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Random forests in the zero to k inflated Power series populations
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Abstract Tree–based algorithms are a class of useful, versatile, and popular tools in data mining and machine learning.
Indeed, tree aggregation methods, such as random forests, are among the most powerful approaches to boost the performance
of predictions. In this article, we apply tree–based methods to model and predict discrete data, using a highly flexible model.
Inflation may occur in discrete data at some specific points such as zero, one or the others. We may even have inflation at
two non-adjacent points or more. We use some recently introduced models for inflated data sets based on a common discrete
family (the Power series models). The main idea of this article is to use zero to k (k = 0, 1, . . .) inflated regression models
based on the family of power series to fit decision regression trees and random forests. An important point of these models
is that they can be used not only for inflated discrete data but also for non-inflated discrete data.
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1. Introduction

Count data has many applications in practice. Some examples are the number of warranty or insurance policy
claims by a client, the number of unpaid credit installments, the number of accidents on a highway and the
number of seizures for an epileptic. When the goal is to relate a set of covariates to the number of events for a
sample of subjects, many parametric models are available, including the Poisson, negative binomial, Multinomial
and Logarithmic series regression models (the Power series models regression). [12] provides tree using a nice
treatment covering the modeling of count data.
We are more interested in a particular class of nonparametric models based on recursive partitioning also called
tree-based models. Tree-based methods, or just trees, are valuable alternatives to parametric methods and are very
popular among practitioners. Some of advantages are: (1) no need to specify a parametric form, (2) ability to
automatically detect interactions, and (3) ease of interpretation and visualization. They were first developed to
handle a categorical or a continuous outcome; See [5] for the early developments of the classification and regression
tree (CART) paradigm and the earlier references. This paradigm builds a large tree by selecting the best split among
all possible splits at each intermediate node. In order to avoid overfitting, a subtree is then selected by pruning the
large tree using a cross validation mehtod. Within a similar framework as CART, Poisson regression trees can be
fitted ([23]). In this case, the splitting criterion is on the basis of the likelihood ratio test to compare two Poisson
distributions. However, a Bayes estimate of the rate is used in order to avoid an infinite value of the deviance which
occurs when the maximum likelihood estimate of the rate is zero; See [23] for more details.
[9] proposed another method to build Poisson regression trees. It proceeds by fitting a log linear model in each
node. The adjusted Anscombe residuals of the fitted model are then obtained. The Levene’s two sample test is then
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applied to each covariate to compare the two groups formed by the positive and negative residuals. The selected
covariate for the split is the one with the largest absolute statistic value. The split for the selected covariate is the
average of the two group means along the covariate. Once a large tree is built, a pruning algorithm can be applied
as in CART.
Extensions of Poisson regression trees into different directions have been proposed. [15] generalized the method
proposed by [9] to the case of multivariate outcomes with models using the generalized estimating equations
(GEEs). This method can be used to fit multivariate count data targets. In some applications, count data exhibit
greater variability than what is expected from a Poisson model. To handle this, [10] extended both the [9] and The
Generalized, Unbiased, Interaction detection and estimation (GUIDE) approach to the case of a Poisson outcomes
with extra variation ([16] and [17]). In other applications, count data exhibit more zeros than what is expected from
a Poisson model. [15], and [18], proposed a zero-inflated tree model with the CART approach.
In the last decade, the attention has shifted towards using trees as part of an ensemble learning algorithm. This is
mainly due to the fact that combining many trees has often a better predictive capability than a single tree. Random
forests ([6]) is such an ensembling method among the most popular ones. The good performance of random forests
has been demonstrated in various empirical studies (e.g., [13] and [28]) and their theoretical properties have also
been studied ([2], [3]). This is why they are now part of the standard practitioners’ toolbox. For preliminary
studies in random forests and ensemble methods, the articles introduced by [19], [21] and [24] are good starting
points. [18] developed trees and random forests to predict the zero-inflated Poisson (ZIP) targets which considered
nonhomogeneous Poisson processes. In fact, we combine two new approaches in fitting tree-base models.
In this paper, we fitted decision trees and random forests using regression models for responses where models
belong to the zero to k inflated power series (ZKIPS) family of distributions. One is to use the power series family,
which includes important models for discrete data, and the second is to generalize inflation points to 0, 1, . . . , k,
k = 0, 1, . . .. These two generalizations create two advantages. The former is the model’s ability to fit count data
that is inflated at any point. The later, due to the breadth of the power series family, as well as the structure of this
model, is the ability to fit a wide range of discrete (even non-inflated) data.
The paper is organized as follows.In Section 2, we define the regression ZKIPS family. Section 3 describes the basic
methodology of regression tree and random forest. The results from a simulation study are presented in Section
4. We evaluate the performance of proposed model with two real data sets, in Section 5. Concluding remarks and
recommendations are stated in Section 6

