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Abstract This review paper provides a comprehensive analysis of over 100 research papers focused on the challenges
of robotic grasping and the effectiveness of various machine learning techniques, particularly those utilizing Deep Neural
Networks (DNNs) and Reinforcement Learning (RL). The objective of this review is to simplify the research process for
others by gathering different forms of Deep Reinforcement Learning (DRL) grasping tasks in one place. Through a thorough
analysis of the literature, the study emphasizes the critical nature of grasping for robots and how DRL techniques, particularly
the Soft-Actor-Critic (SAC) strategy, have demonstrated high efficiency in handling the task. The results of this study hold
significant implications for the development of more advanced and efficient grasping systems for robots. Continued research
in this area is crucial to further enhance the capabilities of robots in handling complex and challenging tasks, such as grasping.
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1. Introduction

Artificial Intelligence (AI) is a source of both excitement and apprehension. In general, it is an overarching concept
that refers to computer systems that are able to perceive their environment, reason, learn, and manage data so that
they can act according to what they perceive and their goals. With that, AI has recently caused a shift in many
industries around the world, from technology to healthcare [1], [2], [3]. This once mysterious field has become a
hot topic teasing countless industrial and academic minds. Drastic advances in hardware and data storage, coupled
with AI’s ability to ”self-learn”, have put it at the forefront of algorithms for multiple applications such as computer
vision [4], [5], [6] and natural language processing [7], [8]. AI uses different forms today whether it is digital
assistants, chat-bots [9] or Machine Learning and at the time being, the most prominent topic in AI is machine
learning (ML) [10], [11], [12], [13].

There are two primary applications for machine learning techniques, namely classification and regression.
Within the realm of these applications, the exploration of machine learning’s diverse capabilities is evident in
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recent studies. Kyrarini et al. investigated the realm of robot learning for assistive manipulation tasks through a
head gesture-based interface [14]. Their novel approach introduced a hands-free robot control system, leveraging
optical flow for feature extraction and support vector machines for head gesture recognition. Similarly, Bahrami
et al. delved into machine learning for touch localization on ultrasonic wave touchscreens [15]. Employing a
robotic finger to simulate touch actions, they captured data for model training. This technique finds applications
in classification, clusterization, regression tasks, as well as time series analysis, anomaly detection, and adaptive
(robotic) control. Shafiei et al. contributed to the field by developing machine learning classification models that
utilize electroencephalogram (EEG) and eye-gaze features [16]. Their objective was to predict the level of surgical
expertise in robot-assisted surgery (RAS). In a different context, Kolaghassi et al. conducted a systematic review
focusing on intelligent algorithms in gait analysis and prediction for lower limb robotic systems [17]. Notably,
33.3% of the included papers implemented regression models for the estimation and prediction of kinematic and
kinetic parameters in gait analysis. Additionally, machine learning algorithms can be categorized into four primary
sub-fields: Supervised Learning [18] [19], Semi-Supervised Learning [20] [21], Unsupervised Learning [22], and
Reinforcement Learning [23].

The integration of AI and ML is currently a popular and significant subject, with potential benefits when applied
in the field of robotics. Many researchers have explored this combination, particularly in the area of deep learning
(DL). For instance, Bai et al. have developed an innovative garbage collection robot that implements a deep neural
network to recognize and pick up garbage with high precision and autonomy [24].DL was employed by Kase et al.
to enable a humanoid robot to perform a Put-In-Box task that consists of several separate tasks [25]. DL techniques
were utilized by Gu et al. to introduce a robot designed for collecting tennis balls [26]. To teach a parallel plate
gripper how to recognize the grasping configurations of different household items, Caldera et al. suggested the
application of a transfer learning approach that involves deep convolutional neural networks[27].Onishi et al.
developed a robot for automated fruit harvesting by leveraging DL techniques [28]. Kim et al. utilized a DL
approach that involved transferring knowledge between different robots to teach a robot how to perform two
different cleaning tasks on a table [29]. In an effort to improve the ability of robots to manipulate objects, Yang et
al. investigated a DL approach for grasping objects that are initially invisible, specifically,to enable a robot to grasp
the target object, a sequence of pushing and grasping actions is involved in the proposed method [30]. Shang et al.
developed a DL technique that employs dexterous hands to grasp new objects [31] .

Reinforcement learning (RL) is a ML technique that has shown great potential in robotics, particularly in
object grasping [32]. RL is considered the algorithm of choice for building truly intelligent robots [33]. In this
comprehensive review, we delve into the current state-of-the-art RL algorithms, encompassing their methods,
types, and potential applications in the domain of robotic grasping. The emphasis of this study lies in exploring
the practical applications of RL in robotic grasping scenarios, steering away from intricate mathematical proofs
and numerical analyses of RL approaches. Instead, we aim to provide readers with a panoramic view of the
evolving landscape, summarizing the history and progression of RL from its early foundations to recent advances.
Our motivation is rooted in the recognition of the critical role robotic grasping plays in various applications. To
streamline the research process, we meticulously analyzed over 100 research papers, with a particular focus on
the effectiveness of machine learning techniques, including Deep Neural Networks (DNNs) and Reinforcement
Learning (RL). Our main contribution lies in synthesizing this extensive literature to spotlight the diverse forms
of Deep Reinforcement Learning (DRL) grasping tasks and underscore the efficacy of the Soft-Actor-Critic (SAC)
strategy within DRL techniques. As we progress through this review, we bridge the explored concepts with practical
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applications in robotic grasping, adding an intuitive layer to enhance comprehension in Section 3. In the same
section, we provide detailed explanations and address open problems, particularly focusing on the most prominent
algorithms in robotic grasping — DDPG, TD3, and SAC. Their comparative analysis in diverse state-of-the-art
applications unfolds in Section 4. To conclude, Section 5 offers a comprehensive summary, shedding light on both
the benefits and drawbacks of RL in the specific context of robotic grasping.

2. Reinforcement Learning

2.1. Brief history

The history of reinforcement learning is founded on two important areas of research that were independently
pursued before intertwining into modern reinforcement learning: animal psychology and optimal control. The
psychology of animal learning was the impetus for the idea of trial-and-error learning. The trial and error theory
of learning was first introduced by the famous psychologist Edward L. Thorndike [34], this procedure was
implemented in some of the early works in artificial intelligence and resulted in the renaissance of reinforcement
learning in the early 1980s. The optimal control problem was composed originally to design a controller to
minimize the loss function of a dynamic system over time [35]. In the mid-1950s, more exactly in 1957, An
innovative perspective on Hamilton-Jacobi theory was introduced by Richard Bellman, who also devised an
approach to address the optimal control problem known as dynamic programming [36]. Other methods are
emerging and are combined with the two previously mentioned areas in the late 1980s. These methods are the
temporal difference approaches and this union between the three domains gave rise to the modern field of RL.
[37] give a lot more details about Reinforcement Learning history. To sum it all up, RL is a type of ML that
allows an agent to learn how to reach a goal based on trial and error. This concept also named the Law of Effect
aims to enable the agent to test actions and receive feedback (reinforcement). RL involves adjusting the behavior
of the agent to maximize the cumulative reward it receives, and it has broad applications in solving control and
optimization problems that entail sequential decision-making. Consequently, it is a subject of great interest. The
bar chart in Figure 1 illustrates this concern in the percentage of published papers on this hot topic from 2014 to
date.

2.2. Methods of Reinforcement Learning

To estimate value functions and action-value functions, as illustrated in Figure 2, there are three main families
of algorithms used in RL: Dynamic Programming (DP), Monte Carlo (MC) and Temporal difference (TD).
Dynamic programming (DP) methods aim to find the optimal policy, but they require an ideal system model
and computational constraints for non-tangible tasks are unfeasible [38]. Policy iteration and value iteration are
commonly used DP methods, with policy iteration seeking the optimal policy through iterative policy improvement
and evaluation [39]. However, it is rarely used due to its large computational cost. In contrast, value iteration
determines the optimal policy by identifying the optimal value functions, which is more efficient since it does not
evaluate many policies [40]. However, a perfect model of the system is required to extract the optimal policy using
the optimal value function. Monte Carlo (MC) methods are model-free [41] and rely on sampling to estimate mean
returns for various policies by taking samples of state sequences, actions, and rewards under the policy. Since the
agent doesn’t have a model of the system, it determines the value functions for each action through exploration and
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Figure 1. Percentage of publications in RL, RL+Robotics, DRL, DRL+Robotics in the last 10 years based on WOS database

Figure 2. RL algorithm families

deduces the optimal policy. MC methods define action-value functions since value functions alone are insufficient
without a model to switch to great value states. However, MC methods require waiting until the end of the episode
before learning can begin, which is penalizing in long or continuous systems. an episode before updating the value
functions, unlike MC methods [42] Temporal Difference (TD) methods combine both DP and MC by using the
ideas of both methods to update the value functions incrementally. TD methods do not require waiting until the end
of the episode before learning can begin, which is penalizing in long or continuous systems. Since the main goal of
AI is to replicate human behavior, neither DP nor MC alone is sufficient, and TD methods are often used instead
[42].
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2.3. Types of Reinforcement Learning

It is tricky to present an exhaustive and detailed list of all the RL algorithms applied to robot manipulation.The focus
of this discussion will be limited to the major branches of algorithms, which include model-based and model-free
algorithms, as well as policy-based and value-based algorithms. Figure 3 represents a complete list of algorithms.

