
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 12, January 2024, pp 153–166.
Published online in International Academic Press (www.IAPress.org)

Complexity Analysis of an Interior-point Algorithm for CQP Based on a
New Parametric Kernel Function

Randa Chalekh, El Amir Djeffal*

LEDPA Laboratory, Mathematics Department, University of Batna 2, Batna, Algeria

Abstract In this paper, we present a primal-dual interior-point algorithm for convex quadratic programming problem
based on a new parametric kernel function with a hyperbolic-logarithmic barrier term. Using the proposed kernel function
we show some basic properties that are essential to study the complexity analysis of the correspondent algorithm which we
find coincides with the best know iteration bounds for the large-update method, namely, O

(√
n logn log n

ε

)
by a special
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1. Introduction

In 1984, N. Karmarkar [1] was proposed a very effective technique for solving the linear programming problems
is called the interior-point methods. This algorithm was essentially different from all the method before by the fact
that, in the latter, one moves along the boundary of the realizable domain, whereas for the Karmarkar method,
one progresses while remaining strictly inside the realizable domain. In that period, studies have been launched
and went in depth on this subject such that we record more than three thousand publications in a few years and
the most important result is the most widely used in practice called the primal-dual methods which are efficient
and can easily be extended to other types of problems (quadratic problems, convex problems, ...). In 1997, Roos
et al [2] was introduced the primal-dual IPMs which have based on logarithmic barrier function. In 2004, Bai et
al [3] was developed some analytic tools for the analysis complexity of primal-dual IPMs based on a new class of
so-called the kernel functions where from this study we obtained the best known complexity results for small- and
large-update methods, namely, O(

√
n log n

ε ) and O
(√

n log n log n
ε

)
, respectively.

Recently, all the articles developed by the researchers follows the approach used in [3,4,5,6,7] to solve many
problems based on various kernel functions, we can mention among them. In [8], Zhang proposed an algorithm for
convex quadratic semidefinite optimization based on a new kernel function. In [9,10], Peyghami et al proposed two
new kernel function for linear optimization and convex quadratic semidefinite optimization problems, respectively.
In [11], Achache study the complexity analysis of an interior point algorithm for the semidefinite optimization
based on a new kernel function with a double barrier term. In [12], Djeffal et al proposed a new kernel function for
primal-dual IPMs for linear complementarity problem. In [11], Achache et al generalized the study for semidefinite
linear complementarity problem based on a new kernel function with a double barrier term. In [13], El Ghami et al
introduced the first kernel function with a trigonometric barrier term for linear optimization. Then, in [14] Bouafia
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et al proposed a new kernel function with a trigonometric barrier term for linear programming problems. Most of
these algorithms yields the best well-known complexity iteration bounds with the special choice of its parameters.

Our objective in this work is present a primal-dual interior-point algorithm for convex quadratic programming
problem based on a new parametric kernel function with an hiperbolic– logarithmic barrier term of the form

ψh(t) = t2 − 1 +
1

p

(
coshp

(
t−1
)
− coshp(1)

atp
− log(tp)

)
(1)

where a = tanh(1) coshp(1) and p ≥ 4.
The paper is organized as follows. In Section 2, we presenting the convex quadratic programming and recall some

basic concepts for central-path, search directions, the proximity functions and the generic algorithm. In Section 3,
we investigate some properties of the new kernel function (1) for primal–dual interior point methods. Then, we
present the complexity results for our algorithm which coincide with the best know iteration bounds for small- and
large-update methods. Finally, we summarize the work with some conclusions and remarks.

Among the most important notations used in this paper are shown as follows. Rn, Rn
+ and Rn

++ denote the set
of n-dimensional real space, nonnegative space and positive space, respectively. For x, s ∈ Rn, xs and xT s denote
the componentwise Hadamard product and the euclidean scalar product of two vectors x and s, respectively. We
denote by ∥x∥ the 2-norm of x. For any f, g : Rn

++ → Rn
++ for some positive constants c1, c2 and c3 we have

f(x) = O(g(x)) and f(x) = Θ(g(x)) if f(x) ≤ c1g(x) and c2g(x) ≤ f(x) ≤ c3g(x), respectively.

2. Preliminaries

In this section, first we present the statement of the problem. Then, we will discuss about the central-path for convex
quadratic programming, the new search directions and the proximity functions. Finally, we state the algorithm
generic for primal-dual IPMs.

