‘ STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 12, March 2024, pp 343-363.

IAPress| pyblished online in International Academic Press (www.IAPress.org)

Filtering Problem for Sequences with Periodically Stationary Multi-seasonal
Increments with Spectral Densities Allowing Canonical Factorizations

Maksym Luz !, Mikhail Moklyachuk 2-*

LBNP Paribas Cardif in Ukraine, Kyiv, Ukraine
2Taras Shevchenko National University of Kyiv, Ukraine

Abstract 'We propose solution of the problem of the mean square optimal estimation of linear functionals which depend
on the unobserved values of a stochastic sequence (signal) with periodically stationary generalized multiple increments of
fractional order. These stochastic sequences combine cyclostationary, multi-seasonal, integrated and fractionally integrated
patterns. Estimates are based on observations of the signal sequence with additive periodically stationary noise sequence. In
cases where the spectral densities of the signal and the noise sequences are known and allow the canonical factorizations,
we provide formulas for calculation the mean square error and the spectral characteristic of the optimal estimate of the
functionals in terms of the coefficients of such factorizations. In the case where the spectral densities are not exactly
known while certain sets of admissible spectral densities are available we apply the minimax (robust) method of estimation.
Formulas are proposed that determine the least favourable spectral densities and the minimax (robust) spectral characteristics
of the optimal linear estimate of the functional.
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1. Introduction

Non-stationary time series models have found wide-ranging applications in economics, finance, climatology,
air pollution, signal processing. A fundamental example is a general multiplicative model, known as
SARIMA(p,d,q) x (P,D,Q)s (Seasonal Autoregressive Integrated Moving Average), introduced in the book
by Box and Jenkins et al. [4]. This model incorporates both integrated and seasonal factors. It is described by the
equation

U(B*)y(B)(1 — B)*(1 — B*)Pz, = ©(B*)0(B)ey, (1)

where ¢; is a sequence of independent and identically distributed (i.i.d.) random variables, (z), 6(z) are
polynomials of p and ¢ degrees, respectively, with roots outside the unit circle, and where ¥(z) and ©(z) are two
polynomials of degrees P and (), respectively, with roots outside the unit circle. The parameters d and D can take
fractional values, resulting to what is known as seasonal ARFIMA, or SARFIMA model. The process described by
equation (1) is stationary and invertible when |d + D| < 1/2 and | D| < 1/2. One application of seasonal ARFIMA
models to the analysis of monetary aggregates used by the U.S. Federal Reserve is demonstrated in the work of
Porter-Hudak [32].
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344 FILTERING OF SEQUENCES WITH PERIODICALLY STATIONARY MULTI-SEASONAL INCREMENTS

In the field of statistical inference for seasonal long-memory sequences, recent research has yielded several
notable results. One such contribution is the work by Tsai, Rachinger, and Lin [36], who developed methods for
estimating model parameters when measurement errors are present. In another study, Baillie, Kongcharoen, and
Kapetanios [2] compared two commonly used estimation procedures for prediction problem based on ARFIMA
models. Specifically, they compared the performance of maximum likelihood estimation (MLE) to a two-step local
Whittle estimator. Through a simulation study, they found that the MLE estimator outperformed the two-step local
Whittle estimator. In addition, Hassler and Pohle [13] evaluated the predictive performance of various forecasting
methods for inflation and return volatility time series. Their analysis provided compelling evidence in support of
models with a fractional integration component.

Another class of non-stationary processes is the periodically correlated or cyclostationary processes, introduced
by Gladyshev [9]. These processes belong to the class of time-dependent spectrum processes and are widely used
in signal processing and communications. For recent works on cyclostationarity and its applications, see the review
by Napolitano [30]. Periodic time series can be viewed as an extension of seasonal models [1, 3, 20, 31].

The methods used for parameter estimation and filtering of time series data often fail to account for real-world
challenges such as outliers, measurement errors, incomplete information about spectral structure. As a result, there
is a growing interest in robust estimation methods that can effectively handle such issues. For example, Reisen
et al. [33] and Solci et al. [35] have proposed robust estimates for SARIMA and PAR models. Other researchers,
including Grenander [11], Hosoya [14], Franke [7], Vastola and Poor [37], Moklyachuk [26, 27], and Luz and
Moklyachuk [21], Liu et al. [19], have also investigated various aspects of minimax extrapolation, interpolation,
and filtering problems for stationary sequences and processes.

In this article, we extend our investigation of robust filtering for stochastic sequences with periodically stationary
long memory multiple seasonal increments (or sequences with periodically stationary general multiplicative (GM)
increments) by focusing on spectral densities that allow canonical factorizations, whereas in [21], the results were
obtained using Fourier transformations of the spectral densities.

The mentioned sequences were introduced by Luz and Moklyachuk in the paper [23], motivated by an increasing
interest in models with multiple seasonal and periodic patterns (see the works of Dudek [6], Gould et al. [10],
Hurd and Piparas [15]). This research continues previous works on minimax filtering of stationary vector-valued
processes, periodically correlated processes, and processes with stationary increments. Specifically, Moklyachuk
and Masyutka [28], Moklyachuk and Golichenko (Dubovetska) [5], Luz and Moklyachuk [22] have performed
research in these areas. Additionally, we mention the works by Moklyachuk, Masyutka, and Sidei [29], which
derive minimax estimates of stationary processes from observations with missing values.