Figure 3. Reinforcement Learning algorithms

2.3.1. Model-Based and Model-Free RL algorithms can be categorized into two groups depending on whether
the agent has knowledge of the environment’s model or is learning it [43]. If the agent has the model, it can
predict its performance when taking a particular action, resulting in improved sample efficiency compared to
model-free methods. However, learning the model can introduce bias, leading to sub-optimal behavior in the real
environment.In contrast, model-free techniques rely on reward signals and learn value functions solely from the
agent’s interactions with the environment. They are easier to implement and adjust for hyper-parameters, making
them more popular than model-based methods.

2.3.2. Policy-Based and Value-Based In value-based algorithms, the estimation of the action-value function is
carried out in reference to the optimal value Q∗(s, a). This is usually achieved through off-policy learning, as
detailed in the preceding chapter. Conversely, policy-based approaches identify the optimal action to take at a
given state (s) to maximize the reward. This is often done on-policy.Nguyen et al. [33] contend that policy-
based techniques are more dependable and consistent than Q-learning methods, which estimate Q indirectly based
on an objective function. However, policy-based methods may fail due to various factors. Despite this, policy-
based algorithms exhibit higher sample efficiency by effectively reusing data, a crucial factor for their successful
implementation on real robots.

In the realm of reinforcement learning, the dichotomy between policy-based and value-based algorithms has
long been a focal point of research. While policy-based methods focus on defining the optimal behavior directly,
and value-based methods estimate the value of different actions in a given state, recent advancements have
extended these paradigms. A noteworthy addition to this landscape is Fuzzy Reinforcement Learning, which
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introduces a nuanced approach to decision-making in uncertain environments [44]. Unlike traditional methods
that rely on precise values and policies, fuzzy reinforcement learning leverages fuzzy logic to navigate the inherent
uncertainties of real-world scenarios [45]. This integration of fuzziness into the learning process not only offers
a more adaptive and flexible approach but also aligns well with the challenges posed by complex and dynamic
robotic grasping tasks [46]. Moreover, the evolution of reinforcement learning has seen the emergence of Reverse
Reinforcement Learning (Reverse RL), where the focus shifts from learning optimal behavior to inferring the
underlying reward structure from observed behavior [47]. This approach holds promise in scenarios where defining
a reward function is challenging or impractical, contributing a unique perspective to the exploration. Additionally,
Adversarial Deep Reinforcement Learning (Adversarial DRL) has garnered attention for its ability to address
complex tasks, such as robotic cloth manipulation, without explicit reward function design [48]. By introducing
adversarial elements into the learning process, this technique allows agents to learn near-optimal behaviors through
expert demonstration and self-exploration. The interplay between agent and environment takes on a dynamic and
adversarial nature, further enhancing the adaptability of reinforcement learning methodologies [49]. As we navigate
the landscape of these advanced reinforcement learning paradigms, offering a comprehensive understanding of their
applications and impact on robotic grasping tasks, our focus turns to delve specifically into Deep Reinforcement
Learning (DRL). In the subsequent sections, we will explore the nuances of DRL techniques, their implementation
in robotic grasping scenarios, and the state-of-the-art advancements in this exciting intersection of machine learning
and robotics.

3. Deep Reinforcement Learning for robotic grasping

DL is an excellent tool for processing unstructured environments due to its ability to learn from vast amounts of
data and identify patterns. However, while this aspect is crucial for recognition, it is not equivalent to decision-
making. RL, on the other hand, facilitates decision-making, making it an indispensable feature. And since robotic
tasks, more precisely robotic grasping tasks, require an interaction between the agent and the environment so
merging between DL and RL (DRL) is very crucial to the improvement of robotic tasks. As cited by haarnoja et al.
empirical evidence suggests that model-free DRL is highly effective in various domains, including video games,
as well as simulated robotic manipulation and locomotion [50]. Ibarz et al. discussed the successful application
of DRL techniques in various tasks, including quadrupedal walking, grasping unfamiliar objects, and acquiring a
diverse set of intricate manipulation skills. [51], these case studies demonstrate that DRL is a feasible approach
for learning directly in the real world, using raw sensory inputs, and tackling physically challenging tasks like
dexterous manipulation and walking. The aforementioned research highlights that policies learned through DRL
exhibit effective generalization, as seen in the case of robotic grasping. But before talking about robotic grasping.
Section 3.1 will discuss, generally, different strategies used to learn robotic grasping while section 3.2, will focus
more on the three main algorithms of DRL used nowadays for robotic manipulation, specifically, for the robotic
grasping.

3.1. Robotic Grasping

As mentioned before, robotic grasping is a very challenging and interesting task, that’s why many reviews were
conducted in that context. Here, we’re going to cite the latest reviews on the application of DRL in the grasp
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task. In 2017,provided a concise overview of DRL, with a particular emphasis on the primary algorithms used in
this field [52] . In 2018, Khanzhahi et al. conducted a review and classification of DRL algorithms, highlighting
their advantages and limitations, as well as discussing the challenges that DRL has successfully overcome [53].
Mousavi et al. conducted a review of fundamental DRL algorithms, with a focus on research methodology [54].
In 2019, Chatzilygeroudis et al. described a method for robots to acquire learning using micro-data reinforcement
learning [55]. Bhagat et al reviewed DRL based intelligent soft robotics .[56]. In 2021, Du et al. conducted a
comprehensive thorough study on vision-based robotic grasping, which identified the primary tasks required for
successful vision-based robotic grasping: object localization, grasp estimation, and object pose estimation [57].
Connolly et al. examined the accuracy and realism of models generated by two simulation platforms for simple
robotic grasping tasks [58]. The goal of this review was to investigate the extent to which the resulting models
could accurately represent reality. Marwan et al. conducted an extensive review of various research approaches,
where within the past five years, various techniques such as sensing, learning, and gripping have been utilized.
The review covered a range of topics in these areas [59]. In 2022, Wang et al. classified DRL algorithms and their
applications, and conducted a thorough evaluation of the current DRL methods [60].

3.1.1. Grasping in cluttered environments Robotic grasping is an important aspect of robotics and automation.
It involves the ability of robots to manipulate objects using different mechanisms, such as suction grasping, only
grasping, synergies prehensile and non-prehensile, or multi-functional grippers. In recent years, learning robotic
grasping policies using DRL has gained significant attention as a promising approach. A comprehensive overview
of current research in the field, with a focus on studies related to grasping objects using different mechanisms
relying on DRL methods, will be provided in this subtopic. In 2017, Mahler et al. presented a robot bin-picking
system that uses grasping only, by fine-tuning a Convolutional Neural Network (CNN) for grasp quality using
Dex-Net. Using this approach, the robot was able to achieve high success rates in picking and placing objects
from a bin [61]. In 2018, Morrison et al. introduced Generative Grasping CNN (GG-CNN), a real-time generative
grasp synthesis method that uses a CNN to generate grasp candidates for an object [62]. It was demonstrated that
this method achieved better results in terms of both success rates and execution time compared to other state-
of-the-art methods. Zeng et al. showed that model-free deep reinforcement learning is capable of learning these
synergies from the ground up [63]. Integrated grippers that combine different types of gripping mechanisms have
been developed to enable grasping diverse objects in various operational settings.