2. Theoretical Backgrounds

First, we define the power series (PS) models. Suppose that the probability mass function (PMF) of the random
variable Y is

pθ(y) = a(y)θy/c(θ), (1)

where, y ∈ {0, 1, . . .}, a(y) > 0, θ > 0 and c(θ) =
∑∞

y=0 a(y)θ
y. Then Y has the power series model and denoted

by Y ∼ PS(θ).
In standard model, assuming a linear predictor X⊤

i β, where X⊤
i is a matrix of regression covariates and

β = (β0, β1, . . . , βp)
⊤ is a parameter vector that describes the relation between the response (Yi) and covariates

(X⊤
i ), with i = 1, 2, . . . , n, the link function g(.) from Table 1, and θi the parameters of PS model, gives

θi = g
(
X⊤

i β
)
⇐⇒ g−1(θi) = X⊤

i β. (2)

The family of PS models includes several important discrete models (Poisson, negative binomial, logarithmic,
and multinomial models). On the other hand, by selecting the number of inflated points k, various sub-models are
obtained. Table 2 summarizes some of the members of the ZKIPS models (r in the negative binomial model is the
number of successes). We define the ZKIPS model as follows
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Table 1. Form of the link function g(.) for the family of the power series models

Distribution g(.)

Multinomial exp(X⊤
i β)

1+exp(X⊤
i β)

Negative binomial exp(X⊤
i β)

1+exp(X⊤
i β)

Poisson exp
(
X⊤

i β
)

Logarithmic series exp(X⊤
i β)

1+exp(X⊤
i β)

Table 2. The family of the power series models with form (1)

Distribution θi c(θ) a(y1, · · · , ym)

Binomial θi =
pi

1−pi
(1− pi)

n n!
yi!(n−yi)!

Negative binomial θi = pi (1− pi)
−r Γ(yi+r)

yi!Γ(r)

Poisson θi = λi exp(θi) 1/yi!

Logarithmic θi = pi − log (1− pi)
(yi−1)!

yi!

Pr(Yi = yi|X⊤
i , ξi) =



w0 + η(w)pθi(0), yi = 0
w1 + η(w)pθi(1), yi = 1
...

...
wk + η(w)pθi(k), yi = k
η(w)pθi(yi), yi > k,

(3)

where 0 ≤ wi, i = 0, .., k, η(w) = 1−
∑k

i=0 wi, 0 ≤ η(w) ≤ 1, w = (w0, · · · , wk), and pθ(.) is the PS model
PMF (1). Each Yi, i = 1, · · · , n follows the ZKIPS distribution; i.e. Yi ∼ ZKIPS(w, θi), with PMF, (3).
Some special cases are:

• k = 0 → zero-inflated Power series model.

• k = 1 → zero-one inflated Power series model.

• k = 2 → zero-one-Two inflated Power series model.

• k = 3, w1 = w2 = 0 → zero-three inflated Power series model.