We consider the convex quadratic programming (CQP) problem in the standard format as follows

min

{
cTx+

1

2
xTQx : Ax = b, x ≥ 0

}
(P)

whereQ ∈ Rn×n is a given positive semidefinite matrix,A ∈ Rm×n is a given matrix, c ∈ Rn, x ∈ Rn and b ∈ Rm.
The dual problem of (P) is given by

max

{
bT y − 1

2
xTQx : AT y + s−Qx = c, s ≥ 0

}
(D)

where s ∈ Rn and y ∈ Rm.
Throughout this paper we suppose that (P) and (D) satisfy the following conditions

Assum 1
Interior-point-condition (IPC), i.e., there exist a point (x0, y0, s0) such that{

Ax0 = b, AT y0 + s0 −Qx0 = c, x0 ≥ 0, s0 ≥ 0
}

(2)

Assum 2
rank(A) = m < n, i.e., the matrix A has full row rank.

It is well know that the Karush-Kuhn-Tucker (KKT) conditions for (P) and (D) is given by the following system Ax = b, x > 0
AT y + s−Qx = c, s > 0
xs = 0

(3)
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The main idea of primal-dual interior-point methods (IPMs) is to replace the complementary condition define in
the system (3) by the parameterized equation xs = µe. Hence, we obtain the following system Ax = b, x > 0

AT y + s−Qx = c, s > 0
xs = µe

(4)

where µ > 0 and e = (1, . . . , 1)T is the all-one vector. It is well-know that under our assumptions there exists
a unique solution denoted by (x(µ), y(µ), s(µ)) for each µ > 0 where x(µ) is called the µ-center of (P) and
(y(µ), s(µ)) called the µ-center of (D). Then, the limit of µ-centres when µ goes to zero exists and converges
to x and (y, s) which are the solutions of (P) and (D), respectively. The set of µ-centers is called the central path of
(P) and (D).

Due to Roos et al in [2] we can simplify the theoretical contributions by assume that µ0 = 1 and x0 = s0 = e
this means that the IPC can be assumed without loss of generality.

Now, to get the new feasible iterates we apply Newton’s method in (4) we obtain the Newton’s direction. Due to
Assumption 2, then (∆x,∆y,∆s) is the unique solution of the following linear system A∆x = 0

AT∆y +∆s−Q∆x = 0
s∆x+ x∆s = µe− xs

(5)

At this stage, to simplify the analysis we introduce the scaling directions (dx, ds) and the scaled vector v as
follows

dx =
v∆x

x
, ds =

v∆s

s
and v =

√
xs

µ
. (6)

Hence, by using the notation (6), we can write the system (5) as the following equivalent system
Adx = 0

A
T
∆y + ds −Qdx = 0

dx + ds = v−1 − v

(7)

where A = AV −1X , Q = S−1V QV −1X , V = diag(v), X = diag(x) and S = diag(s).
By taking a step size α (which defined by some line search rules) along the search direction, we construct a new

iterates (x+, y+, s+) according to

x+ = x+ α∆x, y+ = y + α∆y, s+ = s+ α∆s. (8)

This process is repeated until we find iterates (x, y, s) that are close enough to (x(µ), y(µ), s(µ)) and µ is small
enough, we say that we have found an optimal solution of (P) and (D). One easily checks that the right-hand side
of last equation in (7) equals the negative gradien of the logarithmic barrier function Ψl(v) : Rn

++ → R+ which
given by

Ψl(x, s;µ) = Ψl(v) =

n∑
i=1

ψl(vi) =

n∑
i=1

(
v2i − 1

2
− log vi

)
(9)

where ψl(t) is called the kernel function of the classical logarithmic barrier function Ψl(v). Hence, we obtain the
following system 

Adx = 0

A
T
∆y + ds −Qdx = 0

dx + ds = −∇Ψl(v)

(10)

So that the logarithmic barrier function Ψl(v) consider as a proximity function to measure the distance between
any iteration and the µ-center, in addition to proximity measure δ(v) : Rn

++ → R+ which defined as follows

δ(x, s;µ) = δ(v) =
1

2
∥dx + ds∥ =

1

2
∥∇Ψl(v)∥ (11)

Since dx and ds are orthogonal, due to (10) we get
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dx = ds = 0 ⇔ ∇Ψl(v) = 0 ⇔ v = e⇔ Ψl(v) = 0

this means the desired result (x, s) = (x(µ), s(µ)).
In this paper, our goal is present the following generic algorithm to solve CQP which based on a new hiperbolic-

logarithmic kernel function ψh(v) befined by (1) instaed of the logarithmic kernel function ψl(v) defined in (9).

