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Abstract In early work we have studied a class of stochastic differential equation (SDE) models, for which the Gompertz
and the Bertalanffy-Richards stochastic models are particular cases, to describe individual growth in random environments,
and applied it to model cattle weight evolution using real data. We have started to work on these type of models considering
that the model parameters are fixed, i.e. the same for all the animals. Aiming to incorporate variability among individuals, we
consider that the model parameters can be random variables, resulting in SDE mixed models. In additon, here we consider
SDE mixed models, allowing the parameters to be random and propose to incorporate each animal’s genetic characteristics
considering the transformed animal’s weight at maturity to be a function of its genetic values. The main objective is to extend
the SDE mixed model to the more realistic case where the individual’s genetic value becomes an important component in the
estimated growth curve. For the estimation of the model parameters we have used maximum likelihood estimation theory.
Estimates and asymptotic confidence intervals of the parameters are presented. A comparison with SDE non-mixed model
and SDE mixed model without the inclusion of genetic characteristics is shown with the conclusion that the incorporation of
some genetic characteristics in the model parameters improves the estimation of the animal’s growth curve.
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1. Introduction

In the last four decades, Stochastic Differential Equations (SDE) have been studied and applied to individual growth
modeling by several authors using SDE non-mixed models [9, 10, 11, 12, 13, 19, 20, 22, 23] where, for instance,
authors have modeled the growth dynamic of animals, trees or glucose, and where the parameters of the SDE have
fixed, although unknown, values that need to be estimated from data. When the model parameters are considered
random, SDE mixed models are used to model individual growth, with applications in various fields, such as animal
growth and pharmacokinetics, among others [5, 6, 7, 14, 17, 18, 21, 25].

Considering M animals, we have used the following general SDE model

∗Correspondence to: Nelson T. Jamba (Email: d39830@alunos.uevora.pt). Centro de Investigação em Matemática e Aplicações, Instituto
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dYi(t) = β (α− Yi(t)) dt+ σ dWi(t), Yi(ti,0) = yi,0, i = 1, . . . ,M, (1)

where Yi(t) = h(Xi(t)) is the modified size by the transformation h, a monotonous continuously differentiable
function (which we assume known) of the real size Xi(t) at age t of the ith individual (i = 1, . . . ,M ). We have
Yi(ti,0) = yi,0 = h(xi,0), where xi,0 is the size observed at age ti,0 (initial observation) for individual i, and
α = h(A), where A is the asymptotic size or size at maturity. The growth parameter β is the rate of approach
to maturity, σ measures the strength of environmental fluctuations on growth, and Wi(t) (i = 1, . . . ,M ) are
independent standard Wiener processes. Specific choices of the function h lead to stochastic versions of some
models commonly used to describe growth, such as the monomolecular model for h(x) = x, the Bertalanffy-
Richards model for h(x) = xc (c > 0), the Gompertz model for h(x) = lnx and the logistic model for h(x) = x−1

[9, 11]. We refer to model (1) as SDE non-mixed model, when the parameters α, β and σ are fixed values common
to all individuals. However, it is natural to think that different individuals might have different values for these
parameters, due to their individual characteristics. To take this into account we have studied SDE mixed models,
where in model (1) we have considered that the parameters α and/or β were random variables [14, 15]. The
maximum likelihood methods are the commonly used methods to estimate the model parameters. Unlike the SDE
non-mixed models, where it is usually possible to obtain a closed-form expression for the likelihood function,
that is not always the case when SDE mixed models are used. Recently we have made some developments in
estimation methods for SDE mixed models, when trend parameters can be considered random, using approximation
methods to solve estimation difficulties in SDE mixed models. In our recent work, we have introduced the Delta
approximation method (DA) [14], a new approach inspired by the classical statistical delta method, and evaluated
its performance with existing approximation methods, such as the Laplace approximation method (LA) [21, 26] or
other approximation methods available in MsdeParEst and mixedsde R packages [4, 16]. The DA method has an
advantage over the available R packages by not requiring a common time vector of observations for all individuals.

