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Improved estimation of the sensitive proportion using a new randomization
technique and the Horvitz–Thompson type estimator
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Abstract Randomized response techniques efficiently collect data on sensitive subjects to protect individual privacy. This
paper aims to introduce a new randomizing technique in the additive scrambled model so that privacy is well preserved and
the estimator’s efficiency for the sensitive population proportion is improved. Also, a Horvitz–Thompson type estimator is
presented as an unbiased estimator of the sensitive proportion of the population, then convergence to the normal distribution
for the Horvitz–Thompson type estimator is considered by the entropy of the inclusion indicators in the Poisson sampling.
Eventually, using the new additive scrambled model, the ratio of taking addictive drugs is estimated among students of the
University.
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1. Introduction

The researchers are usually interested in sensitive subjects in survey sampling. Sensitive issues may be too personal
or upsetting and some cases, illegal. So if the interviewer asks the interviewees directly the sensitive question, the
estimation of the sensitive proportion would be biased largely due to non-responses or incorrect answers. Warner
[26] proposed the randomized response technique as an alternative to the direct questioning method to increase
cooperation among respondents and actual data in the survey. In this manner, using a randomizing technique, each
respondent randomly selects to answer the sensitive question or its complimentary with known probabilityp or
1− p, in order. Suppose a random sample of size n is chosen from the finite population that the proportion of
people with the sensitive characteristic is θ. So the interviewer would received ”Yes” or ”No” from n interviewees
in the sample without understanding whether ”Yes” or ”No” is related to the sensitive question or complementary.
Since randomizing technique for each respondent is a Bernoulli trial, it is expected that np and n(1− p) times, the
sensitive question, and its complementary will be selected respectively by respondents. Let Xj and Yj be the actual
and randomized responses for interviewee jth, respectively. Then the randomized response in Warner’s model will
be as follows.

Yj = XjRj + (1−Xj)(1−Rj), j = 1, . . . , n. (1)
where Xj and Rj have Bernoulli distribution with probability θ and p, respectively. Therefore, the randomized
response is distributed as Bernoulli with probability η = θp+ (1− θ)(1− p), and an unbiased estimator of θ is

θ̂W =
Ŷ − (1− p)

2p− 1
for p ̸= 1

2
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where Ȳ is the sample mean of the randomized responses. Greenberg et al. [7] proposed the use of unrelated or
non-sensitive questions to increase the protection of privacy. In this way, each individual selected for the interview
answers ”Yes” or ”No” to the sensitive or non-sensitive question. Consequently, it is not known which question
was answered by the interviewee. Another version of Warner’s model and the unrelated-question model is based
on repeated random trials. In Warner’s model, Mangat and Singh[14] proposed to expand a two-stage randomized
response technique and Singh and Mathur[23] studied the anonymous replication of the randomized trial in the
unrelated-question randomized response model. Also, a new procedure based on replicating Warner’s model or the
unrelated-question model is introduced [1]. Several improvements in Warner and URL models have been studied
by many authors, such as Christofides[4], Kim and Ward [12], Gupta et al [9], etc. Some of the more recently
developed randomized response techniques (RRT) can be found in [8], [13], [15] and [17]. But these methods
have trouble protecting privacy because it is possible to observe the result of the random trial (such as tossing
a coin) by the interviewer. Therefore, the repeated randomized response technique is time-consuming, and the
interviewee’s answer to the sensitive or unrelated question may be exposed. Hence, it was investigated how to hide
the respondent’s response to a sensitive question by scrambling it through additive or multiplicative value from a
known distribution [20], [21]. Therefore, the randomized response of the jth respondent in the additive scrambled
model is

Yj = Zj +Xj , j = 1, . . . , n. (2)

where Zj is the true response with mean φZ and variance σ2
Z . Also, the random value Xj is from a known

distribution with mean φX and variance σ2
X .. So the estimation of φZ = E(Zj) and the variance of the estimator

can be obtained as

φ̂Z = Ȳ − φX , var(φ̂Z) =
σ2
X + σ2

Z

n
. (3)