Silver et al. introduced a pushing and pick-and-place method using Deep Deterministic Policy Gradient (DDPG)
and Actor-Critic method [64]. Their approach was able to learn to push objects into graspable configurations
and pick them up with a gripper. In 2019,Kang et al. introduced an integrated gripper that merges a suction
gripping system with a linkage-driven underactuated gripper [65]. It may be necessary to perform pre-grasping
manipulation such as shifting or pushing an object, and algorithms have been developed to learn these additional
manipulation tasks. Berscheid et al. developed an algorithm that can learn how to shift objects to increase their grasp
probability[66]. Semantic grasping methods have also been developed to estimate the 6DOF pose for grasping by
robotic manipulators. Zhu et al. introduced a method for robotic semantic grasping that enables estimation of
the 6DOF grasping pose for a robotic manipulator, thereby allowing for a perpendicular grip to be made on the
object’s surface [67]. Murali et al. introduced, using partial point cloud observations, a technique that generates a
strategy for grasping in 6-DOF for any target object in a cluttered environment [68]. Shao et al. proposed a suction
grasping method using Q-Learning and ResNet with U-net (CNN) [69]. Their approach was able to learn to grasp
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objects with suction cups, achieving high success rates in cluttered environments. In 2020, Sarantopoulos et al.
presented a pushing and grasping method using Deep Q-Learning (DQN) [70]. Their approach was able to learn
to push objects into graspable configurations and grasp them with a gripper.Wu et al. introduced a generative
attention learning framework that utilizes a single depth image and circumvents continuous motor control to
achieve high-performance multi-fingered grasping in clutter [71]. The approach developed by Wu et al. successfully
enabled learning of multi-fingered grasping in cluttered settings, allowing for the grasping of objects with several
fingers. A method based on DRL and visio-motor feedback was introduced by Joshi et al. [72] to address the
issue of robotic grasping. Their approach was able to learn to grasp objects by taking into account both visual
and motor information. Kim et al. developed a deep learning-based approach for grasping diverse unseen target
objects in a cluttered environment [73]. Pose estimation of textureless and textured objects is an important aspect
of robotic grasping. A push-grasping policy was learned for grasping a particular object in clutter by Xu et al.
in 2021 [74], utilizing a hierarchical RL framework based on goal-directed conditioning that exhibits efficient
utilization of samples. Their approach was able to learn to push objects into graspable configurations and grasp
them with a gripper. Tang et al. developed a self-supervised approach to train a robot in joint planar pushing and
6-DoF grasping policies [75]. They used two distinct deep neural networks that were trained to map from 3D
visual observations to actions, with the aid of a Q-learning framework. Their approach was able to learn to push
objects into graspable configurations and grasp them with a 6-DoF. Dong et al. proposed an innovative method for
estimating the position/orientation of objects with and without textures by leveraging the objects colors as a crucial
feature for object recognition, particularly for grasping tasks [76].Teaching a robot to identify a desired object by
utilizing its color as a distinctive feature and then locate it and picking it up in an unsupervised manner is another
approach that has been investigated. Mohammed et al. developed a method for training a robot to locate and pick
up objects based on their color [77]. Finally, Sundermeyer et al. proposed an end-to-end network that generates
a probability distribution of parallel-jaw grasps with 6-DoF efficiently, using only depth recordings of a scene,
enabling efficient grasping of objects in cluttered environments [78].

In order to offer a thorough overview of the cutting-edge state-of-the-art accomplishments and upcoming
challenges in this area, presented in Table 1 are the latest research papers on grasping in cluttered environments.

3.1.2. Simulation-to-real-world transfer The field of robotic grasping has a high demand for transfer learning
from simulation to reality. It is important to first conduct simulations in order to fully comprehend the training
environment. One of the major challenges for robots is to learn the skills necessary to adjust to the properties of
grasped objects. Numerous studies have explored this area. James et al. presented a method called Randomized-to-
Canonical Adaptation Networks (RCANs) which addresses the issue of the visual reality gap without relying on
real-world data [83]. Wu et al. proposed an attention mechanism that improves the success rate of grasping objects
in cluttered environments by mapping pixel space to Cartesian space [84]. Fang et al. suggested a framework that
combines planning and learning for efficient exploration in complex environments [85], while Irpan et al. examined
the problem of model selection for DRL in real-world settings [86]. Wu et al. presented a tactile closed-loop method
called MAT, enabling the robot to seize the object even when the hand’s initial location is coarse [87]. Shao et al.
introduced UniGrasp, a method for generating grasping motions that takes into account the geometry of the object
and the attributes of the gripper [88]. RL has also been used to acquire skillful in-hand manipulation policies for
reorienting objects on a Shadow Dexterous Hand in the physical world, as shown by Andrychowicz et al. [89],
and to enable a robot to perform robust object pushing through training, as explored by Clavera et al. [90]. Rao
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Table 1. Latest Research Papers on Grasping in Cluttered Environments: A Summary of State-of-the-Art Achievements and
Future Challenges

Year Application Robot Gripper Learning algorithm Highlight Achievement Future challenges Reference

2019 Push and Pick UR5
A combination of the
suction cup and two
finger gripper

Deep Q-Network
(DQN)

A new system for robotics that
can automatically pick up objects in
scenes that are cluttered.

• The suction cup together with
the two-finger gripper for
grasping is more efficient.

• The active exploration strategy
shows superior performance
compared to methods with
only a static affordance map.

• Improve the system’s robust-
ness and adaptability to a wider
range of object shapes and
sizes.

• Optimize the system’s speed
and accuracy especially in
real-world scenarios.

[79]

2022 Push to grasp UR5 Parallel jaw gripper Self-supervised deep
RL

A DRL approach for teaching robots
how to manipulate objects in clut-
tered environments.

• Effective performance in both
packed and pile object scenar-
ios

• Outperforms the selected SOA
in terms of task completion
rate and grasp success in both
scenarios.

• The limitation of the pushing
strategy when dealing with
objects that are hard to push
due to friction.

• The possibility of grasp
removing non-goal objects.

[80]

2022 Push to grasp UR5 Parallel jaw gripper Truncated Quantile
Critics (TQC)

Push objects to designated goal
locations while avoiding collisions
with other items in the workspace.

Outperforms an existing control-
based method in terms of various
metrics, including constant object
contact and smooth trajectories while
avoiding obstacles.

• Include testing it in real-world
environments and addressing
potential limitations, such as
scalability to more complex
scenarios or robustness to
changes in object dynamics.

• Explore ways to improve the
learning efficiency of the sys-
tem, such as by incorporat-
ing human demonstrations or
leveraging transfer learning.

[81]

2023 Pick and place with
and without grip UR5 RG2 gripper DQN

A framework for self-supervised
and intelligent robotic pick-and-place
operations in environments with clut-
ter

• Achieve the optimal policy by
going through a process of
self-supervised trial and error.

• Promising results in compar-
ison to different variants and
baseline approaches for vary-
ing clutter densities and differ-
ent test cases.

• The feature map concatena-
tion factor of DenseNet-121
results in efficient management
requirements.

• Incorporating these extensions
may result in a system that is
too large, leading to overesti-
mation of future rewards and
potential issues. To improve
efficiency and throughput, it
may be beneficial to explore
Double Q-learning and Duel-
ing Q-learning variants in the
future.

[82]

et al. introduced a loss function named RL-scene consistency loss is utilized to make sure that image translation
is invariant with respect to the Q-values associated with it [91]. Ho et al. proposed RetinaGAN, a GAN-based
approach to achieve consistency in object detection when adapting simulated images to realistic ones [92]. Ding
et al. investigated a sim-to-real approach for incorporating tactile sensing into RL for tasks involving contact-rich
interactions [93], while Lee et al. studyed the problem of robotic stacking with complex objects and propose a set
of challenging objects intended to necessitate sophisticated techniques beyond basic pick-and-place methods [94].
Pedersen et al. proposed a method to transfer a grasping agent trained with DRL from a simulated environment to
a physical robot [95]. They employed a reverse real-to-sim approach, utilizing a CycleGAN to bridge the reality
gap between the simulated and real environments. These studies demonstrate the importance and effectiveness of
simulation and transfer learning for robotic grasping in real-world applications. Table 2 presents the latest research
papers on grasping with a Sim-to-Real transfer, with the aim of offering a thorough summary of the current state-
of-the-art achievements and future challenges in this field.

3.1.3. Robots learning from demonstration Learning from demonstration (LfD) is a significant concept in robotics,
where a robot can acquire new skills by reproducing those of an expert. This model is highly significant in terms
of developing robotics to realise complex tasks such as the grasp task. To this end, many studies and reviews
were conducted, amongst them Zhu et al. [101] which reviewed Recent advancements and progress in the domain
of LfD. In the other hand, Hussein et al. onducted a review of imitation learning methods and outlined various
design options at different stages of the learning process [102]. Imitation learning approaches seek to replicate
human behavior in a specific task, wherein an agent acquires the capability to carry out the task by mapping
observations to actions based on demonstrations. Finn et al. investigated the potential use of inverse optimal
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Table 2. Summarizing State-of-the-Art Achievements and Future Challenges in Grasping with Sim-to-Real Transfer

Year Application Robot Gripper Learning algorithm Highlight Achievement Future challenges Reference

2022 Synergistic pushing
and grasping UR5 RG2 gripper Double DQN

A bifunctional push-grasping syner-
gistic strategy is proposed for goal-
agnostic and goal-oriented grasping
tasks.

• Coordination of goal-agnostic
and goal-oriented grasping
tasks.

• System performance evaluated
in simulation and real world.

• Synergy between pushing and
grasping learned for accurate
and efficient object pickup.

• Pre-trained model in simu-
lation achieved high success
rate in real world without
fine-tuning, indicating practi-
cal feasibility.