Suppose that we have a vector y = (y1, . . . , yn) of n independent responses from ZKIPS models. Associated with
each yi, we have a vector of p covariates X⊤

i = (x1i, . . . , xpi)
⊤ of features have been also observed. From (3), the

likelihood function (LF) of the available data

L(w,θ;y) =

n∏
j=1

{
k∏

i=0

([
wi + η(w)Pθj (yj)

]Ii(yj)
)
×
(
η(w)Pθj (yj)

)I(yj>k)

}
, (4)
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where θ = (θ1, · · · , θn) and

Ii(a) =

{
1, a = i
0, a ̸= i, i = 0, . . . , k,

(5)

and I(a > k) = 1−
∑k

i=0 Ii(a). The log likelihood function (LLF) of the LF (4) is

ℓ(w,θ;y) = log [L(w,θ;y)] =

n∑
j=1

{
k∑

i=0

Ii(yj)
(
wi + η(w)Pθj (yj)

)
+ I(yj > k) log

(
η(w)Pθj (yj)

)}
. (6)

By Equation (6), the maximum likelihood estimates (MLE) are derived by solving the following equations with
respect to the parameters:

∂ℓ(w,θ;y)

∂ws
=

n∑
j=1

{
Is(yj)

(
1− Pθj (yj)

)
+

I(yj > k)

η(w)

}
= 0, s = 0, . . . , k, (7)

∂ℓ(w,θ;y)

∂θl
= η(w)

k∑
i=0

Ii(yl)
∂Pθl(yl)

∂θl
+ I(yl > k)

∂Pθl(yl)/∂θl
Pθl(yl)

= 0, l = 1, . . . , n, (8)

and with suppose θ1 = . . . = θn = θ, (models are identical), we have

∂ℓ(w,θ;y)

∂θ
=

n∑
j=1

{
η(w)

k∑
i=0

Ii(yl)
∂Pθl(yj)

∂θ
+ I(yj > k)

∂Pθ(yj)/∂θ

Pθ(yj)

}
= 0, (9)

where, the form of Pθ(y) comes from (1) and Table 2.
To connect the parameters with the covariates, we follow the standard generalized linear model (GLM) framework;
see [1] for further reading.

3. Decision trees and forest algorithms

Tree-based methods partition the covariate space by splitting it recursively with rules based on covariates. The
basic ingredient for building a tree is the splitting criterion, which is a dependent-problem. For example, the least
squares splitting criterion is the usual one when the response is continuous. Suppose we are at a given node t and
we want to split it into two children nodes, tL (left node) and tR (right node). The best split is chosen among
all possible binary splits obtained from a covariate, say Xi. If Xi is continuous, then {Xi < s} and {Xi ≥ s}.
If Xi is categorical, the possible splits take the form Xi ∈ {c1, . . . , cl} where {c1, . . . . . . , cl} is a subset of the
possible values of Xi. The best split is the one maximizing a given criterion. If a single tree is required, then the
usual procedure builds a large tree and then uses a pruning algorithm to avoid overfitting. However, it is now
well-established that using an ensemble of trees is generally preferable to a single tree. One of the most popular
ensemble method is random forests, introduced by [6]. Here, we describe the generic random forest algorithm that
will be used in this paper:

Algorithm:

For b = 1, . . . , B bootstrap samples {yb,Xb}:

Step 1. From the training dataset, draw bootstrap samples of size Ntrain.

Step 2. With the bootstrapped data, grow a tree Tb with the maximum likelihood splitting criterion, by
recursively repeating the following steps for each terminal node of the tree, until the minimum node size is
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reached.

1) Randomly draw mtry out of the m independent variables (IVs). mtry is a user-specified parameter.

2) Pick the best independent variable among the m-try IVs.

3) Split the node into two child nodes. The split ends when a stopping criterion is reached, for instance, when a
node has less than a predetermined number of observations. No pruning is performed.

Step 3. Output the ensemble of trees {Tb}B1 .

The predicted value of testing set (ŷi) individuals with input Xi is calculated as ŷi = 1
B

∑B
b=1 Tb(Xi). Readers

are referred to [6] and [25] for details on the theory of RF. Tree hyper-parameters, including the number of trees
(ntree), number of independent variables (features) sampled in each iteration (mtry), and number of samples in the
final nodes (nodesize) must be defined by the user.