Such that the estimator of the variance is ˆvar(φ̂Z) =
σ̂2
Y

n , where σ̂2
Y =

∑n
j=1(Yj−Ȳ )2

n . Accordingly, several
suggestions have been created to improve the estimation of the population proportion of sensitive variables in
the scrambled model [5], [6], [19], [22]. In the randomized response methods that are mentioned, the estimate of
the expected value of the randomized response variable is first calculated because the values of the true responses to
the sensitive question are not revealed. Consequently, an estimate of the expected value of the sensitive variable is
obtained indirectly. Further, the random number generated from a known distribution may not well mask the actual
response in the scrambled model. In this paper, an improved additive scrambled model is proposed with a new
randomizing technique to solve these drawbacks. So, the interviewee scrambles the answer to the sensitive question
with a random sample from a randomization bag containing responses ”Yes” and ”No”, where the number of ”Yes”
in the random sample has a hypergeometric distribution. Hence privacy is preserved without the problems raised
in the previous methods. Also, the researcher obtains the exact number of answers ”Yes” to the sensitive question
in the sample. In addition to estimating the sensitive proportion of the population with the mean of randomized
responses, we intend to investigate the Horvitz–Thompson type estimator and its asymptotic distribution for the
improved additive scrambled model in real-time sampling. Therefore, we will prove that the central limit theorem
holds for the Horvitz–Thompson type estimator by putting conditions on the entropy of the inclusion indicators in
the Poisson sampling. The Horvitz–Thompson type estimator was suggested to estimate the mean of the sensitive
proportion in the item sum technique by Rueda et al. [18]. Also, the asymptotic normality of the Horvitz–Thompson
estimator for simple random sampling without replacement is proved [2], [10].
The materials of this article are categorized into seven sections. In Section 2, the new additive scrambled model is
explained. Section 3 is planned to study the Horvitz–Thompson type estimator, and Section 4 is for its asymptotic
distribution. The simulation study is presented in Section 5. The application of the new additive scrambled model
for estimating the proportion of taking addictive drugs at Shahid Chamran University of Ahvaz is performed in
Section 6. Finally, in Section 7, the results are summarized.
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2. The new additive scrambled model

Suppose a simple random sampling without replacement of size n is taken from the finite population
W = {1, . . . , N}. Then the selected individuals scramble the answer to the sensitive question with a simple
random sample from a randomization bag containing responses ”Yes” and ”No” to the sensitive question. The
randomization bag can be considered a randomizing technique in which the interviewer prepares the M number
of answers to the sensitive question for each selected individual such that the number of ”Yes” is equal to β, and
the number of ”No” is equal M− β. Let Tj be the random variable of the number of ”Yes” responses selected in
a random sample of size nj from the randomization bag for the jth interviewee. Hence, the random variable Tj

has the hypergeometric distribution with parameters M, β, and nj , and its expected value is nj
β
M ; it is written as

Tj ∼ Hyperg(M,β, nj). If Zj and Yj are the true and the randomized response for interviewee jth in order, then
the randomized response under the new additive scrambled model is obtained as follows.

Yj = Zj + Tj (4)

whereZj is a Bernoulli random variable with success probability θ because the population proportion of individuals
with the sensitive feature is assumed to equal θ. From (4), we have

ϕ = E(Yj) = θ + nj
β

M
(5)

Since Ȳ is an unbiased estimator for θ +
β
M

∑N
j=1 nj

n , an unbiased estimator of θ is

θ̂ = Ȳ − T̄ . (6)

Note that T̄ =
∑n

j=1 Tj

n can be calculated by subtracting the number of ”Yes” answers remaining in the
randomization bags from the total ”Yes” answers prepared by the interviewer. Also, the variance of θ̂ is

var(θ̂) = var(Z̄) =
σ2
Z

n
=

θ(1− θ)

n
. (7)

where σ2
Z = var(Zj) forj = 1, . . . , N . Then an estimator of the variance is

ˆvar(θ̂) =
σ̂2
Z

n
=

θ̂(1− θ̂)

n
. (8)

where σ̂2
Z =

∑n
j=1(Zj−Z̄)2

n . From (3), it can conclude that var(θ̂) ≤ var(φ̂Z), so θ̂ is more efficient than φ̂Z . The
proof of equations (7) and (8) are given in Appendix A.