N/A [96]

2022 Non-prehensile push
to grasp

Franka Emika
Panda robotic
arm

N/A
DVAE-SAC
(Variational
Autoencoder)

A sim-to-real technique for robotics
applications that enables the transfer
of a trained agent from simulation
to reality without retraining or fine-
tuning the control policy in the real
domain

• Efficient visual manipulation
learning.

• Effective sim-to-real transfer.
• Effective domain adaptation

achieved.

• Performance gap finetuning
potential.

• Handling complex real-world
observations.

[97]

2023 Haptics-based object
insertion

Franka Emika
Panda robot

Soft Robotics Inc.
mGrip gripper SAC

Robot learning system trained in sim-
ulation for contact-rich object inser-
tion with end-effector wrench and
proprioception feedback, transferring
directly to the real robot.

• Robotic learning for object
insertion.

• Adaptability in object inser-
tion.

• Ablation study and compar-
isons.

• Improve performance in spe-
cific scenarios.

• Improve inertial parameter
identification.

[98]

2023 Food scooping with a
spatula

Franka Panda
arm Parallel-jaw gripper The NAF (Normalized

Advantage Functions)

AdaptSim: a framework that focuses
on maximizing task performance
in target environments, rather than
aligning simulation and reality
dynamics.

• AdaptSim for sim-real adapta-
tion.

• Parameter meta-learning for
simulation adaptation.

• Improved real-world training
efficiency.

• Design choices relaxation:
practicality considerations.

• Adaptive updates: step size,
covariance.

• Parameterization effect exami-
nation.

• Differentiable simulation for
speedup.

[99]

2023 Robotic origami fold-
ing

Two robot
manipulators:
one for
folding, the
other for
creasing

• An elongated
gripper: end
manipulation
gripper.

• A roller: form
the crease.

Path planning algo-
rithm

Tackling a challenging robotic
origami step: achieving a
predetermined fold with one
manipulator

• Robust paper folding strategy.
• Proving framework effective-

ness experimentally.
• Real-time folding feedback

algorithm.
• Accurate cardboard folding

achieved.

• Paper crease asymmetry prob-
lem.

• Non-symmetric paper model-
ing.

• Robotic origami through pre-
existing creases.

• Data-driven solutions with
reinforcement learning.

[100]

control (IOC) for learning behaviors from demonstrations, particularly for controlling high-dimensional robotic
systems with torque [103]. Schoettler et al. examined challenging industrial insertion tasks that involve visual
input and different types of natural rewards, including sparse rewards and goal images [104]. They demonstrated
that combining reinforcement learning (RL) with prior knowledge, these tasks can be effectively solved with
a moderate amount of interaction in the real world. Zhu et al. presented a model-free approach to DRL that
utilizes a limited amount of demonstration data to support an RL agent. Their methodology was applied to robotic
manipulation tasks and resulted in the training of policies that involve both visual perception and motor control,
which utilize RGB camera inputs to determine joint velocities in an end-to-end manner [105]. Ragaglia et al.
suggested a resolution to the Robot Learning from Demonstration (RLfD) challenge in dynamic environments.
To demonstrate its efficiency, a set of pick-and-place experiments were performed using an ABB YuMi robot and
the system’s performance was evaluated accordingly. [106]. Recent studies have shown the possibility of training
multi-task deep visuomotor policies for robotic manipulation through various forms of LfD and RL. The end-to-
end LfD architectures’ capabilities have been enhanced by Abolghasemi et al. to encompass object manipulation in
environments with clutter [107]. A low-cost hardware interface has been proposed by Song et al. which can collect
grasping demonstrations from individuals in diverse environments [108]. A dataset of human-robot demonstrations
suitable for training robots for various tasks was presented by Sharma et al. [109]. Kim et al. provided an overview
of robotic cleaning tasks utilizing different control methods [110], while Yang et al. suggested a DL model to
learn robotic manipulation actions from videos of human demonstrations [111]. In contrast, Kilinc et al. suggested
a RL based approach that does not rely on human demonstrations [112]. Smith et al. conducted research on
how automated robotic learning frameworks can help overcome challenges related to defining and scaffolding
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the learning process for multi-stage tasks [113]. Shahid et al. proposed a learning-based approach that utilizes
simulation data to train robots for object manipulation tasks using RL [114]. Sena et al. presented a learning from
demonstration model that takes into account the teacher’s understanding of and influence on the learner [115].
An effective LfD policy for the secure grasping of compliant food objects by robots was proposed by Misimi et
al. [116]. The approach used a blend of RGB-D images and tactile data to estimate the appropriate gripper pose,
gripper finger configuration, and object forces. Ravichandar et al. provided a review of machine-learning methods
used for robot learning from and imitation of a teacher, and discussed the mature and emerging application areas for
LfD, highlighting the significant challenges that remain in both theory and practice [117]. Liang et al. investigated
the feasibility of using LfD for teaching construction tasks to co-robots [118]. Solak et al. proposed n approach for
acquiring in-hand robotic manipulation skills from human demonstrations using Dynamical Movement Primitives
(DMPs). Subsequently, they replicated these tasks using a sturdy compliant controller based on the Virtual Springs
Framework (VSF). The framework utilized real-time feedback from the contact forces recorded on the robot’s
fingertips [119]. Marzari et al. proposed a multi-subtask reinforcement learning (RL) methodology to overcome
the limitations of learning from demonstration [120]. Meanwhile, James et al. discussed a voxel prediction
approach for translation prediction in robotic manipulation and proposed a coarse-to-fine resolution increase [121].
Cai et al. presented a deep imitative reinforcement learning approach for agile autonomous racing using visual
inputs, highlighting the potential of Learning from Demonstration (LfD) for enabling robots to perform complex
tasks by imitating expert behavior [122]. Table 3 here provides a comprehensive summary of the present-day
accomplishments and future hurdles in the domain of robots learning from demonstrations to grasp, by showcasing
the most recent research papers.

Table 3. Summarizing State-of-the-Art Achievements and Future Challenges in Grasping with Robots Learning from
Demonstrations

Year Application Robot Gripper Learning algorithm Highlight Achievement Future challenges Reference

2022 Grasp and release
Franka-Emika
Panda 7-DOF
robotic arm

Parallel jaw gripper
STL-based Bayesian
optimization of LfD
skills

A novel approach that takes into
account precise task requirements
in the context of Learning from
Demonstration abilities.

• LfD algorithm development.
• STL specifies task constraints.
• Robot experiments successful.

• Curse of dimensionality.
• Complicated parameter space

geometry.
• Nested STL exploration.

[123]

2022 Pick and place WidowX 250
robot arm Parallel jaw gripper

DeL-TaCo (Joint
Demo-Language Task
Conditioning)

A multi-task policy is trained on
challenging robotic tasks using a
combination of visual demonstration
and language instruction through
a method called DeL-TaCo (Joint
Demo-Language Task Conditioning).

• DeL-TaCo framework devel-
oped.

• Generalization improvement.
• Human effort reduced.

• Interpretable modular
encoders.

• Leveraging pretrained models.
[124]

2023 Close the box Franka Emika
Panda arm Parallel jaw gripper semi black box BO-

PI2

Bayesian Optimized Policy Search
methods and the Dynamic Bayesian
Network (DBN) are utilized to
improve the learned robotic abilities
via demonstrations of keyframes.

• BO-PI2 development achieve-
ment.

• Dynamic Bayesian Network
use.

• Improved reinforcement learn-
ing.

• Outperforms state-of-the-art.

• Branching policy exploration.
• Handling dynamic

components.
• Extending to work with trajec-

tories.

[125]

2023 Motion planning and
grasp

Franka Emika
Panda arm Parallel jaw gripper

Learning human pref-
erences from kines-
thetic demonstration

Integrating human preferences into
trajectory planning for robotic manip-
ulators.

• Efficient planning demonstra-
tion.

• Low interaction effort require-
ment.

• Extend to shared object set-
tings.

• Explore complex reward for-
mulations.

