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Abstract Object recognition and localization in Aerial Remote Sensing Images (ARSI) are critical and demanding subjects
for further processing object-related data in civil and military applications. To train a Deep Learning (DL) model for visual
recognition and localization, a huge number of annotated images are needed. However, data categorization and annotation
become a hard and time-consuming task. Despite the shortcomings of data in training, Unsupervised Domain Adaptation
(UDA) offers an alternative solution to this issue. In this paper, UDA is suggested to detect and localize objects in ARSI as an
unlabeled target domain. We compare the effectiveness of Faster Region Convolutional Neuronal Network (Faster R-CNN)
as a two-stage detector and RetinaNet as one one-stage detector. These algorithms are based on the same Resnet50 model as
the backbone. This study uses the natural image dataset MSCOCO as the source domain. We assess the proposed approach
on two unlabeled datasets UC Merced and MTRASI datasets. The proposed method significantly improves object detection
and localization performance, according to both qualitative and quantitative results. Extensive experiments show that the
RetinaNet detector is better than the Faster R-CNN detector in terms of mAP.
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1. Introduction

A variety of DLs based on object detection and localization approaches have recently presented greatly improving
object detection scores. One of the most prominent forms of DL is supervised learning, which has also
demonstrated success in various application areas [1, 2]. Object identification is critical in image interpretation
and is also significant in a variety of applications such as complex urban environments, precision agriculture,
automated driving, and intelligent monitoring[3, 4]. To train a supervised DL model for object recognition and
localization, a large number of labeled images need to be used. However, visual data labeling takes time, and
hard to add the necessary information [5]. Researchers have made relentless efforts to solve the problems of
detecting objects in ARSI based on CNN. As a result, UDA offers a solution to this problem, which we have
provided to detect and localize objects in ARSI as unlabeled target domain [6, 7]. UDA refers to the field of
study that leverages knowledge obtained in the source domain to solve a related but distinct domain target [8, 9].
Several civil and military applications based on ARSI object recognition provide more specific information that
is used in various DL algorithms, such as airplane detection, airport security, and flight tracking [10]. UDA has
been identified as a critical component of machine learning used in a wide range of fields [11]. In the literature,

∗Correspondence to: Youssef Ben Youssef (Email: youssef.benyoussef@uhp.ac.ma). Department of Applied physics, Hassan First
University.Km 3, B.P.: 577 Route de Casablanca(26000), Morocco.

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 2025 International Academic Press



Y. BEN YOUSSEF, S. LYAQINI,K.FAKHAR AND E.ABDELMOUNIM 1537

deep object detectors are classified into two types: i) Single-stage approaches predict bounding boxes around
objects and class probabilities for example RetinaNet [12]; ii) Two stages use a selective search to find probable
object locations based on image attributes and then classify them using Convolutional Neural Network (CNN)
for example Faster R-CNN [13]. Object detector algorithms attempt to identify and classify one or more objects
in an image. Domain adaptive Faster R-CNN is a system based on both regression and classification, and it
contains multiple components including a feature extractor, and region proposal network. In contrast, domain-
adaptive RetinaNet uses a unified network composed of a backbone network and two subnetworks. The first subnet
uses convolutional object classification to classify the output of a backbone, while the second uses convolutional
bounding box regression to detect object candidates. A feature pyramid network is connected to its backbone to
generate multi-scale pyramid features. These detectors have gained interest in a variety of applications, including
robots, self-driving cars, and autonomous surveillance[14, 15]. The Domain Adaptive Faster R-CNN model was
presented to detect aircraft from remote sensing images in [16]. The authors have proposed adversarial training
to facilitate domain shift. Han et al. proposed a detection algorithm in remote sensing images that embeds Mask
R-CNN with traditional object detection algorithms [17]. Zhou Liming et al. proposed the Multiscale Detection
Network to address the issue of small aircraft shape, while also proposing the Deeper and Wider Module to
overcome background noise [18]. Tahir et al. proposed a method for aircraft detection systems based on the
YOLO deep learning model to address the problem of object detection in satellite images, which was complex
because objects had many variations, types, poses, sizes, and complex backgrounds [19]. Wei et al. proposed the
X-LineNet-based single-stage aircraft detector. The network can learn through visual grammar thanks to the model,
which transforms the objective of aircraft detection in remote sensing images from detection to prediction [20]. Ju
et al. used the RetinaNet detector to detect landslides in remote sensing images [21]. A classifier aircraft in remote
sensing images based on deep CNN is presented in our previous works [23, 22]. In ARSI, building from scratch
an object detector based on deep learning is labor consumption since several annotated images and instances of
objects are required. Thus, we propose UDA-based object detectors to solve this issue. The main contributions to
this work are:

• We adopt unsupervised domain adaptive to detect and localize objects in ARSI.
• We demonstrate that the RetinaNet detector based on one stage is better than the Faster R-CNN detector

based on two stages.