The inclusion of genetic values in animal growth allows breeders to develop targeted breeding objectives and
selection strategies. By prioritizing growth-related traits based on their estimated genetic values, breeders can
focus on enhancing specific aspects of animal growth. This approach ensures that breeding efforts are directed
towards maximizing growth potential, efficiency, and overall productivity. In this work, we will include a genetic
value of the animals in the mixed model, allowing that each animal has a different growth curve influenced by its
genetic information. As far as we are aware, letting each animals’s growth curve be influenced by their individual
characteristics, in particular the animal’s genetic information, is a new approach for this type of models. Here, we
will consider the case where the asymptotic weight at maturity is random, allowing us to study the influence
of genetic values on this parameter of the SDE mixed model, particularly whether they provide a significant
contribution to the precision of the growth curve. Comparing the parameters estimation using the SDE non-mixed
model (parameters are fixed values, common to all individuals), the SDE mixed model without the inclusion of
genetic values (parameters, in this case α, vary randomly from animal to animal) and the SDE mixed model
with inclusion of the genetic values (parameter α is considered random and writen as a linear function of the
animal’s genetic values), we can evaluate if a random effect on the asymptotic weight at maturity is needed and,
in that case, if the animal’s specific genetic information would improve the parameters estimation. A more precise
parameters estimation, and as a consequence, a more precise growth curve, will improve the farmers profit in
livestock production.

We illustrate the results using real cattle weight (in kg) data of 10843 animals provided by the Associação de
Criadores de Bovinos Mertolengos (ACBM, https://www.mertolenga.com), which performs the growing
and finishing phases of young Mertolengo breed males, and by associated breeders, whose agricultural holdings
are located in the Alentejo region in Portugal. Each animal has weight measurements taken at different age instants,
varying from animal to animal, contrary to what is usually assumed in estimation methodologies.

The data regarding the genetic information of the animals results from the genetic evaluation of the Mertolengo
cattle breed that was carried out at the National Institute of Agricultural and Veterinary Research (INIAV -
https://www.iniav.pt), a research center in the veterinary and agronomic field, based in Portugal. Seven
genetic traits were considered: growth capacity, maternal capacity, calving interval, average daily weight gain,
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carcass weight per day of age, feed conversion index and reproductive longevity. Seven models were fitted, each
including a different genetic trait. We then evaluate which genetic trait results in an increasing performance on the
model parameter estimates of the individuals.

This paper is organized as follows, in section 2, we begin by describing the SDE mixed models with random α
and discuss their main properties. Then, in section 3, we extend the SDE mixed models to incorporate the genetic
values. In section 4, we apply our model to real cattle weight data and compare its performance with other SDE
models. Finally, in section 5, we summarize the main findings and conclusions of our study.

2. Stochastic differential equations models

Let us consider M individuals, where Xi(t) denotes the size of the ith individual (i = 1, . . . ,M ) at age t. In our
application, the size refers to the animal’s weight, but in other cases, it can denote another growth measure of
the individual. We will consider a modified size Yi(t) = h(Xi(t)), (i = 1, · · · ,M ), and describe the evolution of
individual growth through an SDE of the form (1). For the real cattle weight data we used here for illustration, the
transformation h(x) = lnx, that leads to the Stochastic Gompertz model revealed to be the most appropriate to our
type of data [8]. The solution of the autonomous SDE (1) is an ergodic diffusion process with drift and diffusion
coefficients β (α− yi) and σ2, respectively. These coefficients have bounded continuous derivatives and therefore
they satisfy a Lipschitz condition which guarantees the existence and uniqueness of the solution (see, for instance,
[1]), given by

Yi(t) = α+ e−β(t−ti,0)(yi,0 − α) + σe−βt

∫ t

ti,0

eβsdW (s), (2)

which follows a Gaussian distribution with mean α+ e−β(t−ti,0)(yi,0 − α) and variance σ2

2β (1− e−2β(t−ti,0)) (see,
for instance, [1, 9]).

Let ti,j (i = 1, ...,M , j = 1, ..., ni) be the age of the jth weight measurement of the ith animal and let
Yi,j = Yi(ti,j) = h(Xi(ti,j)) be the corresponding modified weight according to model (1). For each animal
i (i = 1, . . . ,M ), denote by ti = (ti,0, ti,1, . . . , ti,ni) its age vector of observations (which may differ from
individual to individual), by Yi = (Yi,0, Yi,1, ..., Yi,ni

) the corresponding vector of modified sizes and by yi =
(yi,0, yi,1, ..., yi,ni

) the observed value of Yi. We assume ti,j−1 < ti,j and make Ei,j = e−(ti,j−ti,j−1). We see that
for Yi,j conditioned on Yi,j−1 = yi,j−1, the transition distribution for animal i is Gaussian,

Yi,j | (Yi,j−1 = yi,j−1) ∼ N

(
α+ (yi,j−1 − α)Eβ

i,j ,
σ2

2β
(1− E2β

i,j )