INPUT :
A proximity function Ψh(v); an accuracy parameter ε > 0;

a threshold parameter τ ≥ 1; a fixed barrier update parameter
0 < θ < 1; initial point (x0, y0, s0) and the parameter µ0 > 0.

ITERATION :
BEGIN

x = x0; y = y0; s = s0; µ = µ0; v =

√
xs

µ
.

WHILE (nµ ≥ ε) DO
BEGIN

update of µ and v : µ = (1− θ)µ; v =
v√
1− θ

.

WHILE (Ψh(v) > τ) DO
BEGIN

solve (7) via (5) to find search directions;
determine a step size α > 0;
(x, y, s) = (x, y, s) + α(∆x,∆y,∆s);

v =

√
xs

µ
.

END.
END.

END.

Figure 1. GENERIC INTERIOR-POINT ALGORITHM FOR CQP.

From all the previous explanation, it is clear that the above algorithm works as follows. It starts with the
parameters ϵ > 0, τ ≤ 1, 0 < θ < 1 (should be chosen in such a way that the number of iterations required by the
algorithm is as small as possible), the parameter µ > 0, an initial point (x, y, s) and the scaled vector v. Therefore,
in each outer iteration we apdate the values of µ and v by the factor 1− θ then if the condition Ψh(v) > τ is met
we enter the inner iteration that aims to find the search directions (∆x,∆y,∆s) using the two systems (5) and (7),
compute the step size α and we apply (8) to get new iterates. This process is repeated until we get µ is small enough
(i.e., nµ < ϵ) and v satisfy Ψh(v) ≤ τ , say we have found an optimal solution of CQP.

3. The new kernel function and its properties

In this section, we investigate some basic properties of the new kernel function with a new hiperbolic–logarithmic
barrier term (1) which using in the complexity analysis of our algorithm. First, we recall the following definition.

Definition 1
ψ(t) : R++ → R+ is a kernel function if ψ is twice differentiable and satisfies the following conditions

ψ(1) = ψ
′
(1) = 0.

ψ
′′
(t) > 0, ∀t > 0.

lim
t→0+

ψ(t) = lim
t→+∞

ψ(t) = +∞.
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And we give the first three derivatives of (1) with respect to t as follows.

ψ
′

h(t) = 2t−
(tanh (1)− 1) coshp (1) + coshp

(
t−1
)

atp+1
−

tanh
(
t−1
)
coshp

(
t−1
)

atp+2
. (12)

ψ
′′

h(t) = 2 +
(p+ 1)

a

(
(tanh (1)− 1) coshp (1) + coshp

(
t−1
)

tp+2
+

2 tanh
(
t−1
)
coshp

(
t−1
)

tp+3

)

+
p tanh2

(
t−1
)
coshp

(
t−1
)
+ coshp−2

(
t−1
)

atp+4
. (13)

ψ
′′′

h (t) = −

(
(p+ 2)

a

(
(p+ 1)

(
(tanh (1)− 1) coshp (1) + coshp

(
t−1
)

tp+3
+

3 tanh
(
t−1
)
coshp

(
t−1
)

tp+4

)
+

3(p tanh2
(
t−1
)
coshp

(
t−1
)
+ coshp−2

(
t−1
)
)

tp+5

)

+
p2 tanh3

(
t−1
)
coshp

(
t−1
)
+ (3p+ 2) tanh

(
t−1
)
coshp−2

(
t−1
)

atp+6

)
. (14)

To facilitate the study, we use the following notations.

f(t) = (tanh (1)− 1) coshp (1) + coshp
(
t−1
)

g(t) = tanh
(
t−1
)
coshp

(
t−1
)

h(t) = p tanh2
(
t−1
)
coshp

(
t−1
)
+ coshp−2

(
t−1
)

q(t) = p2 tanh3
(
t−1
)
coshp

(
t−1
)
+ (3p+ 2) tanh

(
t−1
)
coshp−2

(
t−1
) (15)

Lemma 1
For all p ≥ 4 and t > 0, we have the following properties

cosh
(
t−1
)
> 0 and 0 < tanh

(
t−1
)
< 1. (16)

f(t) > 0, g(t) > 0, h(t) > 0 and q(t) > 0. (17)

coshp
(
t−1
)( tanh

(
t−1
)

atp+2
− 1

(at)p

)
> 0, 0 < t < 1. (18)

Proof
(16) is true since for all t > 0 the two functions tanh

(
t−1
)
, cosh

(
t−1
)

are decreasing in ]0,+∞[ and

lim
t→+∞

cosh
(
t−1
)
= 1 > 0, lim

t→0+
tanh

(
t−1
)
= 1 and lim

t→+∞
tanh

(
t−1
)
= 0.