The article is structured as follows. In Section 2, we provide a brief review of the GM increment sequence
X(ﬂd%(f (m)) and the stochastic sequence £(m) with periodically stationary (periodically correlated, cyclostationary)
GM increments, as well as the spectral theory of vector-valued GM increment sequences. In Section 3, we address
the classical filtering problem for linear functionals A¢ and A ¢ that are constructed from unobserved values of the
sequence &(m). We assume that the spectral densities of the sequence £(m) and a noise sequence 7(m) are known
and allow canonical factorizations. The estimates are derived in terms of coefficients of canonical factorizations of
the spectral densities, making use of results obtained in [24] by using the Fourier transformations of the spectral
densities. Section 4 focuses on the minimax (robust) estimation for cases where the spectral densities of sequences
are not precisely known while some sets of admissible spectral densities are specified. For illustration, we propose
particular types of admissible spectral density sets, which are generalizations of the sets described in a survey
article by Kassam and Poor [17] for stationary stochastic processes.
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2. Stochastic sequences with periodically stationary generalized multiple increments

2.1. Preliminary notations and definitions

Consider a stochastic sequence &(m), m € Z, and a backward shift operator B,, with the step 1 € Z, such that

B,&(m) = &(m — p); B := By. Then B, = B, B,, - ... B,. Define a multiplicative incremental operator
@ T n(v)
X5(B) = H (1-B%) @ Z ey(k
i=1 k=0

where d:=dy+do+...+d,, d=(dy,do,...,d,)E N, 5= (51,80,...,8.)€(N)" and 7=
(1, p2s ooy pr) € (N*)"or € (Z\N)"; n(y) := >_i_; pisid;. Here N* = N\ {0}. The explicit representation of
the coefficients e, (k) is given in [23]. Within the article, d;, denotes Kronecker symbols, () = l,(nnill),
Definition 1 ([23])

For a stochastic sequence £(m), m € Z, the sequence

XD (e(m)) = x%%( )e(m) = (1 — B3 (1 - B32)® ... (1 - By )% ¢(m)
dy
Z N G D LR (‘D L <Cllr>g(m — pasily — - — ppsply) 2)
LL=0  1,=0 T

is called a stochastic generalized multiple (GM) increment sequence of differentiation order d with a fixed seasonal
vector 5 € (N*)" and a varying stepz € (N*)" orz € (Z \ N)".

The theory of (wide sense) stationary stochastic sequences describes second order random variables 7(m),
m € Z, such that the mean value a = En(mg) and the covariance function ~(h) = Cov(n(myg),n(mo + h)) are
finite and do not depend on my. The following definition describes the stationarity of the increment sequence
ijd);(ﬁ (m)), m € Z, with a generalization of the mean value and covariance function, arising from the presence of
the increment step .

Definition 2 ([23])
A stochastic GM increment sequence Xf;@(g (m)) is called a wide sense stationary if the mathematical expectations
Exia(E(m) = @),
Exgir «(€(mo + m)X[2) <(E(ma) = D (i iy, i)

exist for all mg, m, [t i1, iy and do not depend on mg. The function céd) (&x) is called a mean value and the function

Déd) (m; iy, fiy) is called a structural function of the stationary GM increment sequence (of a stochastic sequence
with stationary GM increments).

The stochastic sequence £(m), m € Z determining the stationary GM increment sequence X( )(f (m)) by (2) is
called a stochastic sequence with stationary GM increments (or GM increment sequence of order d).

Remark 1
Spectral properties of one-pattern increment sequence X( )(f(m)) = €M (m,pu) = (1 — Bz)"¢(m) and the

continuous time increment process £(™) (t,7) = (1 — B, )™(t) are described in [38], [39].

Example 1

Consider an increment operator Xgaz;(B) = (1= By,)*(1 — B;)P. In this case the SARIMA time series (1)
(d+D)

can be modeled by a GM increment sequence zm = X 1 (1) (&(m)) with the step & = (1, 1), which is defined as
an ARMA model

U(B*)Y(B)zm = O(B*)0(B)em,
where &, is a sequence of i.i.d. random variables, and ¥(z*)«(z) and ©(z*)0(z) are two polynomials with roots
outside the unit circle.
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2.2. Definition and spectral representation of stochastic sequences with periodically stationary GM increment

In this subsection, we present definition, justification and a brief review of the spectral theory of stochastic
sequences with periodically stationary multiple seasonal increments, introduced in [23].

Definition 3
A stochastic sequence &(m), m € Z is called a stochastic sequence with periodically stationary (periodically
correlated) GM increments with period T if the mathematical expectations

d d d
EXVs(€(m+T)) = ExWs(é(m)) = 2 (m,m),
ExS s (Em + D)X 1o (€ +T)) = D2 (m+ T,k + T3y, Tip) = DY (m, ks iy, Tiz)

exist for every m, k, i, iy and T' > 0 is the least integer for which these equalities hold.
It follows from Definition 3 that the sequence

&m)=EmT+p—-1), p=1,2,....,.T; meZ 3)

—

forms a vector-valued sequence {(m) = {{,(m)},_, 5 p,m € Z with stationary GM increments as follows:

X(ﬂcg(gp(m)) = Xftd)Ts(g(mT"i_p_ 1), p=12,....T,

where X (§p( )) is the GM increment of the p-th component of the vector-valued sequence &(m).
The followmg theorem describes the spectral structure of the vector-valued GM increment [16], [23].

Theorem 1
1. The mean value and the structural function of the vector-valued stochastic stationary GM increment sequence

X(ﬁ %(5 (m)) can be represented in the form

D@ = cf[ p )
DO mimm) = [ AP O, 5)
where o2l
X (e = T (1 —eme)d, gD (i) = H H (Z/\ — 2mik;/s;)",
j=1 J=1kj=—ls;
c is a vector, F'()) is the matrix-valued spectral function of the stationary stochastic sequence x ( ). T

—

vector ¢ and the matrix-valued function F'(\) are determined uniquely by the GM increment sequence X ( (m ))

2. The stationary vector-valued GM increment sequence X(ﬁ%(f (m)) admits the spectral representatlon

- o . 1 _
XLdZ,( (m)) :/ ezm’\x%i)(e_l)‘)mdzgw(/\), (6)

where Z§<d>( ) ={Z,(N\)}]_, is a (vector-valued) stochastic process with uncorrelated increments on [—, )
connected with the spectral function F'(\) by the relation

E(Zp(A2) = Zp(M))(Zg(A2) = Z4(M1)) = Fpg(A2) — Fpg(M),
—T< M <X<m pqg=12,....T.
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—

Consider another vector-valued stochastic sequence with the stationary GM increments (m) = £(m) + 7j(m),
where 7j(m) is a vector-valued stationary stochastic sequence, uncorrelated with £(m), with the spectral
representation

mmy:/ Az, (),

where Z,(\) = {Z,,,(\)}7. p=1°

to the spectral function G(A) [12]. The stochastic stationary GM increment X(ﬁd%(g? (m)) allows the spectral
representation

A € [—m, 7), is a stochastic process with uncorrelated increments, that corresponds

(d)(,—ix
= " ixm X ( ) 7 " ixm (d)/ —i 7
W@y = [t Sazwmy+ [ e iz o,
while dZn(/\) = (ﬂ(d)(iA))‘len(d> (M), A € [—m, 7). Therefore, in the case where the spectral functions F'(\) and
G(X) have the spectral densities f()) and g()), the spectral density p(A) = {pi;(A)}];—, of the stochastic sequence

((m) is determined by the formula
p(A) = F(A) + BN Pg ().
(d)

o s,(f( )) [24], there exists an innovation sequence

For a regular stationary GM increment sequence ..