)
, (3)

with i = 1, · · · ,M, j = 1, · · · , ni. We have applied the maximum likelihood estimation method, [9, 14, 15], to
estimate the parameter vector p = (α, β, σ). From (3), using the fact that Yi(t) is a Markov process, we know that,
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given Yi,0 = yi,0 (assumed known), the Yi joint probability density function for individual i takes the form

pYi
(yi|α, β, σ) =

ni∏
j=1

exp

(
− 1

2

(yi,j−α−(yi,j−1−α)Eβ
i,j)

2

σ2

2β (1−E2β
i,j)

)
√

2π σ2

2β (1− E2β
i,j )

(4)

=

exp

− 1
2

ni∑
j=1

(
yi,j − α− (yi,j−1 − α)Eβ

i,j

)2

σ2

2β (1− E2β
i,j )


ni∏
j=1

√
2π

σ2

2β
(1− E2β

i,j )

, i = 1, . . . ,M,

and by independence among individuals we obtain the likelihood function for the M animals

L(α, β, σ) =

M∏
i=1

pYi
(yi|α, β, σ). (5)

The maximum likelihood estimate of the parameter vector p is obtained by maximization of (5) or of the log-
likelihood function

LLY (α, β, σ) = lnL(α, β, σ) =

M∑
i=1

− ni

2
ln (2π)

− ni

2

M∑
i=1

ln

(
σ2

2β

)
−

M∑
i=1

1

2

ni∑
j=1

ln
(
1− E2β

i,j

)
(6)

− β

σ2

M∑
i=1

ni∑
j=1

(
yi,j − α− (yi,j−1 − α)Eβ

i,j

)2

1− E2β
i,j

.

We have just described the general SDE model (1) for the complete growth curve of the animals where the
model’s parameters α, β, and σ are assumed common to all individuals.
In [14], we consider a generalization to SDE mixed models to take into account that different animals, due to their
individual characteristics, may have different values of the parameters. We have denoted by b the d-dimensional
vector of parameters that vary randomly among animals and assumed that the distribution of b among animals has
probability density function (p.d.f.) pB(b|Ψ), where Ψ is the parameter vector that characterizes this distribution
and needs to be estimated. Assuming independence among the animals, the M parameter vectors bi of the different
animals i (i = 1, . . . ,M ) are independent identically distributed random vectors with common p.d.f. pB and we
assume that bi (i = 1 . . . ,M ) are also independent of the Wiener processes that characterize the environmental
conditions under which the animals are growing. Let Λ be the vector of the remaining model parameters (those
not involved in pB), assumed to be common to all animals. The likelihood function for M trajectories (animals) is
given by

L(Λ,Ψ) =

M∏
i=1

pYi
(yi|Λ,Ψ)

=

M∏
i=1

∫
Rd

pYi(yi|bi,Λ)pB(bi|Ψ) dbi, (7)

The case of the single random parameter bi = (αi) with αi ∼ N(µ, θ2) has already been studied by several
authors. In [17] the special situation of an age vector of observations ti ≡ t = (t0, t1, . . . , tn), i = 1, . . . ,M
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common to all animals is presented. For the general situation, with no such restrictions, it is possible to explicitly
compute the integral in the likelihood function, resulting in a final closed-form expression for this function. This is
shown in [14, 15], where the exact log-likelihood function for all animals is given by

LLY (µ, θ, β, σ) =

M∑
i=1

(
−ni

2
ln (2π)− ni

2
ln

(
σ2

2β

)
− 1

2

ni∑
j=1

ln
(
1− E2β

i,j

)
− 1

2
ln (Di)

− β
Diσ2

ni∑
j=1

(
yi,j − µ− (yi,j−1 − µ)Eβ

i,j

)2

1− E2β
i,j

+
2β2θ2

Diσ4

 ni∑
j=1

(
yi,j − yi,j−1E

β
i,j

)
1 + Eβ

i,j

2

− β(Di−1)
Diσ2

 ni∑
j=1

(
yi,j − yi,j−1E

β
i,j

)2

1− E2β
i,j


 ,

(8)

with Di =
2βθ2

σ2

ni∑
j=1

1− Eβ
i,j

1 + Eβ
i,j

+ 1.

For the random β case, bi = (βi), it is not possible to obtain a closed-form expression for the likelihood
function, and we need to solve the integral that appears in the likelihood function (7) through approximation
methods. In [14] we proposed a method to approximate the likelihood function when both α and β are random
variables, the delta method. This approach gives simple and closed-form approximation formulas, making it easy
to apply. This method also has the advantage of not being restricted to the cases where the age vector of the
observations is the same for all trajectories nor does it require equidistant ages of observation, assumptions quite
common in most estimation techniques. In [15] the delta method is also used but for the particular cases where
just one of the parameters α or β is considered random, and a comparison of our new proposed method with the
known Laplace approximation method is performed.