From (15) and (16), we note that the four function f, g, h and q are decreasing in ]0,+∞[ because for all t > 0
we have

f
′
(t) = − p

t2
tanh

(
t−1
)
coshp

(
t−1
)
< 0

g
′
(t) = − 1

t2
(
coshp−2

(
t−1
)
+ p tanh2

(
t−1
)
coshp

(
t−1
))
< 0

h
′
(t) = − 1

t2
(
(3p− 2) tanh

(
t−1
)
coshp−2

(
t−1
)
+ p2 tanh3

(
t−1
)
coshp

(
t−1
))
< 0

q
′
(t) = − 1

t2
(
(3p+ 2) coshp−4

(
t−1
)
+ p(6p+ 2) tanh2

(
t−1
)
coshp−2

(
t−1
)

+p3 tanh4
(
t−1
)
coshp

(
t−1
))
< 0
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with lim
t→+∞

f(t) = a+ 1− coshp(1) > 0, lim
t→+∞

g(t) = 0, lim
t→+∞

h(t) = 1 > 0 and lim
t→+∞

q(t) = 0. Then, we obtain
the desired result (17).

To prove (18), we put α(t) = coshp
(
t−1
)( tanh

(
t−1
)

atp+2
− 1

(at)p

)
and we calculate

α
′
(t) = p coshp

(
t−1
)( 1

aptp+1
+

tanh
(
t−1
)

aptp+2

)
− coshp

(
t−1
)( (p+ 2) tanh

(
t−1
)

atp+3

+
p tanh2

(
t−1
)
+ cosh−2

(
t−1
)

atp+4

)

≤ − coshp
(
t−1
)(2

(
tanh2

(
t−1
)
+ tanh

(
t−1
)
− 1
)
+ cosh−2

(
t−1
)

aptp+2

)
≤ 0

where the two inequalities follows from the fact that 0 < t < 1, a > 0, p ≥ 4, (17) and tanh2
(
t−1
)
+ tanh

(
t−1
)
>

1. Hence, we conclude that the function α(t) is decreasing in ]0, 1[ and lim
t→1

α(t) = 1− a−p > 0.

By using (1), (12), (13), (15) and (17), it is easy to verify the three conditions of Definition 1 and conclude that
the function defined by (1) is a kernel function. From the second condition it is clear that ψh(t) is coercive and has
the barrier property. Moreover, (13) and (17) imply that for all t > 0 we have

ψ
′′

h(t) ≥ 2 > 0. (19)

Now, we are ready to present the essential properties of (1).

Lemma 2
For all p ≥ 4 and t > 0, ψh(t) check the following

ψh(t) is exponentially convex. (20)
ψ

′′

h(t) is monotonically decreasing. (21)

tψ
′′

h(t)− ψ
′

h(t) > 0, t > 1. (22)

2ψ
′′

h(t)
2
− ψ

′

h(t)ψ
′′′

h (t) > 0, t < 1. (23)

Proof
For (20), we know that by Lemma 2.1.2 in [15] it is sufficient to prove that tψ

′′

h(t) + ψ
′

h(t) > 0, so by using (12)
and (13) we get

tψ
′′

h(t) + ψ
′

h(t) = 4t+
pf(t)

atp+1
+

(2p+ 1)g(t)

atp+2
+

h(t)

atp+3
> 0, ∀t > 0.

From (15), (17), the positivity of t and p, we obtain ψ
′′′

h (t) < 0. Thus, the desired result (21).
The two last inequalities holds due to (12), (13) and (14).

tψ
′′

h(t)− ψ
′

h(t) =
(p+ 2)f(t)

atp+1

(2p+ 3)g(t)

atp+2
+

h(t)

atp+3
> 0, for all t > 1

and
2ψ

′′

h(t)
2
− ψ

′

h(t)ψ
′′′

h (t) = 8 + (p+ 1)

(
2(p+ 6)f(t)

atp+2
+

2(3p+ 14)g(t)

atp+3
+

pf2(t)

a2t2p+4
+

4pf(t)g(t)

a2t2p+5
+

(5p+ 2)g2(t)

a2t2p+6

)
+

2q(t)

atp+5

+
2(p+ 6)h(t)

atp+4
+

(p− 2)f(t)g(t)

a2t2p+6
+

2h2(t)− q(t)g(t)

a2t2p+8

+
(5p+ 2)g(t)h(t)− q(t)f(t)

a2t2p+7
> 0, for all t < 1.
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Which completes the proof.