The findings show considerable promise in item recognition in several real-world contexts. UDA increases the
efficiency, accuracy, and cost-effectiveness of technologies used in surveillance, disaster response, and other fields
by allowing them to adapt to new and diverse conditions without the need for vast amounts of labeled data. The
following is the rest of this work: Section 2 introduces the basic theory of UDA, while Section 3 details the proposed
method. Experiments and results are shown in Section 4. The conclusion is drawn in Section 5.

2. Domain Adaptive Basic Theory

We will provide some fundamental symbols that briefly describe the notion of UDA. The source domain is
considered to have all available labels, and it may be specified as follows: Ds = {xi

s, y
i
s}

Ns

i=1 where Ns is the number
of labeled images and yis denotes object labels in the corresponding image and the target domain Dt = {xi

t}
Nt

i=1

where Nt is the number of target example xi
t without labels. The target domain and source domain are derived from

various probability distributions. Source domain has four parts: the feature space X , the label space Y , the marginal
probability distribution P(x) and the conditional probability distribution P(x/y), where X ∈ X , Y ∈ Y . Because
the source and target domains are distinct, their probability distributions differ P(Xi

s) ̸= Q(Xi
t). UDA intends to

build an h(.) model which can detect object x in the target domain:

ŷ = h(x) (1)

where ŷ is the prediction. Thus, UDA is aimed to minimize the target risk εt(h) using data source domain [24]:

εt(h) = Pr
(x,y)∼Q

[h(x) ̸= y] (2)
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The detector based on deep learning aims to learn from domain source data by minimizing the loss function. The
Faster R-CNN detector’s loss function includes two different loss functions: classification and box regression [13]:

L(pi, ti) = Lcls + Lreg =
1

Ncls

∑
i

(p∗i log(pi)− (1− p∗i ) log(1− pi) +
λ

Nbox

∑
i

p∗iL
smooth
1 (ti − t∗i ) (3)

where pi is the predicted probability that box i is an object, p∗i is the ground truth label indicating whether box i
is an object. ti is predicted four parameterized coordinates and t∗i is coordinates of ground truth. λ is a balancing
parameter, set to 10. Lsmooth

1 is the smooth L1 loss. The RetinaNet based on one stage detector is trained in the
source domain by minimizing loss function called focal loss [12] :

FL(pt) = −α(1− pt)
γ . log(pt) (4)

where pt is the estimated probability for the ground truth class. and (1− pt)
γ for scaling the loss function. α

and γ are the parameters to control the importance weight. The focal loss function is constructed on the standard
cross-entropy loss function. We used α = 0.25 and γ = 2 for more flexibility over the design of the weighting
function.

3. Proposed Method

Our methodology consists of aligning the distribution between the source and target domain, among the methods
used in UDA[25]. We use Faster R-CNN and RetinaNet models with the same backbone Resnet50 [26] to ensure
a fair comparison. The MSCOCO dataset is the preferred dataset and benchmark for object detection because
of its thorough diversity and comprehensiveness [27]. Microsoft provides the MSCOCO dataset, which currently
ranks among the best publicly available object detection datasets. The choice of the MSCOCO dataset as the
source domain aligns well with the characteristics of ARSI, providing a diverse set of object classes, annotations
in complex urban environments, and relevance to applications like precision agriculture, automated driving, and
intelligent monitoring. It contains 300,000 segmented images of 80 different object categories, including accurate
position labels. On average, each image contains about 7 objects, and instances appear at very large scales.
Regardless of how useful this dataset is, object types other than the 80 selected classes will not be detected if
trained solely on it. Figure 1 depicts an overview of the proposed method using Faster R-CNN and RetinaNet
detectors.
To verify the effectiveness of our method, we use two datasets UC Merced and MTRASI, as target domains
in our experiments. The MTRASI dataset contains 1945 optical remote sensing images collected from Google
Earth. In total, 20 different types of aircraft are located in various airports worldwide. The size of all these
ARSI is 256× 256 and the spatial resolution is about 0.3m to 1.0m. This dataset also contains multi-temporal
and orientation information and has only the annotation of the category [28]. UC Merced is a land-use remote
sensing image collection with 21 classes and 100 images per class with size 256× 256 and 30cm pixel resolution.
Images were extracted manually from the national map urban area imagery collection for numerous cities around
the USA [29]. The common feature of these two datasets is that the objects are unlabeled, which allows their
inclusion in this work. Figure 2 depicts the two dataset samples.