&(u) = {ex(u)}}_,,u € Z and a sequence of matrix-valued functions (¥ (k, i) = {<,92 (k: ,u)}J La q , k>0, such
that

oo T q
SIS ek mI? < oo, XELUEmM)) =Y Dk, m)E(m — k). (7

o0
k=0 i=1 j=1 k=0
Representation (7) is called a canonical moving average representation of the stochastic stationary GM increment

sequence X(ﬁd)g(f (m)). The spectral function F(X) of this sequence has the spectral density f(A\) = {fi;(\)}

i,7=1
admitting the canonical factorization , '
FO) = p(e™)p"(e™™),
where the functlon p(z) = > 1oy p(k)z" has analytic in the unit circle {z:|z| <1} components ¢;;(z) =
Zk:{) wij(k)2*i=1,...,T;j =1,...,q Based on moving average representation (7) define
on(2) =YWk m)zF = ou(k)2"
k=0 k=0
Then the following relation holds true:
, , 2d;
) |Xgi) (671)\)|2 T |1 _ e—z)\ujsj | J
—iA —iA I
(e Nep(e™) = =g f(A) = H 5,/2] fN) 3)
B (iA)] o [T oy I = 2k /524

In the following the one-sided moving average representation (7) and relation (8) are used for finding the mean
square optimal estimates of unobserved values of vector-valued sequences with stationary GM increments.

3. Hilbert space projection method of filtering

3.1. Filtering of vector-valued stochastic sequence with stationary GM increments

Consider a vector-valued stochastic sequence E(m) with stationary GM increments constructed from

transformation (3) and a vector-valued stationary stochastic sequence 7j(m) uncorrelated with the sequence 5 (m).

T

Let the stationary GM increment sequence X(ﬁd)g(f (m)) = {X({g(@,(m)) =1

and the stationary sequence 7j(m)

Stat., Optim. Inf. Comput. Vol. 12, March 2024
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have absolutely continuous spectral functions F'(\) and G(\) with the spectral densities f(\) = {f;;(A\)}¥ j—1 and

9(A) = {gij(A)}] =, respectively. Without loss of generality assume that EX( )(f( )) =0, Efj(m) =0and 7z > 0.
Filtering problem. Consider the problem of mean square optimal linear estlmatlon of the functional

AE =) (ak) TE(—k), ©)
k=0

which depends on unobserved values of a stochastic sequence & (k) = {& (k) 117;:1 with stationary GM increments.
Estimates are based on observations of the sequence (k) = £(k) + 7j(k) at points k = 0, —1,—2, . . ..

We suppose that the conditions on coefficients @(k) = {a,(k)}/_,, k >0
> lldk)|| < oo, Zk+1||a( )12 < oo, (10)
k=0 k=0
and the minimality condition on the spectral densities f(\) and g(\)
Q4 (@) (i \)]2 —1
T | U () 1 5@ ine) | aa < oo, (n
o L e

are satisfied. The second condition (11) is the necessary and sufficient one under which the mean square error of
the optimal estimate of functional A{ is not equal to 0.
Any linear estimate A§ of the functional A§ allows the representation [24]

AE = 3 (@) T(E-) + (1) - [ 0T d g (), (12)

—T

where Hﬁ()\) = {hp(N)}]_, is the spectral characteristic of the estimate Af.
In the Hilbert space Lo(p), define a subspace

L3(p) = span{e™ XD (e= ™) (8D (i) 718 = & = {dp} Ly, U=1,...,T, k <0}

Define the following matrix-valued Fourier coefficients:

™ ) (@ (i \)]2
S = 5 / f“’“m(g<A><f<A>+|ﬁ(d><iA>|29<A>>-1)TdA, ke,

™ ) (d) i 2
) = 5 [ f”kﬁw(é X'NQ ((F) + BN ) dr, ke Z

s

QW) = o [ e (SN +BDENPI)T9) dA ke

—T

Define the vectors a = ((@(0)) ", (@(1))", (@ ( ))T,...)T and a; = ((@z(0)) ", (@z(1)) ", (@z(2))",...)", where
the coefficients @y (k) = d_p(k —n(v)), k >

m4n(vy)

igm) =Y e (l—-m)l), m>-n(y). (13)

l=max{m,0}

Define the matrices Sz, Pz and Q by the matrix-valued entries (Siz)irx = Sp(l+1+k—n(y)), Ppie =
Pr(l—k)and (Q)r = QU — k), 1,k > 0.
The solution to the filtering problem is described by the following theorem in terms of Fourier coefficients

{Sw(k), Pa(k),Q(k) : k € Z} .
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Theorem 2 ([A2it]) .
A solution A¢ to the filtering problem for the linear functional A¢ of the values of a vector-valued stochastic

—

sequence &(m) with stationary GM increments under conditions (10) and (11) is calculated by formula (12). The
spectral characteristic Eﬁ()\) and the value of the mean square error A(f, g; Ag) are calculated by the formulas

. ) ) . )G\
(0T = (A T50) ~ (o)) 7 ) f;f)’ (14)
m
where - .
Ale™™) = Z (k)e™ ™, Cn(e) = Z (Pﬁlsﬁaﬁ)k iAk+1)
k=0 k=0
and
P . 2
A (f,g;A§> _E ‘Ag — Aﬂ — (Spag, P 'Spay) + (Qa.a). (15)
Remark 2

The filtering problem in the presence of fractional integration is considered in [24].