Therefore, from the above lemma we conclude that our kernel function ψh(t) is an eligible kernel function.

Lemma 3
For all p ≥ 4, the kernel function ψh(t) hold the following result

(t− 1)
2 ≤ ψh(t) ≤ 1

4

(
ψ

′

h(t)
)2
, t > 0. (24)

ψh(t) ≤ κp+ ι

2
(t− 1)2, t ≥ 1. (25)

With κ = 3 +
tanh2(1) coshp(1)

a
, ι = 5 +

coshp−2(1)

a
.

Proof
For (24). From the first condition of Definition 1 and (19), we get

ψh(t) =

∫ t

1

∫ ξ

1

ψ
′′

h(z) dz dξ, ∀t > 0. (26)

Using (26), we obtain

ψh(t) =

∫ t

1

∫ ξ

1

ψ
′′

h(z) dz dξ ≥
∫ t

1

∫ ξ

1

2 dz dξ = (t− 1)
2, ∀t > 0

and

ψh(t) =

∫ t

1

∫ ξ

1

ψ
′′

h(z) dz dξ ≤ 1

2

∫ t

1

∫ ξ

1

ψ
′′

h(ξ)ψ
′′

h(z) dz dξ

=
1

2

∫ t

1

ψ
′′

h(ξ)ψ
′

h(ξ) dξ =
1

4

(
ψ

′

h(t)
)2
.

For (25), using Taylor’s theorem, (21) and (13) for some ξ, 1 ≤ ξ ≤ t we get

ψh(t) = ψh(1) + ψ
′

h(1)(t− 1) +
1

2
ψ

′′

h(1)(t− 1)2 +
1

6
ψ

′′′

h (ξ)(ξ − 1)3

≤ 1

2
ψ

′′

h(1)(t− 1)2

=
1

2

((
3 +

tanh2(1) coshp(1)

a

)
p+ 5 +

coshp−2(1)

a

)
(t− 1)2,

to completes the proof we put κ = 3 +
tanh2(1) coshp(1)

a
and ι = 5 +

coshp−2(1)

a
.

Let γ(s) : [0,+∞[→ [1,+∞[ be the inverse function of ψh(t) for all t ≥ 1 and ρ(s) : [0,+∞[→]0, 1] be the

inverse function of −1

2
ψ

′

h(t) for all t ∈]0, 1]. Then, we have the following lemma.

Lemma 4
For p ≥ 4, we have

1 +

√
2s

κp+ ι
≤ γ(s) ≤ 1 +

√
s. (27)

cosh
(
t−1
)

at
≤ (2s+ 2)

1
p . (28)

Proof
For (27), let ψh(t) = s, t ≥ 1 i.e., t = γ(s), s ≥ 0. By using the left part of the inequality (24), we have
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s = ψh(t) ≥ (t− 1)2 this implies that t = γ(s) ≤ 1 +
√
s

and from (25), we get

s = ψh(t) ≤
κp+ ι

2
(t− 1)2 this implies that t = γ(s) ≥ 1 +

√
2s

κp+ ι
.

For (28), let s = −1

2
ψ

′

h(t) for 0 < t ≤ 1. Due to the definition of ρ and (12), we get

s = −1

2
ψ

′

h(t) ⇔ s = −1

2

(
2t− f(t)

atp+1
− g(t)

atp+2

)
⇔ g(t)

atp+2
= 2s+ 2t− f(t)

atp+1
≤ 2s+ 1 (29)

⇔

(
cosh

(
t−1
)

at

)p

≤ 2s+ 2 (30)

⇔
cosh

(
t−1
)

at
≤ (2s+ 2)

1
p (31)

where in the third equivalence the inequality holds since t ≤ 1 and (17). Then, we use (18) to obtain the desired
result.

In the following lemma, we give a relationship between (11) and Ψh(v).

Lemma 5
Let δ(v) be defined as in (11). Then we have

δ(v) ≥
√

Ψh(v).

Proof
Due to (9), (11) and (24) we have

Ψh(v) =

n∑
i=1

ψh(vi) ≤
n∑

i=1

1

4

(
ψ

′

h(vi)
)2

=
1

4
∥∇Ψh(v)∥2 = δ2(v)

this implie the desired result.

Now, we present the theorem which gives an estimate of the effect of a µ-update on the value of Ψ(v).