Here, we consider a generalization of SDE mixed models proposed in [14], by incorporating the genetic value
of each animal in the mean value of the transformed random asymptotic weight. We consider that the transformed
random asymptotic weight is a linear function of the animal’s genetic value, allowing a more realistic model and
an improvement of the estimates of the model parameters at the individual level. As far as we are aware, this is the
first time that the dependence on the animal’s genetic values of the model parameters of an SDE mixed model is
considered.

3. Mixed models with genetic values

The growth of an animal may depend of a variety of factors, which can be reduced to the three most important:
genetic information, the environment and the food intake regime. We will develop the particular case where the
parameter α, which represents the transformed asymptotic maturity weight of the animal, is considered random and
can incorporate the animals genetic values. Consider that the genetic characterization of each animal is determined
by K genetic values. In the first stage, we are interested in identifying the genetic values that can improve the
estimation of the animal’s weight at maturity and can lead to a significantly better model. So, for simplicity, we
will consider incorporating one genetic value at a time (K = 1).

Denoting by gi the genetic value of animal i, (i = 1, . . . ,M), let us consider αi to be defined as a linear function
of the genetic value in the form of

αi = c0 + c1gi + δi, (9)

where δi are independent and identically distributed with δi ∼ N (0, σ2
δ ), (i = 1, . . . ,M). Then αi follows a

Gaussian distribution with mean c0 + c1gi and variance σ2
δ .
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Using the parameter αi written as a linear function of the genetic value, we can adapt the model presented in
the previous section, but instead of αi ∼ N(µ, θ2), we will have αi ∼ N(c0 + c1gi, σ

2
δ ), (i = 1, . . . ,M). In fact,

using the same simple math used to derive expression (8), i.e. replacing in (7) the Gaussian density with mean
µi = c0 + c1gi and standard deviation σδ for animal i and solving the resulting integral, we end up obtaining a
closed-form expression for the log-likelihood for all animals, similar to the expression (8), which will be given by

LLY (c0, c1, σδ, β, σ) =

M∑
i=1

(
−ni

2
ln (2π)− ni

2
ln

(
σ2

2β

)
− 1

2

ni∑
j=1

ln
(
1− E2β

i,j

)

− 1
2 ln (Di)− β

Diσ2

ni∑
j=1

(
yi,j − (c0 + c1gi)− (yi,j−1 − (c0 + c1gi))E

β
i,j

)2

1− E2β
i,j

+
2β2σ2

δ

Diσ4

 ni∑
j=1

(
yi,j − yi,j−1E

β
i,j

)
1 + Eβ

i,j

2

− β(Di−1)
Diσ2

 ni∑
j=1

(
yi,j − yi,j−1E

β
i,j

)2

1− E2β
i,j


 ,

(10)

with Di =
2βσ2

δ

σ2

ni∑
j=1

1− Eβ
i,j

1 + Eβ
i,j

+ 1, where the models parameters are now c0, c1, σδ, β and σ.

In order to effectively verify if a genetic value can improve the estimation of the animal’s weight, a comparison
between the SDE mixed model and the SDE mixed model with the inclusion of the genetic value is made (using
a likelihood ratio test, the Bayesian information criterion (BIC) and the Akaike information criterion (AIC)). If
the two models show no significant differences, the genetic value does not have a significant effect and we may
conclude that c1 is not significantly different from 0, i.e. the mean value of the parameter αi is common to all
animals and equal to µ = c0. On the other hand, if a significant difference between models is detected, it reveals
that the inclusion of the genetic value has a significant effect on the estimation of the animal’s weight at maturity,
i.e., c1 is significantly different from 0 and the mean value of αi is different for each animal and given as a linear
function of the specific genetic value gi as µi = c0 + c1 gi.

4. Real data application

In this section, we use the maximum likelihood estimation method to estimate the parameters for the stochastic
Gompertz model using real cattle weight data, for the case where the parameter α is considered random and a
function of the genetic values. We compare the results with the ones obtained when no genetic value is included,
and using the likelihood ratio test (LRT) we compare both models. In this way, we infer if the inclusion of the
genetic values improves the estimation of the model parameters. Since we have a different set of animals for each
genetic value, we also present the AIC and the BIC values to compare different models. The database provided by
ACBM has information on the weights and ages of 10843 animals, totaling 69782 observations, with a minimum
of 3 weight observations and a maximum of 33 observations.