3.2. Filtering based on factorizations of the spectral densities

The main goal of the article is to derive the classical and minimax estimates of the functional Ag in terms of the
coefficients of the canonical factorizations of the spectral densities f()), g(A) and f(\) + |8 (i\)|?g(N).
Let the following canonical factorizations take place

ABDCIE 1) 1 5@ 2000) = O(eMOse ), O(e) =3 ke, (16)
e 900 = Oplem NG, Onle™) = 3 Bplire
I = 3 e = BN (), e ) = slke . a7
k=—o00 k=0

j=1,T

Define the matrix-valued function Wy (e™") = {¥y ;;(e™")} - -

by the equation

Va(e™™)On(e™™) = Ey,
where E is an identity ¢ X ¢ matrix. One can check that the following factorization takes place

B (N2

d .
I (e 2

(fO) + [BDOENPN)) T = Tile ™M a(e™), Tple™™) =) wu(kle ™, (18)
k=0

Remark 3
Any spectral density matrix f()) is self-adjoint: f(\) = f*()). Thus, (f(A\))T = f(\). One can check that the
inverse spectral density f~1()) is also self-adjoint: f~1(\) = (f~*(A))* and (f~*(\))T = f=1(N).

The following Lemmas provide representations of Pz and Pgl Syag, which contain coefficients of factorizations
(16) — (18).

Lemma 1

Let factorization (16) takes place and let ¢ x T matrix function U (e~*") satisfy the equation ¥z (e =) ®(e ™) =
E,. Define the linear operators ¥;; and © in the space ¢, by the matrices with the matrix entries (V)5 ; =
Yk —7), (Op)k,; =0k —j)for0 < j <k, (¥g)i,; =0, (Og)k,; =0for 0 < k < j. Then:
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a) the linear operator Py admits a factorization

b) the inverse operator (Pz) ! admits a factorization
(Pp) ™" =0Op(05) "

Proof
See [25]. O

Lemma 2
Let factorizations (16) and (17) take place. Define by ez (m) = (@E Sﬁﬁﬁ) (O 0, the mth element of the vector

oo

ealm) =Y Zplm+j+1)d-u(),
j==n(7)
where Z;;(j), j € Z, are defined as
Zg(§) =Y 0pDgl—4), € Z, glky= > ¢(m)¢*(k+m), ke
=0 m=max{0,—k}
Proof
See Appendix. O

Define the linear operators G, G*,®% in the space {2 by matrices with the matrix entries (G~); , = g(l — k),
(GN)k =g+ k), (@T)1x = ¢ (k+4), [,k > 0. And the linear operator ® in the space ¢, determined by a
matrix with the matrix entries (E))kj =¢'(k—j)for0<j <k, ((f))kj =0for0<k<j.

Define also the coefficients {g,ﬁ(k) :k >0} as follows: &E(O) =0, g,ﬁ(k) =d_p(—k) for 1 <k < n(y),
g,ﬁ(k) = 0 for k > n(v), where coefficients @_; (k) are calculated by formula (13), and the vectors

ay = ([@-a(0)", (@m1) ", @7m2)"..)", b= (-g0)" b)) Cx2)",..)".

The following theorem describes a solution to the filtering problem in the case when the spectral densities f(\)
and g(\) admit canonical factorizations (16) — (18) .

Theorem 3

Suppose that condition (10) is fulfilled and the spectral functions F/()) and G()) of the stochastic sequences &(m)
and 7j(m) have the spectral densities f(A) and g(\) admitting canonical factorizations (16) — (18). A solution A€
to the filtering problem for the linear functional Ag of the values of a vector-valued stochastic sequence 5 (m)
with stationary GM increments is calculated by formula (12). The spectral characteristic ﬁﬁ(/\) is calculated by the
formulas

gi) —iA et e
_ Lﬁ) (Z wl(k)e_ixk> @ﬁcﬁ,g +@ﬁc£g)me—ixm7 (19)

@ﬁcig)m = Zif(k)c:ﬁlig(k + m),

Stat., Optim. Inf. Comput. Vol. 12, March 2024
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oo %) l4+m )
= ) =S gm— R (k) =S 30 S 671+ m—Klaz(k) = 3 30 (@a_p)iem = (37Fa_z)m,
k=0 1=0 k=0 1=0
et (m) = glm+Eb_ak) =Y o) ¢ (U +m+kb_zk) =D 1)@ b_p)irm = (B*Eb_p)m
k=0 1=0 k=0 1=0

The the value of the mean square error A(f, g; EE) is calculated by the formulas

A (£.9:4¢) = |%al* - |¥a(Cy, + C )% (20)
Proof
See Appendix. O
Remark 4

The following factorizations hold true:

G =09, G'=9*dt.
The filtering problem for the functional Ay is solved directly by Theorem 3 by putting @(k) = 0 fo

r
To solve the filtering problem for the pth coordinate of the single vector £(—N), we put @(N) = 6, a(k) =
k# N.

The following corollaries take place.

Corollary 1
Under conditions of Theorem 3, a solution A NE to the filtering problem for the linear functional A N{ of the values

—

of a vector-valued stochastic sequence &(m) with stationary GM increments is calculated by the formula
N
NE= SN Eh) + TR ~ [ ()T a0 O @
k=0 -

The spectral characteristic ﬁ,; ~(A) and the value of the mean square error A(f, g; A Ng) of the optimal estimate
A Nf are calculated by formulas (19) and (20) for the vectors a, a_z, b_5; calculated as

ay = ((@(0)", @) ", @e2)",....@n)",o,...)",

where
min{m+n(vy),N}
ignm)= > e(l-mal), -n(y)<m<N. (22)
l=max{m,0}
Corollary 2

Under conditions of Theorem 3, the optimal linear estimate gp(—N ) of an unobserved value &,(—N), N >0,

—

of the stochastic vector sequence £(m) with GM stationary increments based on observations of the sequence

— —

&(m) + 7(m) at points m = 0, —1, —2, . . ., where the noise sequence 7j(m) is uncorrelated with £(m), is calculated
by the formula

™

E(—N) = (6(—N) + 1p(~N)) - / (i o) 020 00 (). 23)

—1T
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Put
A np(m) = ey (N —m)d,, N —mn(y) <m<N.

