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Abstract In this paper, we deal with the estimation of two widely used risk measures such as Value-at-Risk (VaR)
and Expected Shortfall (ES) in a cryptocurrency context. To face the presence of regime switching in the cryptocurrency
volatilities and the dynamic interconnection between them, we propose a Monte Carlo-based approach using heteroskedastic
factor analysis and hidden Markov models (HMM) combined with a structured variational Expectation-Maximization (EM)
learning approach. This composite approach allows the construction of a diversified portfolio and determines an optimal
allocation strategy making it possible to minimize the conditional risk of the portfolio and maximize the return. The out-of-
sample prediction experiments show that the composite factorial HMM approach performs better, in terms of prediction
accuracy, than some other baseline methods presented in the literature. Moreover, our results show that the proposed
methodology provides the best performing crypto-asset allocation strategies and it is also clearly superior to the existing
methods in VaR and ES predictions.
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1. Introduction

Crypto (digital, virtual) currencies have experienced a spectacular boom over the past decade. In the first six months
of 2021, the number of cryptocurrency users worldwide doubled to 221 million, including 114 million Bitcoin and
23 million Ethereum holders. As for the total cryptocurrency market capitalization, it has multiplied by ten in less
than two years, to exceed 2.6 trillion dollars in November 2021. After a sharp decline by nearly 1,500 billion
dollars on January 2022, the market then rose by nearly 2,000 billion at the beginning of April.† The Bitcoin (more
than 800 billion in capitalization) and the Ethereum (nearly 400 billion), together hold two-thirds of the market.
According to the Financial Stability Board, the supervisor of global finance, cryptocurrencies today represent 1%
of global financial assets.

From a practical point of view, the main advantages of cryptocurrency are instantaneous and secure transactions;
they are carried out without the intermediary of a bank. Many web services and merchants have chosen to accept
it as a method of payment, attracted by the absence of transaction fees and the irrevocable nature of validated
transactions.

Cryptocurrencies have become, since 2017, a financial asset in their own right. A highly speculative asset, whose
price is subject to wide variations, both up and down. With prospects of record gains for investors, but also high
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risks of capital loss. This market is indeed particularly volatile, marked by strong and unexpected depreciations,
over very short periods, like the brutal collapse, at the beginning of the year, of the value of Bitcoin, which went
from more than 69,000 USD in November 2021 to 36,000 USD on January 2022, before rising to 42,500 USD
on April 2022, then starting a new decline. Hence, there is a need to predict and control the risks associated with
cryptocurrencies. To do this, we find that the traditional historical simulation approach, or GARCH-type methods
are too restrictive. More general Markov-switching multivariate methods provide more flexibility to account for
such non-standard time series behavior that might be attributed to a large extend to speculators.

We propose in this paper a new composite hidden Markov factor analysis approach for crypto-portfolios
risk prediction, using Value-at-Risk (VaR) and expected shortfall (ES) as risk measurements. Our multivariate
sequential forecasting strategy allows for time-varying volatility as well as the possibility of regime switching in
the crypto asset prices. A structured variational expectation maximization (EM) algorithm for the inference of the
latent structures and the updating of the model’s parameters is also proposed.

Markov switching models with time-varying volatility have showed an outstanding performance than have
standard models in the presence of volatility shifts (see Trucios, 2019; Troster et al., 2019 and Charles and Darné,
2019). Furthermore, when used to model the dependance structures of multiple asset classes, latent factor analysis
models have been shown to perform better than copula models (Yu et al., 2018 and Abbara and Zevallos, 2018). In
such a setting, a Monte-Calo-based composite hidden Markov factor analysis approach for VaR and ES predictions
could be interesting for investors.

This paper contributes to the growing literature on crypto asset allocation and portfolio risk measurement. The
most discussed approaches in the previous literature include ARMA-GARCH models (Platanakis and Urquhart,
2019) as well as the generalized autoregressive score models used by Liu et al., (2020), extreme value theory models
used by Gkillas and Katsiampa (2018), copula-based modeling approaches (e.g., Trucios et al., 2020), GARCH
models with Markov-Switching dynamics used by Maciel, (2020), dynamic latent factor analysis models used by
Saidane and Lavergne (2009, 2011) and Saidane (2022a,b, 2023) and some prediction methods using machine
learning techniques like those employed by Takeda and Sugiyama (2008). The previous literature contains also
empirical studies on portfolio diversification strategies using a mix of traditional and crypto assets (e.g., Petukhina
et al., 2021 and Elendner et al., 2017). This evokes once again the interest of finding more flexible new sequential
allocation strategies to predict and analyse cryptocurrency portfolios risk. In this context, our contribution comes
through the development of a model that takes into account both the time-varying correlations between crypto
assets, as well as, the regime-switching behavior of the portfolio volatility, an approach never used previously in
the risk assessment of crypto-portfolios.