4. Experimental results and Discussion

All experiments are implemented on PyTorch[30], detecto[31] and Keras [32]. The backbone used in our
experiments is publicly available. All of our networks were built with PyTorch and Keras in the Google
Colaboratory cloud environment, with the following hyper-parameters set: epochs=10, learning rate=0.001, batch
size=28, and SGD optimizer. Experiments are conducted using a RetinaNet implementation based on FPN
combined with a pre-trained ResNet50 backbone. Based on the output categories of the test samples compared
to the output categories of the true labels, there are four possible outcomes: false positives (FP), false negatives
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Figure 1. Overview of the proposed method: Faster R-CNN detector (a), RetinaNet detector (b).

Figure 2. Samples of image extracted from target domains: MTRASI dataset(a), UC Merced dataset(b).

(FN), and true negatives (TN). All reported results follow the standard COCO mAP metric (score), which combines
the Intersection over Union (IoU) with different thresholds over 10 IoU thresholds between 0.5 and 0.95 with a
size of 0.05. Precision, recall, and score are defined as:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

score =
1

Nc

∑
class

TP

TP + FP
(7)
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Table 1. The score achieved with Faster R-CNN on 10 categories. The best result is highlight with bold

cell phone airplane bird bench chair car personne train backpack trafic light mAP(%)
source → MTRASI 19.96 86.61 45.33 24.80 8.96 48.24 99.27 71.82 5.48 8.31 41.87
source → UCM 2.1 43.71 45.33 8.1 44.08 28.55 22.42 40.48 11.34 28,49 27.46

where Nc is total of classes. Table 1 summarizes experimental results in term of score on 10 categories.
From Table 1, the score has aggressively increased from the UC Merced dataset to the MTRASI dataset by

14.41%. The Faster R-CNN detector achieves the best score (41,87%) for the MTRASI dataset. Figures 3 and 4
show the visualization of object detection results: As can be seen from Figures 3 and 4, the qualitative detection

Figure 3. Object detection samples on the MTRASI dataset using Faster RCNN detector.

of our detector based on Faster R-CNN detects more objects with small size in both datasets. The results are
summarized in Table 2 when using the RetinaNet detector. 10 objects detected are presented with their scores

Table 2. The score achieved with RetinaNet detector on 10 categories. The best result is highlighted with bold

scissors bird airplane parking meter motorcycle train brocolli clock binch car mAP(%)
source→ MTRASI 53.23 11.27 63,66 23.11 61.65 53.17 19.43 13.11 21.81 45.72 36.61
source→ UCM 13.76 56.54 58.15 68.22 34.87 11.32 51.73 53.31 30.23 47.25 42.53

in Table 2. The RetinaNet detector achieves the highest score (42,53%) for the UC Merced dataset. The score
increased from UC Merced dataset to MTRASI dataset by 5.92%. Other objects with different average precision
are detected despite their absence in the domain target due to the large number of images used in the training and
testing phases in the domain source, and some objects are only a few pixels in size due to resolution constraints
caused by limited object information when the images are acquired. We notice there is a gap between the results
obtained with the two datasets. Figures 5 and 6 show samples of the visual qualitative detection results. Despite
a series of missed objects, we find that the RetinaNet detector has a better score than the Faster R-CNN detector.
The score increased by 2.5% from MTRASI to UC Merced. Tables 1 and 2 demonstrate that RetinaNet is unable to
detect some objects that the faster R-CNN can. The main explanation is that their architectures are quite different.
We chose a common car category to compare our method to others because researchers use various datasets. Table
3 reports the best score of our approach achieved by Faster R-CNN in the MATRASI target domain compared with
other works on the common car category. Table 3 shows that our method performs about 1.64% better than the most
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Figure 4. Object detection samples on UC Merced dataset using Faster CNN detector.
1.

Figure 5. Examples of the qualitative results on the UCM dataset using the RetinaNet detector.

Table 3. Comparison Result of the proposed method.

car score(%)
Ref. [33] 46.6
Ref. [34] 41.87
Ref. [35] 43.4

Our method 48.24
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Figure 6. Examples of the qualitative results on the MTRASI dataset using the RetinaNet detector.

recent methods. These findings highlight how crucial feature alignment is when shifting one domain into another.
However, our method also produced unsatisfactory results because it was unable to detect all objects because of
their less obvious features.

5. Conclusion

This study proposes an unsupervised domain adaptive approach for detecting and localizing objects in aerial
remote-sensing images without annotation. Two publicly available datasets are used to compare the Faster R-CNN
and RetinaNet detectors. We demonstrate that those models achieve state-of-the-art performance. According to the
score used for evaluation, the Faster R-CNN-based two-stage detectors have a lower score, whereas the RetinaNet
one-stage detector has a higher score, even though some objects are missed. Despite UDA being a very effective
object detection method, it has flaws. Integrating multi-source and multi-target domain adaptive algorithms is a
promising field for future research in UDA for object recognition. This integration has the potential to significantly
increase detection scores, robustness, and flexibility in object detection systems, increasing their success in a variety
of real-world applications. By overcoming the difficulties and studying the available research fields, the discipline
can advance toward more robust and adaptable AI systems.
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