3. The Horvitz–Thompson type estimator (HT-type estimator)

Let W be a finite population consisting of N units such that the population units sequentially over time are
observed. Also, it is possible that the sampling frame (set of all population units) is unavailable, and the population
size would be determined after sampling. In this situation, the real-time sampling is suitable [16]. We use Poisson
sampling in the article because it adapts to real-time sampling, so the sample size is a random variable with
considerable variation. If the aim is to estimate the total of the variables,

∑N
j=1 yj , the HT estimator for a sample

with unequal probability can be used that is introduced by Horvitz and Thompson [11], i.e., ŶHT =
∑N

j=1
Yj

πj
Ij .

Therefore, when the unit j enters the sample with inclusion probability πj , the inclusion indicator Ij equals one and
zero otherwise. Suppose the purpose is to estimate the mean of the variables, ȲN =

∑N
j=1

Yj

N , and the operators
εP (.) and νP (.) are expectation and variance under the Poisson sampling design. Hence, the HT-type estimator is
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obtained as follows
˙̂
YHT =

∑N
j=1

Yj

πj
Ij

N
(9)

According to (4) and (9), we have

˙̂
YHT =

∑N
j=1

Zj

πj
Ij

N
+

∑N
j=1

Tj

πj
Ij

N
=

˙̂
ZHT +

˙̂
THT (10)

As a result, the unbiased estimator of θ is obtained using the HT- type estimator as follows

˙̂
θ =

˙̂
YHT − ˙̂

THT (11)

Considering the expectation operator under the sampling design, we get

εP (
˙̂
θ) = ȲN − T̄N = Z̄N (12)

whereȲN =
∑N

j=1
Yj

N and T̄N =
∑N

j=1
Tj

N . Also, the variance of ˙̂
θ under the sampling design can be calculated as

νP (
˙̂
θ) = νP (

˙̂
ZHT ) =

∑N
j=1

1−πj

πj
Z2
j

N2
+

2
∑N−1

j=1

∑N
i=j+1

πij−πiπj

πiπj
ZjZi

N2
(13)

In Poisson sampling, the covariance between inclusion indicator units i and j is zero, so the variance of ˙̂
θ under the

sampling design is

νP (
˙̂
ZHT ) =

∑N
j=1

1−πj

πj
Z2
j

N2
. (14)

So the variance of ˙̂
ZHT can be obtained as follows

var(
˙̂
ZHT ) =

∑N
j=1

1−πj

πj
ζ2Z

N2
+

N∑
j=1

σ2
Z

πjN2
(15)

where ζ = E(Zj) for j = 1, . . . , N . Therefore, an estimator of the variance of ˙̂
ZHT is

ˆvar(
˙̂
θ) =

˙̂
θ

∑N
j=1

1−πj

πj

N2
+

˙̂
θ(1− ˙̂

θ)

N
. (16)

The proofs of equations (12), (14), (15), and (16) are given in Appendix C.

4. Asymptotic Normality

In the real-time sampling, the Lindeberg condition gives the necessary and sufficient condition for the asymptotic
normality of the HT-type estimator. Hence, we first define an index of the divergence of the sum entropy of the
inclusion indicators as follows [24]

HN (I) = −
N∑
j=1

πj log(πj). (17)

Let log(.) be the natural logarithm, and 0log(0) = 0. Therefore, the sum entropy of the inclusion indicators is
divergent, if HN (I) is divergent while N tends to infinity. Also, in the next theorem, it will be proved that the
Lindeberg condition holds provide that HN (I) is divergent. Berger[2] studied a rate of convergence to normal
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1616 IMPROVED ESTIMATION OF THE SENSITIVE PROPORTION

Table 1. Calculation of AE, AV, COP and ALCI when N is equal to 200, 400, and 1000.

The sensitive ratio θ = 0.2 θ = 0.5 θ = 0.8

Models ˙̂
θ θ̂ φ̂Z

˙̂
θ θ̂ φ̂Z

˙̂
θ θ̂ φ̂Z

N = 200 n 20.11 20 20 20.16 20 20 120.14 20 20
σ(n) 4.39 0 0 4.38 0 0 4.36 0 0
AE 0.21 0.22 0.26 0.51 0.51 0.57 0.83 0.82 0.85
AV 0.008 0.007 0.05 0.02 0.011 0.05 0.03 0.007 0.03