4.1. The genetic information

Genetic evaluation of the Mertolenga cattle breed was carried out at INIAV, from all the data collected by
ACBM, namely, records of genealogies, births, weights and carcass information, taking into account the following
characteristics: growth capacity until weaning (GC), maternal capacity until weaning (MC), calving interval (CI),
average daily weight gain (WG), carcass weight per day of age (CW), feed conversion index (FC) and reproductive
longevity (RL). The estimation of the genetic values of each animal for these seven types of traits, takes into
account the animal’s performance, if known, and the performances of all its relatives (ascendants, descendants and
collateral’s), taking into consideration the various environmental effects that affect the respective trait. Currently,
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at an international level and in several livestock species (cattle, sheep, pigs poultry, goats, horses, etc.) the use of
BLUP - Animal Model for the genetic evaluation is widespread [2, 3, 24].

Not all animals have the same age at the available genetic evaluations. Most of the animals had genetic
evaluations taken at least at two different instants: at birth and at entrance on ACBM for the finishing phase.
We have compared the estimation results considering, for each animal and each genetic characteristic, the first
genetic value available, the genetic value closest to 7 months of age (mean age of entrance in ACBM for the
growing and finishing phases), and also the mean of the mother and father genetic values. Comparing the estimates
obtained using these three different genetic information, we have concluded that, using the values from the genetic
evaluation closest and prior to the time of entrance in ACBM results in the best choice in terms of the likelihood of
the stochastic differential equation mixed model. That is also the most coherent decision, since the final objective
is to give a tool to ACBM to better estimate the animal’s growth and accurately estimate the profit obtained by
raising and selling the animal. Using the most recent animal’s genetic information available by the time of entrance
on ACBM will accomplish better that purpose.

Therefore, in our analysis, we will use for each animal and genetic trait, the animal’s available genetic value
closest and prior to the mean entrance age at ACBM (approximately 7 months). Not all animals had the seven
genetic values available. For that reason, depending on the genetic value used in the model, the number of
observations used to estimate the parameters vary.

The genetic value of an animal for a given trait represents the value of that animal as a breeder (expressed in
the respective units of measurement, i.e. kg, days, %, etc.) and should be interpreted as the genetic superiority
or inferiority for the trait relative to the population average. The accuracy of the genetic value estimate is also
available and gives us an idea of how confidently the genetic value of the animal for a given characteristic was
estimated. However, it is not an indicator of the genetic potential of the animal. The more information about the
animal (e.g., various records of birth intervals) and about their relatives (mother, sisters, daughters, grandparents,
etc.) there are, the more accurate the estimate of their breeding value will be.

Regarding the seven genetic values in terms of genetic potential:

• For MC, RL, GC, WG and CW, the higher their values are, preferably positive, the better.
• For CI and FC, the lower their values are, preferably negative, the better.

In Table 1, we present the minimum, the 25th quantile (Q1), the median, the mean, the 75th quantile (Q3), the
maximum, and the standard deviation (s.d.), as well as the number of animals with the respective genetic value
available (M) and the total number of weight observations available for that group of animals (n). Since, to achieve
a high genetic potential, some of the genetic values should be high and positive while others should be small and
negative, and all genetic values have a very high range (positive and negative) values, it is clear that some animals
would have a greater genetic potential that others.

The first five genetic values presented in Table 1 are the ones that should be as high as possible and positive.
The last two genetic values should be as small as possible and negative. At the moment of the evaluation of the
genetic values, they are usually centered to obtain an evaluated population with a zero mean and making it easy to
determine which animals have higher potential and which have lower potential. In the results presented in Table
1, the mean is not 0 because the animals used in the parameter estimation had their genetic values evaluated at a
wide variety of evaluation times and so belong to different evaluated populations. The CW, WG and CI values have
higher variability.

4.2. Parameters estimates

In Table 2, we can observe the parameter estimates using the stochastic differential equations non-mixed model
(NMSDE) - obtained by maximization of (6) - and the mixed model with random α without the genetic characters
(MSDE) - obtained by maximization of (8). We can observe that the estimates of all parameters are quite similar
in both models. The approximate 95% confidence bands based on the inverse of the empirical Fisher information
matrix in both models are also very similar. We present the maximum values of the log-likelihood in terms of the
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Table 1. Descriptive statistics for the seven genetic values of the genetic evaluation: minimum (min), 25th quantile (Q1),
median, mean, 75th quantile (Q3), maximum (max), standard deviation (s.d.), number of animals (M) and total number of
weight observations (n).