If N < n(7), the spectral characteristic fzﬁ ~.,p(A) and the value of the mean square error A(f, g; @,(—N )) of the
optimal estimate &,(—IV) are calculated by formulas (19) and (20) for the vectors a, a_y, b_j; calculated as

aN’p = (0707 sy (6p)—r7 O, .. .)T7
a_gnp = (A_pnp(0) " (@ npD) ", (G p (V) 0,07,
b_znpy = (0, (a:—ﬁ,N}p(_l))T? (aLE,N,p(—Q))T, " (C_LH,N,p(N _ n(V)))T7 0. _)T.

If N > n(v), the spectral characteristic Hﬁ, ~.p(A) and the value of the mean square error A(f, g; E,,(—N )) of the
optimal estimate &,(—XV) are calculated by formulas

(d) 77,/\ o
r X@ ( et T \k— —iAm
hﬁ7N,P(/\) = }B(d) Z)\ (Z ¢T Ak) Z((\Pﬁ) G a—ﬁ,N,p)me . (24)
m=0
and
A(£g&=N)) = (305,,5,) ~ [(F) G a g
where

a_znp = (0,...,0, (@7 Nnp(N = n(1))", ) (@np(N)T,0,..) 7.

3.3. Filtering of stochastic sequences with periodically stationary GM increment

Consider the filtering problem for the functionals

00 N
A=Y "aOk)E(—k), Aug=_ a(k)E(—k) (25
— k=

which depend on the unobserved values of a stochastic sequence £(m) with periodically stationary GM increments.
Estimates are based on observations of the sequence £(m) + n(m) at points m =0,—1,—2,..., where the
periodically stationary noise sequence 7(m) is uncorrelated with £(m).

The functional A¢ can be represented in the form

Ag = D a9k =Y Y a@mT +p—1s(-mT —p+1)
k=0 m=0 p=1
co T 0o
= DD apmg(-m) = 3 (@m))TE(-m) = A,
m=0 p=1 m=0
where .
E(m) = (&1(m), &2(m), ..., &r(m)) T, &(m) =E(mT +p—1);p=12,....T; (26)
and
a(m) = (a1(m),az(m),...,ar(m))", ay(m) =a®mT +p—-1);p=1,2,...,T. 27)

In the same way, the functional A7 is represented as
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where
ii(m) = (m(m),m2(m), ... ,np(m)) ", ny(m) =n(mT +p—1);p=1,2,....T. (28)

Making use of the introduced notations and statements of Theorem 2 we can claim that the following theorem
holds true.

Theorem 4
Let a stochastic sequence £(m) with periodically stationary GM increments and a stochastic periodically stationary

—

sequence 7)(m) generate by formulas (26) and (28) vector-valued stochastic sequences £(m) and 7j(m) with the
spectral functions F(\) and G()), which has the spectral densities matrices f(\) = {fi;(\)}] ;= and g(\) =
{gz’j(A)}ijl admitting the canonical factorizations (16) — (18). A solution 21\5 of the filtering problem for the
functional A = A¢ under conditions (10) is calculated by formula (12) for the coefficients @(m), m > 0, defined
in (27). The spectral characteristic Eg(A) = {hp(N\)}]—, and the value of the mean square error A(f, g; At ) of the
estimate A¢ are calculated by formulas (19) and (20) respectively.

The functional A ;€ can be represented in the form

M N T
AmE = Za(é)(k;)((—k) = Z Za(f) (mT+p—-1)¢&(-mT —p+1)
= m=0 p=1
k=0 i ! ﬂ H
= > > apmig(—m) = Y (@m)TE(-m) = Axé,
m=0p=1 m=0

where N = [22], the sequence £(m) is determined by formula (26),

(@m)" = (a1(m),az(m),...,ar(m))",
ap(m) = a*(mT+p—1;0<m<N;1<p<T;mT+p—1<M,
ap(N) = 0, M+1<NT+p—-1<(N+1)T-1L1<p<T. (29)

An estimate of a single unobserved value £(—M), M > 0 of a stochastic sequence £(m) with periodically
stationary GM increments is obtained by making use of the notations {(—M) = £,(—N) = ((fp)T (N), N = [,
p= M 41— NT. We can conclude that the following corollaries hold true.

Corollary 3

Let a stochastic sequence &(m) with periodically stationary GM increments and a stochastic periodically stationary
sequence 7)(m) generate by formulas (26) and (28) vector-valued stochastic sequences &(m) and 77(m). A solution
A m€ to the filtering problem for the functional Ay & = A N{ under condition (11) is calculated by formula (21)
for the coefficients @(m), 0 < m < N, defined in (29). The spectral characteristic and the value of the mean square

error of the estimate A m& are calculated by formulas (19) and (20) respectively.

Corollary 4
Let a stochastic sequence £(m) with periodically stationary GM increments and a stochastic periodically stationary

sequence 7(m) generate by formulas (26) and (28) vector-valued stochastic sequences &(m) and 7j(m). A
solution {(—M) to the filtering problem for an unobserved value £(—M) = £,(—N) = (5;,)T (—N), N = [4],
p= M 41— NT, under condition (11) is calculated by formula (23). The spectral characteristic and the value of

T
the mean square error of the estimate 2 (— M) are calculated by formulas (19) and (20) or (24) and (25) respectively.

4. Minimax (robust) method of filtering

Solutions of the problem of estimating the functionals Ag and A Ng constructed from unobserved values of the

£l (d)

stochastic sequence &(m) with stationary GM increments ngg(g (m)) having the spectral density matrix f(\) based
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on its observations with stationary noise &(m) + 7(m) at points m = 0, —1, —2, . . . are proposed in Theorem 3 and
Corollary 1 in the case where the spectral density matrices f(A) and g()\) of the basic sequence and the noise are
exactly known.

In this section, we study the case where the complete information about the spectral density matrices is not
available, while some sets of admissible spectral densities D = Dy x D, is known. The minimax approach of
estimation of the functionals from unobserved values of stochastic sequences is considered, which consists in
finding an estimate that minimizes the maximal values of the mean square errors for all spectral densities from a
class D simultaneously. This method will be applied for the concrete classes of spectral densities.