[126]

3.1.4. Vision-based robotic grasp Various methods have been explored in several studies aimed at developing
vision-based robotic grasping techniques as a means of enabling intelligent robots to perceive and interact with
their surroundings. For instance, Sehgal et al. proposed a Genetic Algorithm (GA) that accelerates the learning
agent [127]. Similarly, Haarnoja et al. employed Soft Q-Learning (SQL), a maximum entropy reinforcement
learning algorithm, to manipulate the robot’s gripper and move it to a specific target position in Cartesian space
[128].A scalable reinforcement learning approach for learning vision-based dynamic manipulation skills has been
developed by Kalashnikov et al. [129]. In a separate study, Du et al. conducted a thorough investigation on the topic
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of vision-guided robotic grasping [57]. Wu et al. proposed a method to mitigate the issue of poor performance
in a stochastic environment by using an Actor-duelling-Critic (ADC) algorithm [130]. Lin et al. introduced a
UAV vision-based aerial grasping system to capture target objects [131]. Nonetheless, these discrete settings have
not yet been investigated in practical applications involving state-action spaces that are continuous and of high
dimensions. To address this issue, Bodnar et al. developed Quantile QT-Opt (Q2-Opt), a distributional variant of
distributed Q-learning algorithm, for continuous domains and evaluated its performance in both simulated and real
vision-based robotic grasping tasks [132]. Additionally, Kobayashi et al. proposed a Reward-Punishment Actor-
Critic (RP-AC) algorithm to optimize robot trajectory by acquiring suitable rewards [133], while Demura et al.
used the You Only Look Once (YOLO) object detection approach to identify the optimal grasp point for stable
manipulation in their Q-Learning grasping motion acquisition method [134]. This technique enabled the robot
to pick up the uppermost folded towel from a stack and place it on a table. Kim et al. demonstrated that deep
learning-based techniques with direct visual input can achieve state-of-the-art results for robotic grasping in a
cluttered environment with diverse unseen target objects [73]. Julian et al. introduced a robot learning framework
that allows for continuous adaptation [135], whine an approach that utilizes a reproducible sensor for precise and
haptic grasping was proposed by Song et al. [136]. Muthusamy et al. proposed a novel dynamic finger system that
utilizes vision to detect and suppress object slippage, and presented a baseline and feature-based method to detect
slippage in the presence of illumination and vibration uncertainty [137]. Chen et al. suggested a framework for
robotic visual grasping based on DRL, which has demonstrated effectiveness in learning complex control policies
independently by training visual perception and control policy separately instead of end-to-end [138]. A simulated
standard for evaluating robotic grasping that prioritizes off-policy learning and the aptitude for generalizing to
unfamiliar objects was introduced by Quillen et al., highlighting the significance of diversity in facilitating the
adaptation of the approach to novel objects that were not encountered in the training phase, as off-policy learning
facilitates the usage of grasping data across a broad spectrum of objects [139]. Danielsen et al. explored diverse
robotic manipulation and grasping techniques, and demonstrated through two PyBullet experiments the possibility
of using DRL techniques to teach a robotic arm, which possesses seven degrees of freedom, how to grasp objects
[140]. In another comprehensive survey, Kleeberger et al. presented a summary of ML techniques utilized for
vision-based robotic manipulation and grasping [141]. Liu et al. noted that manipulators still face the challenge
of only being able to grasp specific objects, unlike human beings that can use brain decision-making to pick up
unfamiliar objects [142]. Reinforcement learning is often used in academia to train grasping algorithms, but it
encounters issues such as insufficient algorithm stability, poor sample utilization, and limited exploration. To solve
these problems, Liu et al. proposed using LfD, BC, and DDPG [142]. Grimm et al. presented a comprehensive
system that encompasses stone segmentation, the creation of grasping hypotheses, and the implementation of
pushing actions to achieve sturdy stone grasping [143]. Although reinforcement learning techniques have been
effective, they are yet to achieve widespread success in various robotic manipulation tasks. To address this issue,
James et al. presented an Attention-driven Robotic Manipulation (ARM) algorithm, which has the potential to
tackle a variety of tasks with sparse rewards, requiring only a few demonstrations [144]. To overcome the challenge
of actor-critic deep reinforcement learning methods struggling with the grasping of varied objects, especially in
cases where learning is based on raw images and rewards that are sparse, Kim et al. utilized state representation
learning (SRL) to capture crucial information for future use in RL [145]. In the field of robotic grasp, Cao et
al. introduced a neuromorphic vision sensor named dynamic and active-pixel vision sensor (DAVIS) [146]. On
the other hand, Wang et al. developed A learning system referred to as the Remote-Local Distributed (ReLoD)
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system, which operates in real-time. It distributes calculations of two DRL algorithms between a local and a remote
computer [147]. Table 4 presents a comprehensive summary of the current achievements and future challenges in
the field of vision-based robotic grasping. The table includes the most recent research papers.

Table 4. Summarizing State-of-the-Art Achievements and Future Challenges in Vision-based robotic grasping

Year Application Robot Gripper Learning algorithm Highlight Achievement Future challenges Reference

2021 Grasp a whole set of
objects

Franka Emika
Panda arm Two parallel fingers

GloCAL: Glocalized
Curriculum-Aided
Learning

GloCAL algorithm clusters discrete
tasks based on their evaluation scores
to generate a learning curriculum for
agents.

• Automatic curriculum learning
algorithm.

• Superiority of the algorithm.

• Parallel processing extension.
• Adaptive policy approach.
• Real-world efficiency testing.

[148]

2022

Turning on a light,
pulling cloth from
shelf, pulling a toy
car, taking a lid off a
saucepan, and folding
a towel

Franka Emika
Panda arm Parallel jaw gripper

C2F-ARM (Coarse-
to-Fine Attention-
driven Robot
Manipulation)

A coarse-to-fine discretization strat-
egy, which replaces actor-critic meth-
ods that are prone to instability and
require large amounts of data.

• C2F-ARM algorithm develop-
ment.

• Sample-efficient learning algo-
rithm.

• Simplification of ARM sys-
tem.

• Support for multiple cameras.
• Investigating voxelization

improvements.

• Voxel value expressiveness:
Enhance small-scale detail.

• Dynamic path planning: Navi-
gate complex environments.

• Continuous residual
refinement: Improve output
pose precision.

• Multitask/few-shot evaluation:
Assess system versatility.

[121]

2022 Grasp on the Moon

A Robotnik
Summit XL-
GEN mobile
manipulator
that features a
Kinova Gen2
robotic arm
with 7DOF

Three-finger mechani-
cal gripper

Truncated Quantile
Critics (TQC)

One potential use of deep reinforce-
ment learning is for visually-guided
robotic grasping of objects situated
on the Moon.

• Robotic grasping on Moon.
• 3D vs 2D observations.
• Domain randomization investi-

gation.
• Sim-to-real transfer demon-

stration.

• Enhancing stability in diverse
environments.

• Ensuring robustness for space
robotics.

[149]

2023
• Press Button
• Pick Shed
• Open Drawer

WidowX 250
five-axes robot
arm

Parallel jaw gripper SAC-CQL and Synap-
tic Intelligence

Evaluate the efficacy of
regularization-based techniques for
offline RL of robotic manipulation
tasks that rely on visual input
performed in a sequential manner.

• Investigated catastrophic for-
getting.

• Used SAC-CQL and SI.
• Tested different task scenarios.
• Task order affects learning.
• Prior knowledge importance.

• Improve knowledge transfer.
• Integrating prior knowledge.
• Experiment extension for pat-

terns.

[150]

3.2. DDPG, TD3, SAC

Figure 4. The reasoning behind model-free off-policy algorithms

Stat., Optim. Inf. Comput. Vol. 12, March 2024



584 REVIEW OF REINFORCEMENT LEARNING FOR ROBOTIC GRASPING

The balance between exploring new options and exploiting existing knowledge is a well-known occurrence in
RL. The agents must experiment with various choices in order to choose better options, but as they approach closer
to the ideal course of action, they must make use of what they already know. Behavior guidelines are employed
as the policy to interact with the environment and as a tool for exploration during training. On the other hand,
target policy refers to the policy that the agent tries to learn. This reciprocity between behavior policy and target
policy is conventional for on-policy and off-policy learning. While on-policy methods need the agent to act in
accordance with the learned policy, off-policy methods can learn the best policy regardless of the behavior policy
which is best suited to robotics applications [151], [139]. Furthermore, in the context of robotics, most actions, and
state spaces are continuous. To handle continuous action spaces efficiently without losing adequate exploration, it’s
better to merge between value-based and policy-based approaches [152].Value-based and policy-based techniques,
commonly known as model-free methods, do not utilize any environment model, thereby reducing their sample
efficiency [152], [153]. Figure 4 resumes the reasoning mentioned above. That’s why in this section we’ll do a
thorough study of three of the main model-free off-policy DRL algorithms: Deep Deterministic Policy Gradient
(DDPG), Twin Delayed DDPG (TD3), Soft Actor-Critic (SAC).

3.2.1. Deep Deterministic Policy Gradient As mentioned earlier, QL was a real breakthrough in RL, it is an off-
policy TD algorithm that aims to learn the optimal action-value functionQ(s, a). OnceQ(s, a) has been learned, the
policy can be derived from it. However, this algorithm is not suitable for large state-action spaces because there may
be many unvisited regions, and it cannot generalize to state-action pairs that have not been visited. In other words,
the algorithm’s effectiveness is limited to small state-action spaces. The utilization of Deep Q-Learning is preferred
due to its effectiveness when dealing with more complex state and action spaces. In such cases, Deep Learning
is used as a function approximator to achieve optimal results. The process of function approximation involves
creating an approximation of the Q-function based on examples of an agent’s interactions with the environment.
This technique enables the algorithm to generalize from states that have been visited by the agent to states that
have not been visited, resulting in a substantial decrease in the quantity of states of states that need to be visited to
reach an approximate solution. Besides being a DRL algorithm, Deep Q-Learning (DQL) is the act of combining
Q-Learning with a deep neural network, and a deep neural network that approximates a Q function is called a
deep Q-Network (DQN). It is important to note that in such a thriving field like AI, many terms are not fully
established. For instance, DQL can also be referred to as DQN which can lead to confusion. Thus, before getting
into the explanation of DQL, here is Table 5 that attempts to enlighten the differences between Q-learning (QL),
deep Q-learning (DQL), and deep Q-network (DQN) so that no skepticism occurs.