Genetic value min Q1 median mean Q3 max s.d. M n

MC -22.82 -3.45 0.63 0.24 4.56 19.92 6.17 7981 45014
GC -39.44 -5.07 -0.02 -0.17 5.08 24.56 7.78 5186 34526
RL -11.66 -1.52 0.99 1.04 3.32 19.88 3.82 4234 21317
WG -45.00 -1.00 8.63 11.54 21.51 106.50 17.30 8302 45424
CW -99.27 -18.94 -6.18 -6.48 6.53 69.77 21.23 5184 26742

CI -67.15 -9.27 -0.75 -0.28 8.89 78.48 16.14 7960 44860
FC -0.73 -0.18 -0.07 -0.10 0.00 0.47 0.15 6952 36415

actual weight, LLX . Comparing the two models through the LRT, we can conclude that they differ significantly
(p ≤ 0.001). This result shows that assuming the parameter α as a random parameter should be considered as a
better model for the growth data of the Mertolengo cattle breed.

Table 2. Estimation results for the NMSDE and for the MSDE models assuming random α. The table shows the values
of the maximum likelihood estimates and corresponding approximate 95% asymptotic confidence bands, as well as the
corresponding value of the log-likelihood. Besides showing the results for the modified weight α, we present them for
the weight A = h−1(µ) (for the NMSDE model µ = α). The AIC and BIC values are also presented. The magnitude
of the p-values of the LRT test between the NMSDE and MSDE are shown: ns (p > 0.05); ∗ (0.01 < p ≤ 0.05); ∗∗

(0.001 < p ≤ 0.01); ∗∗∗ (p ≤ 0.001).

NMSDE MSDE

µ 6.5867± 0.0142 6.5889± 0.0148
A 725.36± 10.28 726.98± 10.74
θ − 0.1428± 0.0092
β 1.2914± 0.0138 1.3002± 0.0143
σ 0.3078± 0.0018 0.3010± 0.0019
LLX −264443.2 −264281.0∗∗∗

AIC 528892.4 528570.0
BIC 528919.4 528606.0

Let us now explore the mixed model with random α with the inclusion of genetic values (MSDEG). We fit
seven MSDEG models, one for each genetic trait, and compared them with the MSDE and NMSDE models
using the same datasets (for each trait, the number of animals M and the number of weight observations n of
the corresponding dataset can be seen on Table 1). The parameter estimates were obtained by maximization of
(10), (8) and (6), respectively. First, we will compare the NMSDE models with the equivalent MSDE models,
to evaluate the relevance of considering a random effect on the parameter α, and then we compare the MSDE
models with the MSDEG models, to evaluate the effect of adding that specific genetic trait. Table 3 and 4 present
the estimates obtained through the maximum likelihood estimation method and the 95% approximate confidence
bands based on the inverse of the empirical Fisher information matrix. The AIC and BIC are also presented to
compare the models.

In Table 3, we can observe that, for all the genetic traits, the differences between NMSDE and MSDE were
significant at p ≤ 0.01 or p ≤ 0.001 and the AIC and BIC values were lower on these MSDE models when
compared to the NMSDE models. This shows that a random effect should be present in all groups of animals.
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When comparing the MSDEG and MSDE models of Table 3 for the genetic trait MC, we can observe that c1
(the parameter that indicates the importance of the genetic trait on explaining the variability in α) has a small
estimate not significantly different from 0. But we should be aware that such lack of significance was based on an
approximation of the confidence interval of c1 obtained from the inverse of empirical Fisher information matrix.
The LRT, however, confirms the lack of significance of the maternal capacity until weaning. For the cases of RL
and CI, a significance exists with a p-value of the LRT lower than 0.1% (the AIC values are also lower for these
two genetic traits). The maximum likelihood estimates from the NMSDE, the MSDE and the MSDEG models are
very similar for all common parameters. For the models with random α, it is interesting to compare the standard
deviation of the random effect, i.e. to compare the θ of the MSDE model with the σδ of the MSDEG model. With
the exception of the non-significant MC trait, we see that the incorporation of the genetic trait, RL or CI, reduces
the variability of the random effect.

Table 3. Estimation results for the NMSDE, MSDE and MSDEG models. The table shows the values of the maximum
likelihood estimates and corresponding approximate 95% asymptotic confidence bands, as well as the corresponding value
of the log-likelihood. Estimates for the actual asymptotic weight (in kg) are shown with A = h−1(α), A = h−1(µ) and
A = h−1(c0 + c1g1), for NMSDE, MSDE and MSDEG, respectively. The AIC and BIC values are also presented. The
magnitude of the p-values of the LRT test between the NMSDE and MSDE and between the MSDE and MSDEG are shown:
ns (p > 0.05); ∗ (0.01 < p ≤ 0.05); ∗∗ (0.001 < p ≤ 0.01); ∗∗∗ (p ≤ 0.001).