The proceed with the stated problem, we recall the following definitions [26].

Definition 4

For a given class of spectral densities D = Dy x D,,, the spectral densities f°(\) € Dy, g°(\) € D, are called the
least favourable densities in the class D for optimal linear filtering of the functional A¢ if the following relation
holds true

A(f,9%) = A, 9% 1°,9°) = max _ A(h(f,9); f,9).

(f,9)€DsxDy

Definition 5 .
For a given class of spectral densities D = Dy x D, the spectral characteristic 2 () of the optimal estimate of the
functional A¢ is called minimax (robust) if the following relations hold true

h'(\) € Hp = N L),
(f,9)EDyxDy
min max AE; , = max A }_io; ,q)-
heHp (f,9)€DyxDy ( fg) (f,9)€Ds xDy ( fg)

Taking into account the introduced definitions and the relations derived in the previous sections we can verify
that the following lemmas hold true.

Lemma 3

The spectral densities f° € Dy, ¢° € D, which admit the canonical factorizations (8), (16) and (17) are least
favourable densities in the class D for the optimal linear filtering of the functional Ag based on observations of the
sequence 5 (m) + 7j(m) at points m = 0, —1, —2, ... if the matrix coefficients of the canonical factorizations (16)
and (17) determine a solution of the constrained optimization problem

1®al|* — [[¢z(Cx,, + Crr ,)II* = sup, (30)
(@ (i \)]2 ) _
o) = Mem“)@;(w) BN ()0 () € Dy,
GO = BB () €D,

The minimax spectral characteristic h° = h;(f°, ¢°) is calculated by formula (19) if hz(f°, ¢°) € Hp.

Lemma 4
The spectral density ¢° € D, which admits the canonical factorizations (16), (17) with the known spectral density
f(A) is the least favourable in the class D,, for the optimal linear filtering of the functional A¢ based on observations

of the sequence £{ (m) + 7j(m) at points m = 0, —1, —2, ... if the matrix coefficients of the canonical factorizations

(d) N2 oo oo ‘ *
TN = e B (Zeo ‘“’“) (Zf)z(k)e-”k) 7
(e k=0
g()<)\) — <Z¢()(k)6iAk> (Zd)O(k)ez)\k)
k=0 k=0
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are determined by the equation W) (e~**)@9%(e~**) = E, and a solution {¢%(k), ¢°(k) : k > 0} of the constrained
optimization problem

| ®al|? — [ (C/Lg+07;g)\|2%sup, (31)
g(A) = @(e")@*(e™™) € D,

—

The minimax spectral characteristic 10 = h; #(f,g°) is calculated by formula (19) if Hﬁ( f,9°) € Hp.

Lemma 5

The spectral density f° € Dy which admits the canonical factorizations (8), (16) with the known spectral density
g(X) is the least favourable spectral density in the class D for the optimal linear filtering of the functional AE based

on observations of the sequence &(m) + 77(im) at points m = 0, —1, —2, . . . if matrix coefficients of the canonical
factorization

(d) i 2 [ee] *
PO + |5(d) (iN)]2g(\) = M (Z zAk) (Z 0 (k Mk)

Xz (6717 \izo
are determined by the equation W9(e~**)0%(e~**) = E, and a solution {¢%(k): k >0} of the constrained

optimization problem

[¢#(Cy, + Cx )|* — inf, (32)

@ (02 ) . ) )
Fy = L g men(e) - 159 a0 Pa(e )@ () € Dy

g (=) 2
for the fixed matrix coefficients {¢(k) : k > 0}. The minimax spectral characteristic A° = i_ig( f°,g) is calculated
by formula (19) if hz(f°, g) € Hp.

The more detailed analysis of properties of the least favorable spectral densities and the minimax-robust spectral
characteristics shows that the minimax spectral characteristic h° and the least favourable spectral densities f° and
g" form a saddle point of the function A(h; f, g) on the set Hp x D. The saddle point inequalities

A(h; 0,9°) = AR £°,¢°) > A% f,9) V(f,9) € D,Vh € Hp
hold true if h = h(f°, ¢°), hu(f°, ¢°) € Hp and (f°, ¢°) is a solution of the constrained optimization problem

A(f,9) = —A(hzn(f°,¢°); f.g) — inf, (f.g) € D, (33)

where the functional A (fz(f9, ¢°); f, ) is calculated by the formula

I i e O e ) R
. |5(d)(i)\)|2 . f I3 w.f
o [ (0 () T g () (W) L (e M

2 s .9

A (ﬁn(foago);ﬁg) =

where

hip(e”™) = Cy )"+ Up(CE ) e,

m

:0
0 —iA —
h/L 9(6 ) - Z

71)\10 = a(k)ei)\k>
o) (5

D (e (Zw,i(c#,g)o +w2<c:,g>0>me-im> :

m=0
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The constrained optimization problem (33) is equivalent to the unconstrained optimization problem

Ap(f,9) = A(f,g) + 3(f, g|D) — inf, (34)

where 6(f, g|D) is the indicator function of the set D, namely 4(f, g|D) =0 if (f,g) € D and §(f|D) = +o0
if (f,g) ¢ D. The condition 0 € dAp(f°, g°) characterizes a solution (f°,¢°) of the stated unconstrained
optimization problem. This condition is the necessary and sufficient condition that the point (f°, g") belongs to
the set of minimums of the convex functional Ap(f,g) [27, 34]. Thus, it allows us to find the equalities for the
least favourable spectral densities in some special classes of spectral densities D.

The form of the functional A(ETL( 1°,g%); £, g) is suitable for application of the Lagrange method of indefinite
multipliers to the constrained optimization problem (33). Thus, the complexity of the problem is reduced to finding
the subdifferential of the indicator function of the set of admissible spectral densities. We illustrate the solving
of the problem (34) for concrete sets admissible spectral densities in the following subsections. A semi-uncertain
filtering problem, when the spectral density f(\) is known and the spectral density g(\) belongs to in class D, is
considered as well.