COP 0.94 0.95 0.79 0.93 0.96 0.8 0.91 0.92 0.81
ALCI 0.35 0.36 0.77 0.55 0.42 0.75 0.69 0.33 0.74

N = 400 n 40.25 40 40 40.21 40 40 40.24 40 40
σ(n) 6.15 0 0 6.18 0 0 6.16 0 0
AE 0.197 0.193 0.23 0.497 0.489 0.51 0.809 0.806 0.77
AV 0.004 0.003 0.01 0.01 0.006 0.29 0.018 0.003 0.02

COP 0.91 0.90 0.92 0.93 0.93 0.79 0.92 0.91 0.76
ALCI 0.25 0.23 0.59 0.39 0.30 0.57 0.49 0.24 0.55

N = 1000 n 100.02 100 100 100.01 100 100 100.02 100 100
σ(n) 9.57 0 0 9.55 0 0 9.56 0 0
AE 0.21 0.21 0.22 0.501 0.508 0.53 0.79 0.78 0.84
AV 0.001 0.001 0.009 0.004 0.002 0.008 0.007 0.001 0.011

COP 0.93 0.95 0.89 0.94 0.95 0.88 0.94 0.95 0.90
ALCI 0.16 0.15 0.34 0.26 0.19 0.44 0.33 0.16 0.43

for the Horwitz-Thompson estimator by comparing the entropy of the sampling designs with the entropy of the
rejective sampling. Under more comfortable conditions on the entropy of the inclusion indicators, we prove the
Central Limit Theorem for the HT-type estimator in the Poisson sampling.

Theorem 1. The Horvitz–Thompson type estimator has an asymptotic normal distribution if HN (I) → ∞ as
N → ∞, i.e.

˙̂
ZHT − Z̄√

νP (
˙̂
Z)

⇒ N(0, 1) (18)

Proof
where ⇒ stands for convergence in distribution. The full proof of this theorem is in Appendix D.

5. Simulation Examination

In the previous Sections, it was shown that the estimator of the additive scrambled model φ̂Z and the estimators of
the new additive scrambled model θ̂ and ˙̂

θ are unbiased for the sensitive ratio θ. Hence, to compare the efficiency of
the estimators, we generated the population of individuals with the sensitive feature from the Bernoulli distribution
for θ=0.2,0.5, and 0.8 using the simulation by R software where the population sizes are N=200,400, and 1000.

Then the average estimate (AE) of the parameter θ, the average estimate of variance (AV), coverage probability
(COP), and the average length of the confidence interval (ALCI) are calculated in 10,000 repetitions by the
estimators ˙̂

θ, θ̂ and φ̂Z . The simulation results can be seen in Table 1. In the first step to getting ˙̂
θ, Poisson sampling
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was used with the inclusion probability πj =
1
10 for each unit j.In Poisson sampling, the sample size is a random

variable as n =
∑N

j=1 Ij , so the expected value of the sample size is εP (n) =
∑N

j=1 πj . The average sample sizes,
n̂, and their standard deviation,σ(n̂), are shown in Table(??). Also, it was assumed that Tj ∼ Hyperg(20, 5, nj)
with expected value 1

4nj , where nj be generated from the discrete uniform distribution on the integers 1, . . . , 20,
for j = 1, . . . , n. For simulation, the true responses,Zj’s, are generated from the Bernoulli distribution with success
probability θ. Therefore, the randomized response Yj is obtained from the sum of Tj and Zj for each unit j entered
in the sample. In the second step to estimate θ by the estimator θ̂, 10000 samples were chosen from the population
according to simple random sampling without replacement with the constant sample sizes of n = 20, 40, and100
for population sizes N = 200, 400, and1000, respectively. Then Yj’s are calculated for each j unit as in the first
step. The last step is related to the scrambled model estimator φ̂Z , assuming that Xj ∼ Hyperg(20, 5, 4). So the
randomized response Yj is obtained for each unit j entered in the simple random sample, and the simulation was
repeated 10000 times for the sample sizes of n = 20, 40, and100. Since sample sizes are constant, the standard
deviation of the sample size is zero. The (1− α)% confidence interval (CI) of θ represented by CI = (L,U) is
constructed based on Theorem 1. Also, using θ̂ and φ̂Z , and the central limit theorem, two other (1− α)% CI’s for
θ can be constructed [25]. To evaluate the success of a confidence interval in catching the population parameter,
COP is calculated by counting the number of times the actual parameter falls between the lower (L) and upper
limits (U). Having a smaller length is a good feature for the CI because the true parameter falls within a smaller
interval and the results are more accurate. So the length of the confidence interval is computed by subtracting the
lower limit from the upper limit.COP and the ALCI are estimated, respectively, from CI’s including parameter θ in
all simulations using the following two formulas:

COP =
#(L ≤ θ ≤ U)

10000
, (19)

ALCI =

∑10000
j=1 (Uj − Lj)

10000
(20)

where #(L ≤ θ ≤ U) indicates the number of simulations in which the population parameter falls within the
confidence interval.

From the results obtained in Table (??), it can be concluded that the new additive scrambled model is more
efficient than the additive scrambled model because the estimates of the new additive scrambled model are closer
to the actual value and have less AV. Also, the COP for estimators ˙̂

θ and θ̂ obtains values closer to 95% than
estimator φ̂Z in the simulation, except when θ is equivalent to zero or 1. The larger COP values of the two proposed
estimators compared to estimator φ̂Z can be seen in Figure (1). According to Figure (2), it can be concluded that
the ALCI made by the estimators ˙̂

θ and θ̂ is smaller than the ALCI of estimator φ̂Z for θ = 0.2, 0.5and0.8. Also,
with the increase in population size N , the ALCI decreases. However, the ALCI made by the estimators ˙̂

θ and θ̂
decreases more than φ̂Z when N increases.

6. A study example

Unfortunately, investigations show that many people take drugs without a doctor’s prescription, which can have
adverse or dangerous effects, especially if these drugs are addictive. The use of addictive drugs has been reported
among young people, especially students. In this research, we intend to obtain the proportion of students from the
Shahid Chamran University of Ahvaz who have used these drugs without a doctor’s prescription. To take a random
sample without replacement from the students, we must have access to the list of students as a sampling frame.
Since there may be two problems with accessing the list of students, the first problem is getting permission from the
University to access the list of students, which may be time-consuming or even impossible. The second problem
occurs when the interviewee wants to remain anonymous. In order not to face these problems, Poisson sampling
and the Horvitz–Thompson type estimator were used in this study. The data collection process was carried out on
June 1, 2022, with the new additive scrambled model for 20 days. Therefore, the students were observed when
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1618 IMPROVED ESTIMATION OF THE SENSITIVE PROPORTION

Figure 1. Calculated COP of the 95% confidence interval in 10,000 repetitions for by the estimators ˙̂
θ , θ̂ and φ̂Z .

Figure 2. The average length of the confidence interval

entering or exiting the dormitory. The Bernoulli trial was performed for each unit with the inclusion probability
πj =

1
12 (e.g., observing a sum of 10 in throwing two dice). Since we estimated the number of students living or

guests in the dormitory to be approximately 3000 people, the sampling was stopped when the population of size

Stat., Optim. Inf. Comput. Vol. 12, November 2024
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Table 2. Summary of data and the estimation of taking addictive drugs among students.

Gender Sample size Population size Number of “yes” ˙̂
θ νP (

˙̂
ZHT )

ˆ
var(

˙̂
θ) 95%CI

Female 151 1801 23 0.15 0.00007 0.00006 (0.133,0.166)
Male 102 1205 22 0.21 0.00016 0.00013 (0.185,0.234)
Total 253 3006 45 0.17 0.000054 0.000056 (0.166,0.177)

N ∼= 3000 was observed. Accordingly, the expected value of the sample size is εP (n) = sum3000
j=1 πj

∼= 250. For the
simulation study, it was assumed that Tj ∼ Hyperg(50, 10, nj) , and its expected value is 1

5nj , for j = 1, . . . , n.
Also, selected students were requested to perform the following steps secretly:
1. Choosing a random sample of arbitrary size from the randomization bag.
2. Answering the question: Have you ever taken an addictive drug without a doctor’s permission?
The results are presented in Table (2).

Considering that Theorem1, the 100(1− α)% confidence interval (CI) for Z̄N can be obtained. Also, according to
Table (2), the difference in taking addictive drugs in males and females is significant at the 1% level.