The remaining of this paper is structured as follows. In section 2, we present the theoretical description of the
composite hidden Markov factor analysis model. Then, we present our Variational-EM approach to infer the latent
state variables and estimate the model’s parameters. The dynamic crypto asset allocation strategies as well as
the the Monte Carlo-based VaR and ES prediction methodology will de described in section 3. In section 4, the
forecasting performance of our proposed model will be compared with that of other baseline prediction methods
presented in the literature. The performance of the VaR and ES measures generated by the different sequential
allocation strategies will also be discussed in section 4. Finally, we conclude the article with a brief discussion of
the main results and the perspectives for potential future developments.

2. Mathematical formulation of the proposed model

We briefly describe in this section the model used to predict the VaR and ES of the cryptocurrencies’ portfolio.
Our methodology is based on factor analysis with time-varying volatility combined with hidden Markov models.
In section 2.1 we define the Markov-switching dynamic factorial structure and the basic identification and
stationnarity assumptions under which the estimation method is developed. The inference procedure of the common
latent factors using a switching Kalman filtering algorithm is also described. Thereafter, in section 2.2 we describe
the proposed estimation method based on the combination of the EM algorithm (Dempster, et al., 1977) with an
approximate variational procedure (Saidane and Lavergne, 2007a).
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2.1. Dynamic factor structure

In a matrix notation, the composite hidden Markov factor analysis (CHMFA) framework for the q-vector of crypto
asset returns rt under the market regime j at time t, is given by:

rt = Bjft + ϵt (1)

where, ∀ t = 1, ..., no, ∀ j = 1, ..., ns, the k-vector of conditionally heteroskedastic common factors is given by:

ft ∼ N (0,Hjt) (2)

In this case, ∀ l = 1, ..., k, each latent factor flt follows a first order generalized quadratic autoregressive
conditionally heteroskedastic, GQARCH-type processes (Saidane, 2009). The l-th element of the diagonal
covariance matrix Hjt, is given by:

hj
lt = a1jl + a2jlf

j
lt−1 + a3jlf

j 2
lt−1 + a4jlh

j
lt−1 (3)

Hence, the common variances are assumed to be time-varying and their parameters change according to the regime.
Finally, the idiosyncratic factor vectors are given by:

ϵt ∼ N (µj ,Ψj) (4)

In this framework the switching between different regimes is governed by a first-order homogeneous Markov
process. Specifically, for a given hidden state St = j, µj is the q-vector of specific means, Bj the (q × k) factor
loadings matrix, and Ψj the (q × q) diagonal and definite positive matrix of specific or idiosyncratic variances.

We constrain the parameters a1jl, a3jl ,a4jl to be greater than zero to ensure the non-negativity of the conditional
common variances as well as a22jl ≤ 4a1jla3jl and a3jl + a4jl < 1, ∀ j, l to obtain a stationary covariance process.
To ensure the identification of the model, it is required that q ≥ k and rank(Bj) = k, ∀ j. Furthermore, we assume
non-correlated specific factors and mutual independence between ft and ϵt′ for all t, t′.

Our model can also be expressed by the following dynamic state-space equations:

rt = µj +Bjft + υt (5)

and

ft = 0 · ft−1 +H
1
2

jtνt (6)

where υt|D1:t−1 ∼ N (0,Ψj) and νt ∼ N (0, Ik). The time-t information set is denoted by D1:t−1 =
{R1:t−1,F1:t−1,S1:t−1}, where R1:τ = {r1, ..., rτ}, F1:τ = {f1, ..., fτ} and S1:τ = {S1, ..., Sτ}. Therefore, from
these equations the recursive switching Kalman filter is constructed starting with the following prediction
equations:

E(ft+1|D1:t) = f jt+1|t = 0 · f jt|t = 0

V ar(flt+1|D1:t) = hj
lt+1|t = a1jl + a2jlf

j
lt|t + a3jl

[
f j 2
lt|t + hj

lt|t

]
+ a4jlh

j
lt|t−1

where ∀ j = 1, ..., ns, f j
lt|t = E(f j

lt|D1:t) and hj
lt|t = V ar(f j

lt|D1:t), which represent the elements of the first

diagonal of Hj
t|t. In this case, the terms hj

lt|t come from the global variance formula as follows:

E(f j2
lt |D1:t) = V ar(f j

lt|D1:t) + E(f j
lt|D1:t)

2 = hj
lt|t + f j2

lt|t
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Now we can apply a modified version of the Kalman filtering algorithm obtained by generalizing the approach
of Saidane and Lavergne (2011) in order to get the best estimates (in the conditional mean square sense) for the
common latent factors as follows:

f jt+1|t+1 = Hj
t+1|tB

′
j

[
Ωj

t+1|t

]−1

(rt − µj)

Hj
t+1|t+1 = Hj

t+1|t −Hj
t+1|tB

′
j

[
Ωj

t+1|t

]−1

BjH
j
t+1|t

where Ωj
t+1|t = BjH

j
t+1|tB

′
j +Ψj . In this case smoothing is not needed due to the degenerate nature of the

transition equation (6), and the updating equations are simply given by: f jt|no
= f jt|t and Hj

t|no
= Hj

t|t.