If a neural network is used, the Q-function is represented by a function that has parameters defined by the weights
w. This means that, with each iteration, in lieu of modifying the Q values, the parameter vector w, which specifies
the function, is updated instead:

W ←W + α[r + γmaxat+1Q(st+1, at+1, w)−Q(s, a, w)]▽w Q(s, a, w) (1)

where▽wQ(s, a, w) is the gradient. To select optimal actions with DQN, The Neural Network (NN) takes an input
state s and its outputs are going to be the q values corresponding to different actions within the action space if the
actions are discrete. If they’re not, then it couldn’t enumerate all the actions in this manner. In the discrete set, to
use the DQN values to select actions to convert it into a policy and select the optimal actions in the environment, all
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Table 5. Dissimilarity between QL, DQL and DQN

Questions QL DQL DQN

Is it an RL algorithm? Yes Yes No

Does it use neural networks? No Yes No

Is it a model? No No Yes

Can it deal with continuous state
spaces? No Yes Yes

Can it deal with continuous action
spaces? Yes Yes Yes

Does it converge? Yes Maybe Maybe

Is it an online learning algorithm? Yes No No

that should be done is take the argmax over a of Q(s,a) by taking the maximum of all of those discrete set of values
and get a* and that’s also our policy π(s). The described policy is employed to choose actions once the Q-Network
has been trained. However, it is worth noting that a similar process occurs even during the training phase. During
training, the Bellman targets are set as the Q targets.

y = Rt+1 + γmaxat+1
Q(st+1, at+1) (2)

So overall, all the agent has to do is take the maximum of a discrete set of values. On the other hand, in the
continuous set there is no meaningful way to enumerate the actions, so some modifications should occur on the
Q-Network. The NN can take the state s and action a as input and output Q(s,a) but there is still going to be a
problem here which is that the policy can’t be simply set based on the argmax over a. So this looks a bit like an
optimization problem where for each state the agent has to determine the best action given the action input and
this will be too expensive. There is one potential solution to overcome this problem. Let’s train a NN to produce
the outputs of this optimization problem by mapping the input state to this output action a* which is the solution
of this optimization problem. So the network takes in s as input and produces the best action a* as output which
remembers us of what the optimal policy should be doing, so let’s call this network the policy network. To train this
to maximize the q function, the Q-function is parameterized in a Q-Network and the training will occur by using
the standard squared bellman error loss L =

∑
(Qtarget −Q)2 and it’s very common to call this kind of setup an

actor critic setup where the policy is called the actor obviously because it produces the actions and the Q-Network
is called the critic because you can think of it as evaluating a state action tuple and saying how good it is which
is exactly what q is. So this is the actor-critic algorithm and this algorithm where you can take DQN and modify
it in this way to work well with continuous actions is called Deep Deterministic Policy Gradient (DDPG) and this
method is quite often used in robotics.

• Some related work: Kerzel et al. put forward a novel method to tackle the challenge of collecting a
vast number of training samples within a reasonable time frame, and demonstrated their method on a
reach-for-grasp task that employs the Deep Deterministic Policy Gradients (DDPG) algorithm [154]. The
goal-auxiliary DDPG algorithm, introduced by Wang et al., facilitates the effective acquisition of policies
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for controlling grasping in 6 dimensions (6D) from point cloud data. This approach entails utilizing
demonstrations from a specialist grasp planner and motion, moreover, it incorporates anticipation of grasping
objectives as an additional task to enhance the performance of both the critic and the actor. [155]. Wang
et al. also proposed the experience-based policy gradient method (EBDDPG), which promotes smooth
robot movements. Results demonstrated that this method improves the success rate of grasping tasks and
encourages smoother manipulation [156]. Controlling the gripping of a robot arm can be improved by using
the enhanced DDPG reinforcement learning algorithm introduced by Qi and Li [157]. In addition, Beik
Mohammadi et al. presented an online continuous deep reinforcement learning approach for a reach-to-grasp
task in a mixed-reality environment [158].

• Open problems: When using reinforcement learning with discrete action spaces, sub-optimal policies can
arise due to a problem called overestimation bias. In continuous control settings, deterministic policy
gradients can also suffer from overestimation bias [159]. Overestimation bias is a familiar issue within
algorithms for reinforcement learning that are based on value estimation, such as DDPG and deep Q-
networks, that arise from function approximation and can lead to sub-optimal policies [160]. To overcome
this issue, a modified version of the DDPG algorithm, called Twin Delayed Deep Deterministic Policy
Gradient (TD3), has been proposed.

3.2.2. Twin Delayed Deep Deterministic Policy Gradient Twin-Delayed DDPG (TD3) is a highly intelligent deep
reinforcement learning model that combines the latest methods in AI. These include continuous Double Deep Q-
Learning, actor-critics, and policy gradient [161]. As outlined in the previous section, TD3 comes in to improve
the approximation error [162] [161] [163] [163]. TD3 is a modified version of DDPG that incorporates several
techniques to address the overestimation of the value function. These techniques include Target Policy Smoothing,
Delayed update of Target and Policy Networks, and Clipped Double Q-learning. Let’s go into details, TD3 uses
2 critics, from which the word twin comes so each critic has different values of the Q-value. The TD3 algorithm
can be seen as two parts: the QL part of the training process and the policy learning part. In the part QL, first, the
replay memory is initialized, then for the actors, two NN are built, one NN for the actor model and one NN of the
actor target. For the critics, two NN are built for for the critic model and two NN for the critic targets. So in total,
there are 2 actor NN and 4 critic NN. Here’s an overview of the training process of these neural networks:
Actortarget→ Critictarget→ Critictarget→ Criticmodel→ Criticmodel→ Actormodel

After building these NN, a batch of transitions (s, st+1, a, r) is sampled from the memory. Then for each element of
the batch, The actor target plays the next action at+1 form the next state st+1 then a Gaussian noise is added to this
next action at+1 and clamped within the scope of values that the environment accommodates. Afterwards, the two
critic targets take (st+1, at+1) as input and output two Q-values Q1(st+1, at+ 1) and Q2(st+1, at+ 1). Only the
smaller of the two Q-values is kept, representing the estimated value of the following state. This minimum allow
us to get the final target which is:

QT = r + γmin(Q1, Q2) (3)

Each couple (s,a) is inputted into both critic models and they output two Q-Values Q1(s, a) and Q2(s, a) which are
compared to the minimum critic target. Then the loss between the two critic models is computed through:

CriticLoss =MSELoss(Q1(s, a), QT ) +MSELoss(Q2(s, a), QT ) (4)
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In order to reduce the critic loss, the parameters of the two Critic models over the iterations are updated with back
propagation and the weights are updated through stochastic gradient descent.

Moving to the policy learning part, the Q-values of the critic models are used to perform gradient ascent to
maximize the returns. Once the actor model is updated, the agent returns better actions which maximizes the Q-
values and the agent moves nearer to the optimal return. In other words, every d iterations, the actor model is
updated through gradient ascent on the output of the first critic model. Then every d iterations, the actor target’s
weights is updated through Polyak averaging:

θ′i ← τθi + (1− τ)θ′i (5)

The equation mentioned consists of four components, the first component θ′i represents the actor target parameters,
the second component τ denotes a small number, the third component θi represents the actor model parameters,
and the last component θ′i represents the actor target parameters before updating. This equation can be interpreted
as a gradual transfer of weights from the actor model to the actor target, which results in bringing the actor target
closer to the actor model with each iteration. Thus, the actor model learns from the actor target, which stabilizes
the learning process. Similarly, after every d iterations, the weights of the critic targets are updated in a similar
manner through polyak averaging.

ϕ′ ← τϕ+ (1− τ)ϕ′ (6)

In this TD3 algorithm, ϕ denotes the parameters of the critic target. The delayed aspect of this approach is due
to the fact that the actor and critic are updated only every d iterations, which is intended to enhance performance
compared to the standard DDPG technique.