4.1. Least favorable spectral density in classes Dy x D1

Consider the minimax filtering problem for the functional Ag for sets of admissible spectral densities DY,

—

k =1,2,3,4 of the sequence with GM increments &(m)

()

1™ g (™)) B

105 | e (=P }
1T g e
or o 1@

T d —1
1 D (e 2

Dy =

Te [F(V)]dA = p }

{ o)
D3 = {f(A)
{ o)

D?o = qf o | g(d)(i/\)Pfkk()\)dApkvklaT}a
(d)—iXy|2
4 _ 1™ Ixg (6] -
Dy = {f(A) %/_ﬁg@l)(mw@l’ﬂ’\»d’\p}’

where p,pg,k = 1,7 are given numbers, P, B; are given positive-definite Hermitian matrices, and sets of
admissible spectral densities DY, k = 1,2, 3,4 for the stationary noise sequence 7j(1m)

Phs = {0 [l - ab|ar < #.0.g =17}
Do = {0 [ MmO - monian<a).
Dhs = {0 [l - abei]ar < k=TT
Dhs = {o0|gs [ IBeg) - m)lar <3},

where g1 (\) = { gilj()\) ijl is a fixed spectral density, Bs is a given positive-definite Hermitian matrix, J, iy, k =

1,T, 5{, i,7 = 1,T, are given numbers.

The condition 0 € dAp(f, g°) implies the following equations which determine the least favourable spectral
densities for these given sets of admissible spectral densities.
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For the first set of admissible spectral densities D}, x D, 4:

(b5 (e™) (s ()" = (OF(e™™) ay - ajOF(™),
(hg(e™)) (g (e™)” = (OF(e™ ™)™ {Biym; (N} =, Ole=™),
1 s

o | |9?j()‘) - gilj()‘)| dA = 5'{3

where &y, f3;; are Lagrange multipliers, functions |7;;(A)| < 1 and
_ 9%0‘) - gilj()‘)
|9?j (A) — gilj(A)|

For the second set of admissible spectral densities DJ%O X Dgl s we have equations

Yij (A) gy (N) —gh(A\) #0, 4,5 =1,T.

(9 (™) (b (™) = aF(Oh(e™) 0%,
(B,4(e™) (B2 4(¢™)" = F12(0)(O%(e™ ™) "6 ™),
1 s

P - |Tr (QO(A) - 91(/\))| d\ =4,

where o}, % are Lagrange multipliers, function |y2())| < 1 and
12(A) =sign (Tr (6°(N) —1(N))) = Tr(g°(A) — g1 (A)) # 0.
For the third set of admissible spectral densities D}"’CO X Dg’l s We have equations
i iAV) * —i T 07Ny
(hz 7 (™)) (hy f(e™) (©F (™) " {afkdu}y ., O%(e=™),
i iAy)* —i T —
(b7 4(e™) (b (e™)" = (O™ )" {BiR (N}, Ople™™),

1 s
o | 1ok = ahv] ar =,

where afck, 3% are Lagrange multipliers, dy; are Kronecker symbols, functions |7£()\)| < 1and

Yo (A) = sign (gpx(X) — gie (V) g (V) — giu(A) #0, k=1,T.

For the fourth set of admissible spectral densities Dj%o X D;‘l s We have equations

(055 () (B p (™))" = aF(OR(e™™) T BIOR(e™),
(b3 4(e™) (B3 4(e™)" = B*%(N)(©f(e™™) B2OG(e=),
1 U

(B2, g°(\) — g1(N)] dX = 5,

L.

where o}, % are Lagrange multipliers, function |v;())| < 1 and

Y5(A) = sign (B2, g°(A) — g1(A)) 1 (B2,g°(A) —g1(N)) #0.

The following theorem holds true.

Stat., Optim. Inf. Comput. Vol. 12

357

(35)
(36)

(37

(38)
(39)

(40)

(41)
(42)

(43)

(44)
(45)

(46)

, March 2024



358 FILTERING OF SEQUENCES WITH PERIODICALLY STATIONARY MULTI-SEASONAL INCREMENTS

Theorem 5

The least favorable spectral densities f7(\), g°()\) in the classes D% fo x DF o160 k£ =1,2,3,4 for the optimal linear
filtering of the functional A£ from observations of the sequence &(m) + 7(m) at points m = 0, —1,—2,... are
determined by canonical factorizations (8), (16) and (17), equations (35)—(37), (38)—(40), (41)—(43), (44)—(46),
respectively, constrained optimization problem (30) and restrictions on densities from the corresponding classes
D’Jio, D§1 s+ k =1,2,3,4. The minimax-robust spectral characteristic of the optimal estimate of the functional Ag is
determined by the formula (19).

4.2. Semi-uncertain filtering problem in classes D. of least favorable noise spectral density

Consider a semi-uncertain filtering problem for the functional Af, where the spectral density g(\) of the stationary
noise sequence 77(m) is known and the spectral density f(\) of the sequence with GM increments &(m) belongs to
the sets of admissible spectral densities DX, k = 1,2, 3,4

d —1
™ g (P

g M= P}’

T D (p—iny |2
D2 = {f(A) TN = (L= )T [A)] + T ), o [ Wmmndxp},

T Ld) —iA\ |2
22 = Lo = - ke + e, o [ BEC S fuvr = k=TT,

D;

I
—
=
=

FO) = (1= A0 +eW (), - [

—T

T a e—z/\ 2
D! - {f(A) (B1, 7)) = (L= 2) (Ba, A} + & (B2, WO 5 [ sz,mwp},

where f1()) is a fixed spectral density, W () is an unknown spectral density, p, py, k = 1, T, are given numbers,
P, B, are given positive-definite Hermitian matrices.

The condition 0 € 8AD( f°, g) implies the equations which determine the least favourable spectral densities of
the noise sequence & ( ). Note that the elements C— 7,g and C+ are known and determined by the coefficients
{¢(k),k > 0} of the canonical factorization of the spectral dens1ty matrix g(\).