Theorem 1
(Theorem 3.2, [3]) Let γ(s) : [0,+∞[→ [1,+∞[ be the inverse function of ψ(t) defined in (1) for all t ≥ 1. Then
we have for any positive vector v and any β ≥ 1 that

Ψ(βv) ≤ nψ

(
βγ

(
Ψ(v)

n

))
. (32)

In the following lemma we compute two upper bounds for the effect of a µ-update on the value of Ψh(v).

Lemma 6
Let 0 < θ < 1 and v+ =

v√
1− θ

. If Ψh(v) ≤ τ , then

Ψh(v+) ≤
κp+ ι

2(1− θ)

(
θ
√
n+

√
τ
)2
. (33)

Ψh(v+) ≤
2τ + nθ + 2

√
nτ

1− θ
. (34)
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Proof

For (33), since
1√
1− θ

≥ 1 and γ
(
Ψh(v)

n

)
≥ 1, we have

γ
(

Ψh(v)
n

)
√
1− θ

≥ 1. Using Theorem 1 with β =
1√
1− θ

,

Ψh(v) ≤ τ , (25) and the second inequality in (27), we obtain

Ψh(v+) ≤ nψh

(
1√
1− θ

γ

(
Ψh(v)

n

))
≤ n

κp+ ι

2

(
1√
1− θ

γ

(
Ψh(v)

n

)
− 1

)2

≤ n
κp+ ι

2

1 +

√
Ψh(v)

n√
1− θ

− 1

2

≤ n
κp+ ι

2

(
1 +

√
τ
n −

√
1− θ

√
1− θ

)2

≤ n
κp+ ι

2

(
θ +

√
τ
n√

1− θ

)2

=
κp+ ι

2(1− θ)
(θ
√
n+

√
τ)

2

where the last inequality holds because 1−
√
1− θ =

θ

1 +
√
1− θ

≤ θ.

For (34), by Theorem 1 with β =
1√
1− θ

, (27) and the fact ψh(t) ≤ t2 − 1 for all t ∈ [1,+∞[, we get

Ψh(v+) ≤ nψh

(
1√
1− θ

γ

(
Ψh(v)

n

))
≤ n

((
1√
1− θ

γ

(
Ψh(v)

n

))2

− 1

)
=

n

1− θ

(
γ

(
Ψh(v)

n

)
+ θ − 1

)
≤ n

1− θ

(1 +√Ψh(v)

n

)2

+ θ − 1


=

2τ + nθ + 2
√
nτ

1− θ

this completes the proof.

We denote for all p ≥ 4

Ψh0 =
κp+ ι

2(1− θ)

(
θ
√
n+

√
τ
)2

(35)

Ψ̂h0
=

2τ + nθ + 2
√
nτ

1− θ
. (36)

where Ψh0 and Ψ̂h0 an upper bounds of Ψh(v) for small-update and large-update, respectively.

Remark 1
For small-update methods with τ = O(1) and θ = Θ( 1√

n
), we have Ψh0 = O(p) and for large-update methods with

τ = O(n) and θ = Θ(1), we have Ψ̂h0
= O(n).

3.1. Complexity analysis

In this subsection, we compute the iteration bounds for small- and large-update methods based on our kernel
function (1). It must first compute a default step size α and express the decrease of the proximity function during
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an inner iteration. It is well know that during an inner iteration the value of µ is fixed and after each step of the
algorithm we obtain a new iterates (x+, y+, s+), then by using (6) and (8) we get

x+ = x+ α∆x = x

(
e+ α

∆x

x

)
= x

(
e+ α

dx
v

)
=
x

v
(v + αdx)

s+ = s+ α∆s = s

(
e+ α

∆s

s

)
= s

(
e+ α

ds
v

)
=
s

v
(v + αds)

thus we have

v+ =

√
x+s+
µ

=
√

(v + αdx)(v + αds) (37)

from (20) and (37) it is clear that

Ψh(v+) = Ψh

(√
(v + αdx)(v + αds)

)
≤ 1

2
(Ψh(v + αdx) + Ψh(v + αds)) .

For α > 0, we define

f(α) = Ψh(v+)−Ψh(v) (38)

f1(α) =
1

2
(Ψh(v + αdx) + Ψh(v + αds))−Ψh(v). (39)

taking the two successive derivatives of f1(α) with respect to α, we have

f
′

1(α) =
1

2

n∑
i=1

(
ψ

′

h(vi + αdxi)dxi + ψ
′

h(vi + αdsi)dsi

)
(40)

and
f

′′

1 (α) =
1

2

n∑
i=1

(
ψ

′′

h(vi + αdxi
)d2xi

+ ψ
′′

h(vi + αdsi)d
2
si

)
. (41)

Therefore

f(α) ≤ f1(α), f(0) = f1(0) = 0

and by using the second equation in (10) and (11), we have

f
′

1(0) =
1

2
⟨∇Ψh(v), (dx + ds)⟩ = −1

2
∥∇Ψh(v)∥2 = −2δ(v)2. (42)

We denote

vmin = min
i∈{1,...,n}

vi, δ = δ(v) and Ψh = Ψh(v).