NMSDE

MC RL CI

α 6.5826± 0.0157 6.5892± 0.0281 6.2829± 0.0157
A 722.40± 11.32 727.17± 20.43 722.68± 11.36
β 1.2938± 0.0154 1.3099± 0.0272 1.2930± 0.0154
σ 0.3060± 0.0020 0.3395± 0.0033 0.3062± 0.0020
LLX −202064.0 −96107.3 −201397.3
AIC 404134.0 192220.5 402800.7
BIC 404160.1 192244.4 402826.8

MSDE

µ 6.5814± 0.0163 6.5872± 0.0284 6.5816± 0.0164
A 721.55± 11.78 725.75± 20.61 721.69± 11.82
θ 0.1452± 0.0102 0.0707± 0.0313 0.1450± 0.0102
β 1.3052± 0.0160 1.3143± 0.0277 1.3046± 0.0160
σ 0.2989± 0.0021 0.3381± 0.0035 0.2991± 0.0021
LLX −201924.8∗∗∗ −96104.7∗∗ −201259.7∗∗∗

AIC 403857.6 192217.3 402527.3
BIC 403889.2 192230.2 402514.0

MSDEG

c0 6.5826± 0.0164 6.5951± 0.0287 6.5799± 0.0163
c1 0.0010± 0.0011 −0.0059± 0.0026 0.0016± 0.0004
A 722.24± 11.84 727.18± 20.68 720.14± 11.74
σδ 0.1453± 0.0102 0.0679± 0.0325 0.1410± 0.0104
β 1.3045± 0.0160 1.3134± 0.0277 1.3076± 0.01610
σ 0.2989± 0.0021 0.3381± 0.0035 0.2993± 0.0021
LLX −201923.2ns −96095.2∗∗∗ −201235.6∗∗∗

AIC 403856.3 192200.3 402481.1
BIC 403899.9 192240.2 402524.7
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Table 4. Estimation results for the NMSDE, MSDE and MSDEG models. The table shows the values of the maximum
likelihood estimates and corresponding approximate 95% asymptotic confidence bands, as well as the corresponding value
of the log-likelihood. Estimates for the actual asymptotic weight (in kg) are shown with A = h−1(α), A = h−1(µ) and
A = h−1(c0 + c1g1), for NMSDE, MSDE and MSDEG, respectively. The AIC and BIC values are also presented. The
magnitude of the p-values of the LRT test between the NMSDE and MSDE and between the MSDE and MSDEG are shown:
ns (p > 0.05); ∗ (0.01 < p ≤ 0.05); ∗∗ (0.001 < p ≤ 0.01); ∗∗∗ (p ≤ 0.001).

NMSDE

GC WG CW FC

α 6.5826± 0.0157 6.5884± 0.0165 6.6007± 0.0240 6.6241± 0.0210
A 722.40± 11.32 726.61± 12.01 735.60± 17.65 753.00± 15.84
β 1.2938± 0.0154 1.2998± 0.0161 1.2835± 0.0226 1.2553± 0.0192
σ 0.3060± 0.0020 0.3156± 0.0021 0.3308± 0.0028 0.3254± 0.0024
LLX −202050.7 −204171.3 −120058.1 −163493.7
AIC 404107.3 408348.7 240122.2 326993.5
BIC 404133.4 408374.8 240146.8 327019.0

MSDE

µ 6.5814± 0.0163 6.5846± 0.0170 6.5932± 0.0247 6.6216± 0.0216
A 721.55± 11.78 723.86± 12.33 730.11± 18.01 751.15± 16.23
θ 0.1452± 0.0102 0.1256± 0.0117 0.1241± 0.0175 0.1181± 0.0157
β 1.3052± 0.0160 1.3107± 0.0167 1.2988± 0.0237 1.2644± 0.0198
σ 0.2989± 0.0021 0.3106± 0.0022 0.3265± 0.0030 0.3216± 0.0025
LLX −201911.4∗∗∗ −204100.8∗∗∗ −120028.9∗∗∗ −163461.3∗∗∗

AIC 403830.9 408209.6 240065.7 326930.6
BIC 403864.9 408189.3 240081.6 326897.9

MSDEG

c0 6.5818± 0.0164 6.5667± 0.0175 6.5987± 0.0248 6.6040± 0.0218
c1 0.0004± 0.0008 0.0015 ± 0.0004 0.0010± 0.0005 −0.2223± 0.0534
A 721.64± 11.79 723.44± 12.31 729.4± 17.95 753.89± 16.34
σδ 0.1450± 0.0102 0.1215± 0.0120 0.1217± 0.0178 0.1131± 0.0163
β 1.3051± 0.0160 1.3087± 0.0166 1.2991± 0.0236 1.2608± 0.0198
σ 0.2989± 0.0021 0.3106± 0.0022 0.3265± 0.0030 0.3215± 0.0025
LLX −201911.0ns −204073.1∗∗∗ −120020.4∗∗∗ −163427.9∗∗∗