For the first set of admissible spectral density D! we have an equation

(35 e rea), ) (35 (e rei) o)

m=0 m=0

=<292<k>e‘“"’> (df -} +T (V) (Z@ﬁ(k)e—ik’f), 47)
k=0

k=0

where @y ia a vector of Lagrange multipliers, matrix I'(A) < 0 and I'(X) = 0 if fO(\) > (1 — &) f1(N).
For the second set of admissible spectral densities D? we have an equation

<Z @%(Cg’g + ng))m e—im) (Z @%(Cﬁ,g i cg’g))m e—mm>
m=0 m—0
= (Oz? —l—’y()\)) ( 9% —Mk> (Z % e w\k) ., (48)
k=0 k=0
where afc is a Lagrange multiplier, function y(\) < 0 and y(\) = 0if Tr [fO(\)] > (1 — &) Tr [f1(\)].
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For the third set of admissible spectral densities D2, we have an equation

oo

m=0 m=0

00 T o
= <Z 92(/@)6‘“"“) {(a?k +~yk()\))6kl}:’l:1 (Z 92(k)e—i>\k> . (49)
k=0 k=0

where a?k are Lagrange multipliers, dy; are Kronecker symbols, functions 7y (A) < 0 and () = 0 if f2, (A) >

(1 =) firn (V)

For the fourth set of admissible spectral densities D2, we have AN equation

(i (#r(Cr, + Ciw)me”’”) (i CGIC c:,g>)me“m>*

m—0 m=0
oo T R
= (a7 +7'(V) (Z 92(/4:)@“’“) By <Z eg(k)eml‘) » (50
k=0 k=0

where o7 is a Lagrange multiplier, function »/(\) < 0 and v'(A) = 0if (By, fO(\)) > (1 — &)(By, f1(N).
The following theorem holds true.

Theorem 6

Let the spectral density g()\) be known. The least favorable spectral density f°()) in the classes DX, k = 1,2,3,4
for the optimal linear foltering of the functional A€ from observations of the sequence &(m) + 7j(m) at points
m=0,—1,—2,... is determined by canonical factorizations (8) and (16), equations (47), (48), (49), (50),
respectively, constrained optimization problem (32) and restrictions on density from the corresponding classes D¥,

k =1,2,3,4. The minimax-robust spectral characteristic of the optimal estimate of the functional AE is determined
by the formula (19).

5. Conclusions

In this article, we presented a solution of the filtering problem for stochastic sequences with periodically stationary
GM increments, introduced in the article by Luz and Moklyachuk [23]. We proposed a solution of the filtering
problem in terms of coefficients of canonical factorizations of the spectral densities of the involved stochastic
sequences. The results obtained in [24] are based on the Fourier transformations of the spectral densities.

In the case where the spectral densities of sequences are not exactly known while the sets of admissible spectral
densities are specified (spectral uncertainty), the minimax-robust approach to filtering problem was applied. We
described the minimax (robust) estimates of the functionals and relations determining the least favourable spectral
densities and the minimax spectral characteristics of the optimal estimates of linear functionals for a list of specific
classes of admissible spectral densities.

Appendix
Proof of Lemma 2
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Factorizations (17), (18) and Remark 3 imply

Z S(k)e™

kEZ

8GN
s (=)

i Y (e Z Z(
1=0

JEL

Then

( @g Sﬁgﬁ) m

> 2 tl-m)
Jj=—n(y) p=m

YD D b~
j=—n(y) p=m =0

o0

> Y

j=—n(y) p=m k=p

Z Z diag, (0k,m)

j=—n(y) k=m
o0

j=-n(v)

The representation for Z;(j) follows from

2l

JEZ

Z)\j — 72)\

7

Proof of Theorem 3

(o)) + 18901207

Jeiri _ZZ,(/JT

kE€Z 1=0

Zg(k + j +1)d-

> Zalm+j+1)d-

FILTERING OF SEQUENCES WITH PERIODICALLY STATIONARY MULTI-SEASONAL INCREMENTS

7L+ k)e,

Sulp+J + Da—zu(j)

W () Zp(l+p+j + 1)a—z(j)

w(p—m))" Za(k + j + 1)d_z(j)
7(J)

7(J)-

ik O

6

Under the conditions of Lemmas 1 and 2 on the spectral densities f()) and g(\), formulas (14) and (15) can be

rewritten as follows. We make the following transformations

1B (i))|?
I (e=i) 2

(7O + 18D @) P (A

() (O

oo

D

k=0

] (

(P‘Elsﬁaﬁ) i ei)\(k)+1)>

S\ iA(ki+l
&)k’ (k+5+1)

= ( ;Lr(ki)el)\k> Z Zzir(m _ k.)o (k — p)eu(p) iA(m+1)
m=0 p=0 k=p
) (i U (’“’ew> S dig, (B Ep(m)e )
k=0 =0 p—0
= <i w:(k)ez)\k> i ’evr(m) tA(m+1)
k=0 m=0
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and

1B (ix) |2
X (e=id) 2
Wi (™) (e Mg Al ) (™)

(S ee) 32 3 st i

k=0 meZ j=—n(vy)

T N
[T+ 18D (g0 T Al N ()

Then obtain:

() = X%i)(e_M) idJT o iAk i i 6T (1) 2l — m)ii_(j)e >
"= Ty | 2 w () Zali —m)d—g(j)e

m=0j=—pun

BN \ &
oo 00 co n(v) .
<A DN Zp(G—m)ap()e ™+ Y D Zp(—j — m)b_g(j)e
m=0 j=0 m=0 j=1
(d)( —ix o]
X () T (1 o —ik
- §<d> (i) (; Un (k)

X@)(e—i)\) oo ‘ s N B |
= oy Z%T(k)e‘“’“) > (F) G+ (T) G b_g) e

X(d)(efi)\) oo '
= g(T(Z)\) (Zw;(k)e—v)\k> Z(d)u ug+wu ug) e iAm

m=0

The value of the mean square error A(f, g; Eg ) is calculated by the formula

361

A(rose) = & (rosdn) —E|ay— |
= 5 [ A TINTNar+ o [ TGO + 50PN
f% ﬂ<}<A>>Tﬁ<d><z’A)g<A>A<e*M)dAf% [ (e TR
= @l - [5(C5, + G I O
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