For the rest of this paper, we assume that Ψh ≥ τ ≥ 1. Using Lemma 5 we get δ ≥
√
τ ≥ 1. So that before

presenting our results we will remind four lemmas that we will use (for proof, it is possible to resort to [3]).

Lemma 7
(Lemma 4.1, [3]) Let f1(α) be defined as in (39) and δ as in (11). Then

f
′′

1 (α) ≤ 2δ2ψ
′′

h (vmin − 2αδ) . (43)

Lemma 8
(Lemma 4.2, [3]) If α satisfies the inequality

−ψ
′

h(vmin − 2αδ) + ψ
′

h(vmin) ≤ 2δ, (44)

then
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f
′

1(α) ≤ 0

Lemma 9
(Lemma 4.3, [3]) Let ρ(s) : [0,+∞[→]0, 1] denote the inverse function of −1

2
ψ

′

h(t). The largest step size α that
satisfies (44) is given by

α :=
ρ(δ)− ρ(2δ)

2δ
.

Lemma 10
(Lemma 4.4, [3]) Let α be as defined in Lemma 9. Then

α ≥ 1

ψ
′′
h (ρ(2δ))

. (45)

Lemma 11
Let ρ and α be as defined in Lemma 9 and Lemma 10, respectively. Then

α ≥ 1

2 + 4ap+3(p+ 1)(4δ + 2)
p+4
p

, p ≥ 4 (46)

where α is the largest step size of the worst case associated with ψh(t).

Proof
For (46), according to (13) with t = ρ(2δ) ∈]0, 1], then we have

ψ
′′

h(ρ(2δ)) = 2 +
p+ 1

a

(
f(ρ(2δ))

ρ(2δ)p+2
+

2g(ρ(2δ))

ρ(2δ)p+3

)
+

h(ρ(2δ))

aρ(2δ)p+4

≤ 2 +
(p+ 1) (f(ρ(2δ)) + 2g(ρ(2δ))) + h(ρ(2δ))

aρ(2δ)p+4
(47)

due to (15) and (16), we obtain

f(ρ(2δ)) = a+ coshp
(
ρ−1(2δ)

)
− coshp(1) ≤ coshp

(
ρ−1(2δ)

)
g(ρ(2δ)) = tanh

(
ρ−1(2δ)

)
coshp

(
ρ−1(2δ)

)
≤ coshp

(
ρ−1(2δ)

)
h(ρ(2δ)) = p tanh2

(
ρ−1(2δ)

)
coshp

(
ρ−1(2δ)

)
+ coshp−2

(
ρ−1(2δ)

)
≤ (p+ 1) coshp

(
ρ−1(2δ)

)
.

From (47) and (28) we have

ψ
′′

h(ρ(2δ)) ≤ 2 +
4(p+ 1)

a

(
cosh

(
ρ−1(2δ)

)
ρ(2δ)

)p+4

≤ 2 + 4ap+3(p+ 1)(4δ + 2)
p+4
p

and by using Lemma 10 we get

α ≥ 1

ψ
′′
h(ρ(2δ))

≥ 1

2 + 4ap+3(p+ 1)(4δ + 1)
p+4
p

.

this proves the lemma.
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For our algorithm we define the default step size α⋆ with α⋆ ≤ α as follows

α⋆ =
1

2 + 4ap+3(p+ 1)(4δ + 2)
p+4
p

. (48)

Now, we express the decrease of the proximity function Ψh during an inner iteration with the default step size
α⋆ which given by (48). To this end, we established the following results.

Lemma 12
(Lemma 12, [15]) Let h(t) be a twice differentiable convex function with h(0) = 0, h

′
(0) < 0 and let h(t) attain

its global minimum at its stationary point t∗ > 0. If h
′′
(t) is increasing with respect to t, then one has for any

t ∈ [0, t∗]

h(t) ≤ th
′
(0)

2
.

Lemma 13
(Lemma 4.5, [3]) If the step size α satisfies α ≤ α, then

f(α) ≤ −αδ2. (49)

Using Lemma 13 and (48), we have the following theorem.

