080 mod 256
100 mod 256 −81 mod 256 −287 mod 256
75 mod 256 125 mod 256 250 mod 256

 =

 50 150 200
100 175 225
75 125 250
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Figure 6. Proposed scheme flowchart.

4. Outcomes of the simulation

In the computational setup facilitated by the Intel® Core™ i5 processor and 4GB of RAM, Python is employed, we
present some experimental results that show the robustness of the new scheme proposed against different attacks.
We employed various common test images . These images were chosen as typical examples to evaluate both the
effectiveness and robustness of our encryption schema.

4.1. Examination of histograms

Examining image histograms yields insights into the arrangement of luminous and shadowy tones across a
picture. This methodology is frequently employed in statistical analysis, with the objective of comprehending
the correlation between pixel values in the original image and those in the encrypted rendition.

Consequently, adept high-security image encryption methods strive to achieve histograms characterized by
uniform distribution and minimal deviation. In Figure 7, histograms depicting various images are showcased both
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before and after the encryption process. Evaluation of these histograms demonstrates that our encryption technique
consistently produces encrypted images with a steady dispersion of pixel intensity values.

4.2. Analysis of Differential Attacks

Two additional metrics serve to quantify the disparity between the plain image and its encrypted equivalent: the
Normalized Cross-Correlation Peak Ratio (NCPR) and the Unified Average Changing Intensity (UACI).

Attackers employ a strategy of introducing subtle modifications to the original image and subsequently applying
algorithms both prior to and following encryption. This method is commonly referred to as a differential attack. The
utilization of these metrics, namely NCPR and UACI, Allows for the assessment of the effectiveness and resilience
of the encryption scheme against such threats. The calculation of these metrics involves the following formulas:

NPCRR,G,B =
∑
i,j

DR,G,B(i, j)

L
× 100%

UACIR,G,B =
1

L
[
∑
L,S

CR,G,B(i, j)− C ′
R,G,B(i, j)

255
]× 100%

where L signifies the total pixel count within the image. CR,G,B and C ′
R,G,B represent the ciphered images prior

to and following alteration of a single pixel in the original image. DR,G,B(i, j) can be defined as:

DR,G,B(i, j) =

{
1, if CR,G,B(i, j) ̸= C ′

R,G,B(i, j)

0, if CR,G,B(i, j) = C ′
R,G,B(i, j)

Table 3 displays the outcomes yielded by our innovative schema. The NPCR surpasses 99%, while the UACI
exceeds33%. These findings indicate that even the slightest alteration can result in encrypted images distinct from
the originals.

Table 3. Examination of differential attack techniques
Images NPCR UACI
Lena 99.73749592807 33.619598908896

Baboon 99.7369867494 33.60597205966

Peppers 99.7354593235 33.619257488817

Barbara 99.7532790254 33.45930525938

House 99.74767862059 33.6186285435

4.3. Correlation between adjacent images

Correlation is a method that measures the linear relational force between two adjacent pixels. Regarding our
investigation, we scrutinized the horizontal, vertical and diagonal correlations of the following original images:
Lena, baboon, peppers, barabara and house. And their encrypted counterparts, generated using 5000 randomly
selected data points, as illustrated in Figure 8 .

Table 4 showcases the correlation attained across vertical, horizontal, and diagonal orientations. The obtained
results substantiate that the novel approach adeptly removes such correlation.
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Figure 7. Histograms of the original red, green, and blue (R, G, B) images alongside the corresponding encrypted R, G, B
images
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Figure 8. Distributions of correlation among neighboring pixels in both plain and encrypted images.

Table 4.Sustained Correlation Between Plain and Cipher Images
images Direction Original image Encrypted image

Red Green Blue Avg Red Green Blue Avg

Baboon
Horizontal 0.935087 0.885568 0.924876 0.914786 -0.001184 -0.014931 0.023684 0.002524

Vertical 0.904731 0.832747 0.904727 0.881200 -0.011277 -0.002772 0.015974 0.000640
Diagonal 0.882861 0.794286 0.879732 0.853132 0.016770 -0.001813 0.010517 0.008477

Barbara
Horizontal 0.809452 0.779951 0.805354 0.797218 -0.008680 -0.001891 -0.007268 -0.005959

Vertical 0.936451 0.927722 0.942773 0.929075 0.008930 0.025835 0.017278 0.017343
Diagonal 0.745966 0.707481 0.749950 0.732816 0.015533 0.025276 -0.020579 0.006781

Peppers
Horizontal 0.938212 0.963273 0.934292 0.945101 -0.000687 0.026436 -0.016112 0.003239

Vertical 0.944010 0.967306 0.940356 0.950321 -0.009329 -0.003706 -0.001819 -0.004959
Diagonal 0.903727 0.944581 0.902125 0.917455 -0.001146 0.006243 0.013479 0.006187

House
Horizontal 0.958729 0.970816 0.972331 0.967312 -0.006118 0.003224 -0.009870 -0.004252

Vertical 0.926505 0.932339 0.965273 0.941408 0.008021 -0.021643 0.005073 -0.002858
Diagonal 0.905135 0.916732 0.949664 0.921409 -0.015983 0.018171 0.027989 0.010062