3.1. Maximum likelihood splitting criterion

A simple method for deriving a splitting criterion is to use the log-likelihood of an adequate two-node model; see
[22] and [4]. The main idea of this article is use of the LLF of regression ZKIPS model for the splitting criterion
function. Basically, the best split at a given node is the one that maximizes the observed LLF, i.e. the one evaluated
at the MLE, among all allowable splits. Moreover, if the parameters are estimated separately in the two children
nodes, then the best split is the one that maximizes

L̂L(left node) + L̂L(right node), (10)

where L̂L(left node) and L̂L(right node) are the observed log-likelihood in the left and right nodes, respectively.
[15] proposed a decision tree method for zero-inflated count data based on the CART paradigm. They call it a
ZIP tree. They basically fit the ZIP distribution separately in the two children nodes, and use (10) as the splitting
criterion. We use a similar criterion, but based on the ZKIPS model. Similar to [15], we consider the homogeneity
measure using LLF (6).

3.2. Tree pruning

The aforementioned splitting method is applied recursively until one of the stopping criteria is reached. At each
node, common stopping criterion, like all covariates are the same or all the response values are the same, is adopted.
Moreover, node tg is considered terminal, if the number of cases in t is less than 5% of the total observation in
the training data set. Afterwards, the cost-complexity pruning method ([5]) is adopted to find the right-sized tree.
At each node, the node deviance is used as the error measure in the pruning algorithm ([5], Chapter 10). The
tree is then pruned by the cost-complexity method with ten-fold cross-validation. Node deviance has been used to
prune trees in [8] among others. In simulation studies and real data analyses for fitting regression tree, we use the
maximum likelihood splitting criterion

4. A simulation study

In this section, we conduct to a simulation study examine the performance of family ZKIPS. As an example, we
consider zero-one inflated Negative binomial (Z1INB) mode. This simulation can be done similarly for the rest of
the family. In addition, this simulation is used only to implement a regression tree, which can be generalized to
random forests.
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Table 3. AAE and ARE for some selected response models

Distribution AAE ARE

Z1INB 1.1921 0.3491

ZINB 1.1992 0.3496

NB 1.9608 0.3508

Z1IP 1.2027 0.3532

Z1IB 1.1933 0.3556

4.1. Simulation details

To perform this simulation, we first considered 5 covariates independently of the possible distributions of
X1 ∼ Normal(0, 1), X2 ∼ DUniform{−1, 1}, X3 ∼ Poisson(1), X4 ∼ Beta(5, 2), and X5 ∼ Uniform(−1, 1),
respectively. Where, Normal, DUniform, Poisson, Beta, and Uniform respectively are Normal, Discrete uniform,
Poisson, Beta, and Continuous uniform distributions.
In each step, and using (2), we produce a sample of size 100 from the Z1INB (r = 5) model. Then, we fitted the
regression tree based on distributions Z1INB, zero inflated Negative binomial (ZINB), Negative binomial (NB),
zero-one inflated Poisson (Z1IP) and zero-one inflated Binomial (Z1IB) models for this data set. We repeated this
step 500 times. Given that the data are generated from Z1INB, it seems that the regression tree implemented using
this model has the best performance, which is confirmed by the results of Table 3. The comparison between the
results of regression tree fitting was performed using two criteria average absolute error (AAE) and average relative
error (ARE) defined by

AAE = 1/n

n∑
i=1

|yi − ŷi|,

ARE = 1/n

n∑
i=1

|yi − ŷi|
yi + 1

,

which ŷi is the model prediction value for the observed response variable i = 1, · · · , n, and n is the size of data set.
According to Table 3, the values of two criteria AAE and ARE for the fitted regression tree based on model Z1INB
have the lowest values.

5. Applications

We used two real data sets to evaluate performance of the ZKIPS models. In the following, the aim is to show how
to choose the best model for a real data analysis from the inflated power series family of models.