Theorem 2
(Theorem 4.6, [3]) With α⋆ being the default step size, as given by (48), one has

f(α⋆) ≤ − δ2

ψ
′′
h (ρ(2δ))

. (50)

Lemma 14
Let α⋆ defined as in (48). Then we have

f(α⋆) ≤ −
Ψ

p−4
2p

h

2 + 144ap+3(p+ 1)
. (51)

Proof
To prove this lemma, we use Theorem 2 with (48) and δ ≥

√
Ψh. We obtain

f(α⋆) ≤ −δ2

ψ
′′
h (ρ(2δ))

≤ −δ2

2 + 4ap+3(p+ 1)(4δ + 2)
p+4
p

≤ −δ2

2δ
p+4
p + 4ap+3(p+ 1)(4δ + 2δ)

p+4
p

≤ −δ2−
p+4
p

2 + 144ap+3(p+ 1)

≤
−Ψ

p−4
2p

h

2 + 144ap+3(p+ 1)
.

At this stage, we count how many inner iterations required by the algorithm to obtain the situation Ψh ≤ τ . Let
Ψh0

denote the value of Ψh after µ-update and the subsequent values in the same outer iteration are denoted as Ψhk
,

k = 1, . . . ,K, where K denotes the total number of inner iterations in the outer iteration and for this we invoke the
following lemma.
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Lemma 15
(Proposition 1.3.2, [15]) Let a sequence tk > 0, k = 0, . . . ,K that verifies

tk+1 ≤ tk − κt1−ν
k with κ > 0, 0 < ν ≤ 1 and k = 0, . . . ,K,

then

K ≤ tν0
κν

.

Using the Lemma 15 for tk = Ψhk
, we can get the following lemma.

Lemma 16
Let K be the total number of inner iterations in the outer iteration. Then we have

K ≤
(
4 + 288ap+3

)
pΨ

p+4
2p

h0
.

Proof
Using the definition of f(α) (38) and Lemma 13 with α ≤ α, we have

f(α) = Ψhk+1
−Ψhk

≤ −κδ2

then we suppose that they exist κ > 0 and 0 < ν ≤ 1, such that

Ψhk+1
−Ψhk

≤ −κΨ1−ν
hk

, (52)

according to Lemma 15 with tk = Ψhk
, we obtain

K ≤
Ψν

h0

κν
.

From (52) and (51), we conclude that

ν =
p+ 4

2p
and κ =

1

2 + 144ap+3(p+ 1)
.

then one can easily deduce the desired result.

In the following theorem, we estimate the total number of iterations of the algorithm.

Theorem 3
The total number of iterations required to obtain the optimal solution of CQP is bounded by(

4 + 288ap+3
)
pΨ

p+4
2p

h0

log n
ε

θ
.

Proof

The number of outer iterations is bounded above by
1

θ
log

n

ε
(see [16]). By multiplying the number of outer

iterations by the number of inner iterations, we obtain

K
log n

ε

θ
≤
(
4 + 288ap+3

)
pΨ

p+4
2p

h0

log n
ε

θ

which completes the proof.

Using Remark 1, we obtain the complexity result of small- and large-update methods which we summarize in
the following table.

From the results of Table 1, we get the best known iteration bounds for small- and large-update, namely,
O(

√
n log n

ε ) and O
(√

n log n log n
ε

)
if p take any constant value and take p = logn

2 − 1, respectively.

Stat., Optim. Inf. Comput. Vol. 12, January 2024



166 COMPLEXITY ANALYSIS OF AN INTERIOR-POINT ALGORITHM FOR CQP

The kernel Small-update Large-update
function method method

ψh(t) with p ≥ 4 O
(
p

3p+4
2p

√
n log n

ε

)
O
(
pn

p+4
2p log n

ε

)
Table 1. COMPLEXITY OF LARGE- AND SMALL-UPDATE METHODS

3.2. Concluding remarks and future research

In this work, we were able to deal with the complexity analysis of primal-dual interior-point algorithm for CQP
problem based on a new kernel function with hiperbolic–logarithmic barrier term (1). Therefore, we have analyzed
the algorithm and we obtain the best iteration complexity bound O

(√
n log n log n

ε

)
for large-update method with

a specific choice of the parameter p, namely, p = logn
2 − 1.

One of the most important areas of research that attracts our attention is generalize the complexity bound based
on a new kernel function with hiperbolic barrier term for primal-dual interior-point methods in the convex quadratic
semidefinte optimization.
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