7. Conclusion

The new additive scrambled model introduced in this article can be a suitable alternative to the additive scrambled
model. Therefore, privacy is preserved without repeating a random experiment (such as throwing a coin or dice)
or combining the answer to a sensitive question with the value generated from a known random variable, which
is time-consuming and can be disclosed. In this article, the variance of ˙̂

θ is calculated assuming that covariance
between inclusion indicator units i and j is zero; otherwise, it can be the subject of further studies.

Appendix

A. The variance of θ̂ is obtained as follows.
Given that Zj’s and Tj’s are independent, and θ̂ = Ȳ − T̄ = Z̄ + T̄ − T̄ = Z̄, so

var(θ̂) = var((Ȳ + T̄ )− T̄ ) = var(Z̄ + T̄ ) + var(T̄ )− 2cov(Z̄ + T̄ , T̄ ) = var(Z̄) =
σ2

Z

n

Since Zj has the Bernoulli distribution, we have

σ̂2
Z =

∑n
j=1(Zj − Z̄)2

n
= Z̄ − Z̄2 = θ̂ − θ̂2.

B. Given that Yj = Zj + Tj and the inclusion indicator Ij has Bernoulli distribution with parameter πj , so we get

εP (
˙̂
θ) = εP (

∑N
j=1

Yj

πj
Ij

N
−

∑N
j=1

Tj

πj
Ij

N
) = εP (

∑N
j=1

Yj

πj
Ij

N
)− εP (

∑N
j=1

Tj

πj
Ij

N
) = (21)∑N

j=1
Yj

πj
εP (Ij)

N
−

∑N
j=1

Tj

πj
εP (Ij)

N
= Ȳ − T̄ = Z̄ + T̄ − T̄ = Z̄. (22)

So, we have
εP (

˙̂
θ) = εP (Z̄) = θ.
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1620 IMPROVED ESTIMATION OF THE SENSITIVE PROPORTION

C. Since the inclusion indicator, Ij , has the Bernoulli distribution with parameter πj , the probability of occurrence
{Ij = 1} is equal toπj . Also, the event of the presence of units i and j in the sample and its probability is shown
by πij = P{Iij = 1}, then the covariance is getting as follows.

εP (Ij) = πj , covp(Ii, Ij) = πij − πiπj .

the variance of ˙̂
θ, under the sampling design, can be represented as

νP (
˙̂
θ) = νP (

˙̂
ZHT ) =

∑N
j=1

∑N
i=1

ZiZj

πiπj
covP (Ii, Ij)

N2

=

∑N
j=1

1−πj

πj
Z2
j

N2
+

2
∑N−1

j=1

∑N
i=j+1

πij−πiπj

πiπj
ZjZi

N2
.

From (10), (11) we have
var(

˙̂
θ) = E(var(

˙̂
θ|P )) + var(E(

˙̂
θ|P )) =

E(

∑N
j=1

1−πj

πj
Z2
j

N2
) + var(

∑N
j=1 Zj

N
) =∑N

j=1
1−πj

πj
E(Z2

j )

N2
+

∑N
j=1 var(Zj)

N
=

θ
∑N

j=1
1−πj

πj

N2
+

θ(1− θ)

N
.

D. Let Rj = (
Zj

Nπj
Ij − Zj

N ), so εP (Rj
2) =

1−πj

N2πj
Z2
j and we get s

δ2N =

N∑
j=1

εP (Rj
2), SN =

˙̂
ZHT − Z̄.

According toHN (I) → ∞ as N → ∞, and the Lindeberg condition in Billingsley (1995, Theorem 27.2) , we have

lim
N

1

δ2N

∑
j:|Rj |≥ϵδN

1− πj

N2πj
Z2
j .

which holds because limN P (| Zj

Nπj
Ij − Zj

N | ≥ ϵδN ) = 0.We can write, |Zj | ≤ a, where 1 ≤ a for all j. So, it is
obtained that

P (| Zj

Nπj
Ij −

Zj

N
| ≥ ϵδN ) ≤

1−πj

πj

ϵ
∑N

j=1
1−πj

πj

.

Given that, log(x) ≤ x− 1, and − log(x) ≤ 1
x − 1, we get

−
N∑
j=1

πj log(πj) ≤ −
N∑
j=1

log(πj) ≤
N∑
j=1

1− πj

πj
,

where 0 < πj ≤ 1.
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