• Related work: Hou et al. introduced RTD3, a modified version of the TD3 algorithm, to tackle the problem
of overestimation bias in multi-degree of freedom manipulator learning through deep reinforcement learning
[164]. Overestimation of Q-values by the learned Q-function is a common problem with DDPG, which may
cause the policy to break, as it exploits the Q-function’s errors. To address this issue, M et al. combined TD3
with Hindsight Experience Replay (HER) [165]. Khoi et al. utilized the TD3 algorithm along with a novel
reward model to simulate the gait of a 6-DOF biped robot in a Gazebo/ROS environment [166]. Yang and Xu
aimed to design a robot that can aid in warehouse object grasping using various DRL algorithms, including
TD3 [167].

• Open problems: According to Nguyen and La [33] as well as Nian et al. [168], some of the recent successful
RL algorithms, including Trust Region Policy Optimization (TRPO), Asynchronous Actor-Critic Agents
(A3C), and Proximal Policy Optimization (PPO) are prone to sample inefficiency. In contrast, off-policy
methods based on Q-learning, like the Deep Deterministic Policy Gradient (DDPG), and Twin Delayed
DDPG (TD3) are less susceptible to this issue. They utilize replay buffers to efficiently learn from past
samples. However, these off-policy methods based on Q-learning are highly sensitive to hyper-parameters
and need a significant amount of tuning to achieve convergence. To address the issue of convergence fragility,
Soft Actor-Critic (SAC) adopts a similar approach as the aforementioned methods and integrates techniques
to combat this challenge.

3.2.3. Soft Actor-Critic Soft Actor-Critic (SAC) is also a DRL algorithm defined for continuous actions. The three
main components of SAC are: an actor-critical architecture with distinct networks of policies and value functions,
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a formulation that is not limited by the policy used to collect the data and enables the utilization of previously
gathered data to enhance effectiveness. Additionally, it includes the maximization of entropy to guarantee stability
and promote the exploration of alternative options.

SAC uses a modified RL objective function and its main goals are to optimize both the policy’s rewards and
entropy. The concept of entropy refers to the level of unpredictability associated with a random variable. The
reasons behind wanting the policy to have high entropy are: to encourage exploration, to induce equal probabilities
for actions that have either equal or almost identical Q values, to make sure that the policy does not break down
by repeatedly selecting a specific action that could potentially take advantage of any inconsistencies within the
estimated Q function. With all the mentioned above, SAC algorithms can overcome the brittleness problem. And
its objective function to maximize the expected return and the entropy at the same time is:

J(π) =

T∑
t=0

E(st,at)∼ρπ [r(st, at) + αH(π(. | st))] (7)

In order to achieve this optimization, SAC uses 3 networks: a state-value function V parametrized by ψ, a soft
Q-function Q parametrized by θ and a policy function π parametrized by ϕ.

The Value network can be trained by minimizing:

JV (ψ) = Est∼D
[
1

2

(
Vψ(st)− Eat∼πϕ

[Qθ(st, at)− log πϕ(at | st)]
)2]

(8)

This equation implies that across all states sampled from the replay buffer of the experiment D, it is necessary to
reduce the squared difference between the value network prediction and the anticipated prediction of the function
Q added to the political function π entropy (here, the negative log of the policy function measures it).

To train the Q-Network, the following error should be minimized:

Q̂(st, at) = r(st, at) + γEst+1∼p[Vψ(st+1)] (9)

This means that for all (s,a) pairs within the experiment’s replay buffer, one aims to reduce the squared difference
between the Q-Function’s prediction and the immediate reward plus the updated awaited value of the following
state. V is the target value function here. And to train the policy network, the following error should be minimized:

Jπ(ϕ) = Est∼D[DKL(πϕ(. | st) ∥
exp(Qθ(st, .))

Zθ(st)
)] (10)

Essentially, this objective function is intended to cause the policy function distribution to more closely resemble
the distribution of the exponentiation of the Q-function standardized by a different Z-function.

• Some related work: Chen and Lu proposed a system for object grasping that combines object detection
techniques and the Soft-Actor-Critic (SAC) algorithm, using an approaching-tracking-grasping scheme
[169]. Feldman et al. introduced an approach to self-supervised reinforcement learning using a hybrid
discrete-continuous adaptation of SAC [170]. Shahid et al. suggested a learning-based approach for object
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manipulation using simulated data and two model-free reinforcement learning algorithms: SAC and Proximal
Policy Optimization (PPO) [171].

• Open problems : Haarnoja et al. proposed the SAC algorithm to combat convergence brittleness observed
in the other off-policy model free DRL algorithms (DDPG, TD3) [172]. But it turned out that the SAC
algorithm also suffers from brittleness due, this time, to the alpha temperature that regulates exploration.
To overcome this problem, the authors suggested automatic temperature tuning. Haarnoja et al. adapted this
solution, however, another situation occurred which is the high variance problem [173]. These limitations are
still configuring as open issues to this day.

4. Discussion and quantitative analysis

Determining the best algorithm to realize the grasping task is still debated by many researchers. On-policy or off-
policy? Policy-based or value-based? Model-based or Model-free? The review determined, based on the current
state-of-the-art, which algorithm is the best fit for continuous control applications such as the grasping task. The
paper stated that all-in-one off-policy, model-free algorithms, including DDPG, TD3, and SAC, have been the
most effective ones thus far. To support this statement, Table 6 was synthesized in the third section that included
most of the algorithms used for learning the grasp task. All the papers reviewed in the study showed that the
SAC algorithm outperforms the other off-policy algorithms. It is worth noting, however, that the papers also
evaluated the performance of both off-policy algorithms and on-policy algorithms. Haarnoja et al. proposed the
soft actor-critic, an off-policy actor-critic DRL method built on the framework of maximum entropy [172]. In
this approach, the actor strived to maximize both entropy and expected reward. Their strategy delivered state-
of-the-art performance on a variety of continuous control benchmark problems by combining off-policy updates
with a stable stochastic actor-critic formulation. SAC, as an algorithm based on the maximum entropy principle,
showed superior performance compared to baseline methods in terms of both learning time and final performance,
particularly in challenging tasks. It also demonstrated better sample efficiency and ultimate performance than
state-of-the-art techniques in previous studies. In contrast to PPO, which struggled with complicated and high-
dimensional tasks, SAC was able to learn quickly due to its ability to handle large batch sizes. These results suggest
that maximum entropy principle-based algorithms may be more effective in challenging tasks. The researchers
developed a soft actor-critic algorithm based on these findings, which was shown to outperform state-of-the-art
model-free deep reinforcement learning techniques such as DDPG and PPO. As a following work, Haarnoja et
al. described SAC and thoroughly assessed SAC on a number of benchmark tasks as well as difficult real-world
tasks including quadrupedal robot mobility and manipulating robots with a dexterous hand [173]. By making these
adjustments, SAC surpassed the performance of earlier on-policy and off-policy approaches in terms of sample
efficiency and asymptotic performance, achieving state-of-the-art performance. Additionally, they showed that, in
contrast to other algorithms that are off-policy, their method exhibits considerable stability and achieves similar
performance across different arbitrary seeds.. These findings imply that SAC is a strong contender for learning in
practical robotics challenges. Their empirical research demonstrated that SAC, which can be used to train deep
neural network policies and does not require any environment-specific hyperparameter tuning, can perform on par
with or better than state-of-the-art model-free deep RL methods like the off-policy TD3 algorithm and the on-
policy PPO algorithm. Chen and Lu demonstrated that their developed system, which separates object detection
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from DRL control, enables autonomous grasping of a moving object with varying trajectories [169]. Even though
gripping a moving object in an unstructured environment is a challenging task, the actual experiment showed that
the recommended intelligent system can produce encouraging outcomes with the SAC algorithm. Better outcomes
than with DDPG or TD3 algorithms. Ünal [174] examined the controller strategies for a pick-and-place operation
using a bi-rotor aerial manipulator. In addition, they studied how the change in the goal location of the object that the
aerial manipulator must transport affects the training of the learning approaches and looked at the implications of
manipulator degrees of freedom for DRL approaches. In their experiments, they analyzed the on-policy algorithms
first. No matter how little their final mean reward differences were, TRPO outperformed PPO in terms of overall
performance. PPO learned more quickly than the TRPO algorithm. Their results indicated that all approaches, with
TRPO being the most stable, had similar mean episode lengths at the conclusion of training. PPO obtained high
success rates more quickly than any other algorithm. Afterward, They analyzed the off-policy algorithms. When
compared to the others, DDPG converged to a somewhat worse mean reward. They all arrived at a similar mean
episode duration throughout training, with the SAC algorithm being the finest and the DDPG algorithm being the
least efficient as expected, given SAC and TD3 build upon DDPG and attempt to increase its convergence and
stability. Additionally, they displayed the mean success rates of the three off-policy algorithms during training,
and once more, the results are the same: SAC and TD3 achieve very similar success rates, while DDPG achieves
the worst. All of them achieved a respectable success rate almost simultaneously, with DDPG being a little bit
slower. Subsequently, they compared the best on-policy and off-policy algorithms (SAC and TRPO). Compared to
the SAC algorithm, TRPO was superior. This may be the case since the SAC algorithm’s hyperparameters were
not specifically tuned for the task at hand given the small difference between them. TRPO was superior in terms
of time duration, but in terms of the number of time steps the results show that this is not the case. So the overall
result stated that off-policy algorithms are demonstrably considerably more sample-efficient. Here, [171], PPO and
SAC were studied, the fine-tuning approach, which displayed the continual adaptation of on-policy RL to changing
contexts and enabled the acquired policy to adjust and execut the revised task, was offered to quicken the learning
process. It was shown that the learned control strategy may be applied to a variety of object geometries and initial
robot/part configurations. In fact, SAC should have acquired the task at a faster rate in terms of the number of
episodes required because this is an off-policy algorithm that utilizes previously recorded transition data stored in
a replay buffer. The training performance of the SAC algorithm and the PPO algorithm for the considered gripping
task were compared in order to validate this notion. During the initial 2 million time steps of both algorithms, the
mean reward and the number of successful episode steps were plotted, and a comparison was provided. The SAC
algorithm learned to amass substantially greater average rewards than PPO and to complete tasks in just 2M time
steps, confirming the premise, while PPO failed to complete tasks for the same amount of episodes. The results
for both methods, however, were considerably different when the average reward and the count of successful
episode steps were studied against the wall time. As seen in the results, with the SAC’s off-policy updates, the
rewards obtained during each update iteration are lower compared to PPO’s on-policy updates. When obtaining
new experience incurs significant costs and computational resources are not a concern, off-policy approaches such
as SAC may be more favorable.
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Table 6. Summary of the key findings of the SOA robotic grasping that considered closely related works