5.1. Solder data set

This data was first used by [11]. This data is available in the R package rpart. It contains 720 observations which
are the result of an experiment on wave-soldering of electronic components in a printed circuit board. The response
variable is the number of solder skips. The covariates are: Mask, type and thickness of the material for the solder
mask (5 levels), Opening, thickness of clearance around a mounting pad (3 levels), Pad type, geometry and size of
the mounting pad (10 levels), Panel, panel position on a board (3 levels) and Solder, thickness of solder (2 levels).
We fitted three important models of the power series family to this data (the logarithmic series model was omitted
because this model is not defined at the zero point because the data contains zero-response observations). In the
Binomial model, parameter n = 50 and in the Negative binomial model, parameter r = 1 (which results in the best
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Table 4. The family of the power series models for the Solder data set.

Distribution Without inflation k = 0 k = 1 k = 2 k = 3

Binomial Deviance 9037.806 4816.001 4208.780 3765.721 3571.482
(n = 50) AIC 18077.611 9636.002 8423.561 7539.441 7152.964

Negative binomial Deviance 6289.775 2423.172 2406.438 2394.451 2394.297
(r = 1) AIC 12581.550 4850.344 4818.877 4796.901 4798.594

Poisson Deviance 5445.399 4112.004 3592.179 3228.262 3078.748
AIC 10892.797 8228.009 7190.357 6464.525 6167.496

Table 5. The family of the power series models for the Solder data set, regression decision tree.

Distribution Without inflation k = 0 k = 1 k = 2 k = 3

Binomial SSE 33.012 49.778 33.051 33.084 33.084
(n = 50) Deviance 8083.694 7765.285 11319.760 6048.475 7484.670

Negative binomial SSE 33.012 33.012 33.012 33.012 33.012
(r = 1) Deviance 5104.882 5582.121 5582.644 5521.462 5524.705

Poisson SSE 33.012 33.012 33.051 33.084 33.084
Deviance 3678.175 8695.353 10227.88 6782.28 6935.557

performance of the model) are considered. The results are presented in Tables 4-6. First, in Table 4, we compare the
three models of the Binomial, Negative binomial, and Poisson in non-inflated and inflated cases (in k = 0, 1, 2, 3).
These comparisons, which were performed using two criteria Deviance and the Akaike information criterion (AIC),
indicate that each model has approximately the k = 2 best fit. In total, the zero to two inflated negative binomial
(Z2INB) model offers the best fit. Of course, in the Negative binomial model, the criterion Deviance in k = 3 is
slightly smaller than k = 2, but the criterion of AIC in k = 2 is smaller. Finally, Table 4 offers the Model 2 as a
suitable model for fitting this data. Finally, Table 4 offers model Z2INB as the best model in the family of power
series to fit this data set.
In Tables 5 and 6, we fitted a regression decision tree, and random forests to the data. The comparison in these
two tables is done using three criteria: the sum of squared error (SSE), Akaike information criterion (AIC), and
Deviance.

SSE =

n∑
i=1

(yi − ŷi)
2,

AIC = 2s− 2LLF,

Deviance = −2LLF,

where yi, the response, ŷi, estimation of response by model, n, the number of observation and s is number of
estimated parameters in the model.
To fit the decision tree, we considered the minimum data per node to be 10 observations (besides, the fitted tree
was not so complex that it needed pruning). Again, the results of Table 4 are confirmed and in Table 5, the least
SSE and Deviance belong to the Z2INB model.
To fit random forests, we used the decision trees used in Tables 5 and 6 covariates for each fit (that are randomly
selected from among the covariates each time). The results of random forests fitting show that the fitting has
improved compared to Table 5, but the overall results are almost the same as before. Finally, the best model to
fit this data is the Z2INB model. the decision tree Z2INB fits for this data and variable importance ([14]) for the
obtained decision tree and random forests are shown in Figure 1.
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Figure 1. (a) Final fitted tree for Solder data set and (b) variable importance for the fitted decision tree and random forests

Table 6. The family of the power series models for the Solder data set, random forest.