Lena
Horizontal 0.936611 0.932883 0.909192 0.925725 0.018657 -0.024656 0.010700 0.001561

Vertical 0.963106 0.956293 0.936855 0.952476 0.008210 0.016019 0.014612 0.012939
Diagonal 0.912781 0.904831 0.877108 0.898677 -0.005794 -0.040163 -0.001074 -0.015665
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4.4. Analysis of information entropy

The entropy proposed by Shannon aims to evaluate the unpredictability and non-deterministic
characteristics of the information inherent in the generated encrypted images. Emphasizing the significance,
it’s noted that 8 persists as the optimal theoretical value for information entropy to mitigate against statistical
attacks. The calculation follows thusly:

H(C) = −
255∑
i=0

p (Ci) log2 p (Ci)

In this context, p(Ci) represents the probability associated with encountering pixel value intensity i within
image C. Table 5 illustrates the entropy metrics of images cryptographically processed using our approach.
The resulting data validates that our proposed method consistently attains a substantial level of entropy
across most encrypted images.

Table 5.Analysis of entropy
images lena baboon peppeer barhaxa house
entrope 7.998001 7.997713 7.997801 7.995671 7.997256

5. Comparative examination

To validate the effectiveness of our novel encryption approach in the exploration of chaotic systems and
their correlation with the principles of the Heisenberg matrix, We performed an extensive comparison with
cutting-edge methodologies referenced as [22], [40], [19], [20], [41], [39], [38], [8], [21], [23], and [24].
This experiment was designed to encompass various criteria, including UACI,NPCR,entropy and correlation
coefficient.

Table 6. The NPCR and UACI outcomes obtained from the Lena image
encrypted by our method and those of the literature

scheme NPCR UACI
Ref.[38] 99.6071 33.4692
Ref.[39] 99.60679 33.3741
Ref.[8] 99.5693 33.4386
Ref.[23] 99.56 31.17
Ref.[5] 99.63785 33.58601

Our 99.73749 33.61959

Table 6 exhibits the outcomes regarding UACI and NPCR achieved by our encryption methodology when
compared to encryption schemes outlined in recent literature, specifically referenced in [38], [39],[5], [8],
and [23]. These results indicate that our technique is fully capable of rivaling the latest advancements
documented in the literature.

Table7. Result of entropy comparison between our algorithm and
an alternative approach

image Our Ref.[5] Ref.[22] Ref.[40] Ref.[19] Ref.[41]
lena 7.998001 7.997428 7.9938 7.737033 7.613966 7.5863

Table 7 contains the entropy outcomes for the encrypted Lena image, juxtaposed with algorithms referenced
as [40], [22], [41], and [19]. Notably, the entropy value closely approaches 8, which is widely regarded as
the ideal benchmark according to established literature. This proximity to the ideal value underscores the
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robustness of our algorithm in safeguarding confidentiality against potential unauthorized attacks.

Table 8.Correlation coefficient comparison pertaining to the
Lena image

Schema channel
red green blue average

Ref.[40] −0.000066 0.0367 0.0247 0.020444
Ref.[21] 0.0074 - 0.0031 - 0.0021 0.000733
Ref.[24] 0.0085 0.0127 -0.0155 0.0019
Ref.[33] 0.007621 0.005257 -0.007645 0.001744
Ref.[20] 0.1204 0.0985 0.1002 0.106366
Ref.[5] 0. 0070923 - 0.01643133 0.008171 -0.000389
Our 0. 001561 0.012939 -0.015665 -0.0003883

Table 8 illustrates the comparative analysis of correlation coefficient values among our newly devised
encryption methodology and the algorithms elucidated in the cited references [40], [21], [5],[24], [20], and
[33], specifically for the Lena image. Notably, our algorithm yields correlation coefficients that approach
zero, aligning closely with the results derived from sophisticated schemes. This significant deviation from
resemblance ensures that there is minimal similarity discernible between the original single-color image
and its encrypted counterpart.

6. Conclusion

This study signifies the culmination of comprehensive investigative efforts aimed at developing an
innovative framework for encrypting color images within the domain of data security. The methodology
is rooted in systems of differential equations, characterized by three equilibria and two quadratic non-
linearities, integrating principles from the discrete Heisenberg matrix. At the outset, pseudo-random
numbers are generated to amplify the intricacy of the chaotique system’s output. Subsequently, four streams
are truncated to yield six facets, each comprising unique integers spanning from 0 to 255. These facets
coalesce into 16-by-16 matrices, encoding the spatial arrangements of pixels within their respective streams,
thus yielding six distinct channels.

Subsequently, our cryptographic procedure proceeds to independently encrypt each monochromatic layer
of the provided image.The encryption procedure commences, utilizing the six previously generated facets
through digram encryption, followed by a circular rotation of the four facets. During the diffusion phase, a
standard product computation takes place between the monochromatic layer obtained from the preceding
encryption stage and the matrices derived from the Heisenberg group.

The empirical findings underscore the resilience of our approach against a spectrum of attacks,
encompassing differentials, statistical analyses, and contemporary algorithms elucidated in recent literature.
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