Year Application Robot Gripper and features Simulation env Learning algorithm Study methodology Key findings Reference

2018

Evaluation of SAC
against both prior off-
policy and on-policy
DRL algorithms
across a variety of
continuous control
tasks, including the
grasp task.

N/A N/A • OpenAI gym
• rllab

• SAC
• DDPG
• TD3
• SQL
• PPO

SAC’s performance is compared to
that of earlier methods on a variety
of difficult continuous control tasks
from the OpenAI gym benchmark
suite as well as on the Humanoid
task’s rllab implementation

• In terms of learning time
and final performance, SAC
surpasses baseline approaches
by a significant margin on the
harder tasks while performing
comparable to them on the
easier tasks

• Although SQL is likewise
capable of learning all tasks,
its asymptotic performance is
inferior and it is slower than
SAC

[172]

2018
• Mobility
• Robotic manip-

ulation

•
Minitaur
robot

•
Dynamixel
Claw

• Quadruped
with eight
direct-drive
actuators

• Dexterous hand
with 3 fingers

• OpenAI gym
• rllab

• SAC (learned temperature)
• SAC (fixed temperature)
• DDPG
• TD3
• PPO

Five separate iterations of each algo-
rithm were trained using various ran-
dom seeds, and each carried out an
evaluation rollout every 1000 envi-
ronmental steps. For SAC, there are
two versions included: one where
the temperature parameter is fixed,
treated as a hyperparameter, and
tuned for each environment sepa-
rately. The other version uses an auto-
matic temperature adjustment

In The most difficult tasks, the
soft actor-critic method consistently
outperforms both on-policy and off-
policy techniques

[173]

2018 Grasp and lift a set of
simple objects ABB Yumi

• Parallel-jaw
gripper

• Depth camera

• Pybullet
• 3DNet TRPO

• Training the model in simula-
tion

• Evaluating the model in both
virtual and real-world experi-
ments

• Training on large workspace:
success rate = 0 even after 200
policy iterations due to failure
of exploration

• Training on a small workspace
achieved a perfect score on the
same task

[175]

2020

Several robotic arms
working together to
learn a common strat-
egy to reach an object

Kuka arm N/A Bullet physics engine PPO
Variability in the agents’ capacity to
see and act with precision in depend
on the environment’s perturbance

Variable performance has the biggest
impact on the network’s ability to
converge, even while interruptions in
robots’ ability to correctly actuate
have had a much lesser impact than
those in their ability to consistently
sense the position of the item

[176]

2020
Push and grasp to
manipulate objects in
clutter

Baxter Parallel grippers MuJoCo TD3

• Policy: decides where to start
pushing and pushing direction
based on the current image

• Policy training: TD3
• Grip detection: rule-based

method

The algorithm is capable of removing
many objects with high effectiveness
and success rates

[177]

2020 Reach to grasp in clut-
tered environment Pepper Realsense D435 cam-

era Qibullet PPO

Two robots are employed in the
simulated environment in this study;
one is operated by the PPO algorithm
while the other is placed in random
locations

The PPO method assisted in applying
a simulation-trained action module
policy. When tested on an actual robot
and in simulation, the developed
strategy was able to offer motion
gestures that successfully contacted a
moving object

[178]

2021 Reach to grasp Dual arm robot 7-DOF Gazebo SAC

• SAC-based motion planning
is used to demonstrate how
to dynamically prevent self-
collision, joint limitations, and
singularities as well as how to
direct the arm to the desired
position

• Testing the model in simula-
tion

• Testing the model in the real
world

• The correct choice of network
inputs and reward functions
has a significant impact on the
outcomes of network training

• The suggested approach does
an excellent job of preventing
the issues of self-collision,
joint limit, and singularity

[179]

2021

Sim-to-real
approaching-tracking-
grasping moving
objects

Baxter parallel grippers CoppeliaSim
• SAC
• TD3
• DDPG

• Training process with SAC in
simulation

• Comparison between SAC,
TD3 and DDPG

• Testing of the trained model
and policy on a real robot to
evaluate the grasping system
proposed

• With the SAC algorithm, the
training converges with a fair
reward and a success rate after
100,000 episodes

• After the same number of
episodes with DDPG and TD3
,training converges with a less
just reward and success rate

• A simulation-trained
SAC-based policy can be
successfully used in reality.
This is because the background
environment, robot dynamics,
and object recognition in the
simulation and the real world
are different.

[169]

2021 Aerial manipulation
pick and place tasks

UAV with a
robot arm N/A

• Box2D physics
engine

• OpenAI’s gym

• A2C
• TRPO
• PPO
• DDPG
• TD3
• SAC

• On-policy Algorithm Analysis
• Off-policy Algorithm Analysis
• On-policy vs. Off-policy Algo-

rithms analysis

• No matter how little their final
mean reward differences were,
TRPO outperformed PPO in
terms of overall performance.
PPO learnt more quickly than
TRPO.

• SAC and TD3 get relatively
similar success rates to those of
the three off-policy algorithms
during training, but DDPG
earns the worst outcomes.

• TRPO is superior than the SAC
algorithm in terms of time
duration, however when the
graphs are displayed in terms
of the number of time steps,
TRPO is not superior.

• Off-policy algorithms are
demonstrably considerably
more sample-efficient.

[174]

2022
Grasping in cluttered
environment (bin-
picking)

Franka Emika
Panda arm

• Realsense
D415 camera
on the robot
gripper

• Parallel gripper

Pybullet DDPG

This approach improves the perfor-
mance of both the actor and the critic
through the utilization of demonstra-
tions from an expert motion and grasp
planner, as well as employing grasp-
ing goal prediction as an auxiliary
task

Optimal performance is achieved
when both the performer and the
critic are assigned the goal-auxiliary
task

[155]
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5. Conclusion

The research paper presents an extensive examination of different Reinforcement Learning (RL) algorithms
intended for robotic grasping tasks, concentrating particularly on Deep Reinforcement Learning (DRL) algorithms.
The study highlights the most effective DRL algorithms for handling complex and challenging tasks, such as
grasping. Additionally, to simplify the research process for others, the paper provides a collection of different
forms of DRL grasping tasks. The analysis indicates that model-free off-policy approaches, such as DDPG,
TD3, and SAC, are more suitable for robotic applications, especially for continuous actions. The study concludes
with a summary of the benefits and drawbacks of RL and a deep analysis of the most prominent algorithms in
robotics grasping, along with open problems for further research. The insights presented in this paper emphasize
the importance of continued research and development of DRL algorithms to enhance the capabilities of robots
in handling complex and challenging tasks. Overall, this study contributes to advancing the field of robotic
manipulation and provides a useful resource for researchers seeking to explore the potential of RL in robotics
grasping.

A. Nomenclature

• I2A : Imagination-Augmented Agents
• MBMF : Model-Based Priors for Model-Free Reinforcement Learning
• MBVE : Model-Based Value Expansion
• A2C : Advantage Actor Critic
• A3C : Asynchronous Advantage Actor Critic
• PPO : Proximal Policy Optimization
• TRPO : Trust Region Policy Optimization
• DQN : Deep Q-Learning
• C51 : Categorical DQN
• QR-DQN : Quantile Regression DQN
• HER : Hindsight Experience Replay
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