AIC 403832.1 408156.1 240050.8 326865.9
BIC 403875.6 408199.7 240091.8 326908.4

In Table 4, for all genetic traits, the differences between NMSDE and MSDE were significant at p ≤ 0.001.
Also the AIC and BIC values were lower on the MSDE models, allowing us to conclude that for these groups of
animals we should consider a random asymptotic weight at maturity. The maximum likelihood estimates from the
NMSDE, the MSDE and the MSDEG models are very similar for all parameters. For the models with random α, it
is interesting to compare the standard deviation of the random effect, i.e. to compare the θ of the MSDE model with
the σδ of the MSDEG model. With the exception of the non-significant GC trait, we see that the incorporation of
the genetic trait WG, CW or FC reduces the variability of the random effect. Regarding the AIC values we can see
that the MSDE models provides lower values than the NMSDE equivalent models, which in turn provides lower
values that the equivalent MSDEG models.

In summary, comparing models with the same number of observations, the comparison between NMSDE and
MSDE models shows that considering the parameter α to randomly vary among animals provides a very significant
improvement, and the comparison between MSDE and MSDEG models shows a very significant improvement for
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the incorporation of some genetic traits (which help explain part of the variability in α), but not for others (which
seems to have no or low influence on α). The genetic traits that are not significant are MC and GC. The genetic
traits RL, CI, WG, CW and FC do have a very significant effect, RL and FC with a negative effect c1 < 0 (i.e., α is
high for low genetic values, preferably negative) and CI, WG and CW with a positive effect c1 > 0 (i.e., α is high
for high genetic values, preferably positive).

5. Conclusion

Incorporating genetic values in the animal growth process is a valuable approach that can lead to significant
improvements in livestock production. By considering the genetic potential of animals, breeders can select
individuals with desirable traits, resulting in enhanced growth, productivity, and overall performance of the
population.

We have studied a general class of SDE mixed models with the inclusion of genetic values to describe individual
growth in a randomly varying environment with a real application to the weight of male Mertolenga cattle. A
general model can be written as a variant of the Ornstein-Uhlenbeck model, where the parameter α (asymptotic
modified weight) is assumed to be random and where the random effect is written as a linear function of the
genetic values of the animal. We have used, in the numerical application to Mertolengo cattle data, the weight
of the animals and the logarithmic transformation, which reveals to be the most appropriate to that data, leading
to the stochastic Gompertz model. Our interest in using SDE mixed models with genetic values comes from the
reasonable idea that model parameters may vary from animal to animal, which, for instance, occurs due to different
individual characteristics of the animals such as genetic differences.

We apply the maximum likelihood estimation method to obtain the parameter estimates of the SDE mixed models
with inclusion of genetic values (MSDEG) and compare each model with the correspondent ones without the
inclusion of the genetic values (MSDE) and with the fixed effects model (NMSDE). We compare the models using
the likelihood ratio ratio test and also present the AIC and BIC values. The comparison between the SDE mixed
model and the SDE non-mixed model clearly shows that, just by assuming the asymptotic weight at maturity of each
animal to be a random variable, results in a highly significant improvement. The further importance of considering
a genetic value was evaluated by comparing the corresponding MSDEG model with the MSDE model. The results
revealed that the incorporation of the genetic values of reproductive longevity, calving interval, average daily weight
gain, carcass weight per day of age or feed conversion index, provides a highly significant improvement, while the
incorporation of the maternal capacity until weaning and the growth capacity until weaning genetic values shows
non-significant improvement.

This study enables the identification of genetic values that contribute the most to describe the animal growth
asymptotic size. By incorporating these genetic values, breeders can improve the efficiency and productivity of
animal production systems, offering significant benefits to livestock production.

In future work, we intend to implement MSDE and MSDEG models to improve the optimization of the breeder’s
profit by raising an animal. We should estimate the optimal selling age and optimize the profit using SDE mixed
models instead of SDE non-mixed models. We also intend to extend the SDE mixed model by letting the random
growth parameter β depend on the genetic values. A combination of several genetic values simultaneously instead
of just one at a time should also be addressed, either for the SDE mixed effect model with a random α and the SDE
mixed model with a random β.
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