Distribution Without inflation k = 0 k = 1 k = 2 k = 3

Binomial SSE 33.012 49.778 33.051 33.653 32.528
(n = 50) Deviance 6965.112 7090.248 10560.023 6048.278 7636.723

Negative binomial SSE 33.888 33.907 32.938 30.696 31.279
(r = 1) Deviance 5052.24 5568.667 5535.968 5450.380 54.68.713

Poisson SSE 32.404 33.911 35.057 32.423 36.681
Deviance 7353.147 7906.080 9303.755 6649.066 5929.916

5.2. Health care data set

There are numerous studies of the impact of insurance on health care use, measured by the number of services.
For example, [26] and [27] studied the impact of health reform on doctor visits in Germany, using data coming
from the German Socioeconomic Panel. [7] analyzed count data from the Rand Health Insurance Experiment. The
response is the number of illnesses in the past two weeks for a single-adult (n = 5, 190), from the Australian health
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survey 1977–78, ([7]). The covariates are hscore, general health questionnaire score using Goldberg’s method,
chcond1, equals 1 if chronic condition not limiting activity, chcond2, equals1 if chronic condition limiting activity
, medicine, number of medicines taken, prescribe, number of prescribe.
In the Binomial model, parameter n = 5 and in the Negative binomial model, parameter r = 4 (which results in the
best performance of the model) are considered. With a similar analysis to the previous example, Table 7 considers
the zero-5 inflated binomial (Z5IB) model appropriate for this data set. The results of decision tree fitting and
random forests are presented in Tables 8 and 9, respectively. The indicators in these two tables almost confirm the
results of Table 7. So it seems that to fit the decision tree as well as random forests on this data set, the best model
of the power series family is the Z5IB model. the decision tree Z5IB fits for this data and variable importance for
the obtained decision tree and random forests are shown in Figure 2.

Figure 2. (a) Final fitted tree for the Health care data set and (b) Variable importance for fitted decision tree and random
forests

6. Conclusions and remarks

In this paper, we tried to demonstrate the efficiency of the family of Power series in fitting regression trees. For
this purpose, we first defined the family of inflated power series. We demonstrate that the most important feature of
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Table 7. The family of the power series models for the Health care data set.

Distribution Without inflation k = 4 k = 5 k = 6

Binomial Deviance 9037.806 8133.159 8133.159 8133.165
(n = 5) AIC 18077.610 16278.320 16280.320 16282.330

Negative binomial Deviance 8269.373 8255.729 8133.197 8139.078
(r = 4) AIC 16540.750 16523.460 16280.390 16294.160

Poisson Deviance 8390.942 8235.029 8133.159 8133.160
AIC 16783.880 16482.060 16280.320 16282.320

Table 8. The family of the power series models for the Health care data set, regression decision tree.

Distribution Without inflation k = 4 k = 5 k = 6

Binomial SSE 1.800 1.521 1.561 1.561
(n = 5) Deviance 11202.620 14665.880 13793.220 13796.500

Negative binomial SSE 1.595 1.561 1.561 1.553
(r =) Deviance 13861.880 13681.360 13757.450 13363.070

Poisson SSE 1.561 1.561 1.567 1.567
Deviance 12325.120 13494.460 15378.900 13586.950

Table 9. The family of the power series models for Health care data set, random forest.

Distribution Without inflation k = 4 k = 5 k = 6

Binomial SSE 1.686 1.470 1.501 1.456
(n = 5) Deviance 11468.580 14055.840 14658.160 14329.610

Negative binomial SSE 1.566 1.477 1.358 1.472
(r = 4) Deviance 13307.330 14066.570 14542.120 14328.040

Poisson SSE 1.499 1.471 1.507 1.490
Deviance 12962.050 13819.110 15378.90 14667.750

this family is the ability to capture various kinds of inflated and even non-inflated data set. Therefore, considering
the wide range of applications and flexibility of this family, it seems obvious that it is an appropriate option for
use in fitting regression decision trees and, consequently, random forests. This distribution can be also used in
boosting algorithm. The multivariate generalization of this distribution ([20]) can be also used to fit decision trees
and random forests on multivariate data.
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