2.2. The EM training

In this section, we describe an iterative approach for the estimation of the composite hidden Markov factor analysis
model based on an extension of the EM algorithm called Variational-EM algorithm. Our algorithm alternates
between two steps: optimizing an auxiliary function over the hidden Markovian states and the common latent
factors (E-step) and optimizing the model parameters given the auxiliary function (M-step). In the first step we
compute the expected log-likelihood given the complete data and the current model parameter estimates, using
the factor estimates obtained by the switching Kalman filtering algorithm and the weightings ξ(j)t obtained via the
structured variational-based approach.‡

For composite hidden Markov factor analysis models, the parameters µj , Bj and Ψj can be computed directly,
without any approximations. This is a weighted version of the updating formulae for the parameters of standard
factor analysis models. Furthermore, the updating formulae for the initial state probability πj and the transition
probabilities pij are too similar to those obtained by the Baum-Welch algorithm for the simple hidden Markov
model.

π̂j =
ξ
(j)
1

ns∑
i=1

ξ
(i)
1

p̂ij =

no∑
t=2

ξ
(i)
t−1ξ

(j)
t

no∑
t=2

ξ
(i)
t−1

The specific mean re-estimation formula is given by:

µ̂j =

no∑
t=1

ξ
(j)
t

(
rt −Bjf

j
t|no

)
no∑
t=1

ξ
(j)
t

and the l-th factor loadings line of the matrix Bj by:

b̂jl =

[
no∑
t=1

ξ
(j)
t (rtl − µjl)f

j
t|no

]′ [ no∑
t=1

ξ
(j)
t

[
Hj

t|no
+ f jt|no

f j′t|no

]]−1

‡More details about the variational procedure and the weights ξ(j)t are available in Saidane and Lavergne (2007a)
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where rtl is the l-th crypto asset’s time t log-return and µjl, the corresponding specific mean in the market regime
j.

Finally the updated idiosyncratic covariance matrix is given by:

Ψ̂j =

no∑
t=1

ξ
(j)
t diag

{
rtr

′
t −Ajt|no

−A′
jt|no

+Mjt|no

}
no∑
t=1

ξ
(j)
t

where

Ajt|no
=

[
Bj µj

] [ f jt|no
r′t

r′t

]
and

Mjt|no
=

[
Bj µj

] [ Hj
t|no

+ f jt|no
f j′t|no

f jt|no

f j′t|no
1

][
B′

j

µ′
j

]

In all the above formulae, ξ(j)t are the responsibilities assigned to the log-return vector rt under market regime j.
In the second step, given the updated estimates of πj , pij , µj , Bj and Ψj , and the approximation established by

Harvey, et al., (1992):

rt|R1:t−1, St = j,S1:t−1 ≈ N
[
µj ,Ω

j
t|t−1

]
we get the following result:

Ωj
t|t−1 = BjH

j
t|t−1B

′
j +Ψj

where Hj
t|t−1 is the expected value of Ht, given the time t− 1 information set, computed by the quasi-

optimal switching Kalman filter algorithm developed in Saidane and Lavergne (2007b, 2008). In this case, the
parameters aj = {a1jl, a2jl, a3jl, a4jl} for j = 1, ..., ns can be updated through the maximization of the observed
log-likelihood function:

L∗ = c− 1

2

no∑
t=1

ns∑
j=1

ξ
(j)
t

[
log |Ωj

t|t−1|+ (rt − µj)
′Ωj −1

t|t−1(rt − µj)
]

(7)

To solve the above nonlinear optimization problem, we can use the R-package NlcOptim developed by Chen
and Yin (2019) after identifying the optimal hidden process.
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The EM Algorithm

Initialization of the model parameters.§

E step (We repeat these iterations until convergence of the KL(Q∥p))
1. Computation of q(j)t based on the prediction errors of model j.
2. Computation of ξ(j)t using forward-backward recursions and the probabilities q(j)t .
3. Running the Kalman filter, with data weighted by ξ

(j)
t .

M step
1. Updating the model parameters using data weighted by ξ

(j)
t .

2. Updating the Markov process parameters with the Baum-Welch procedure.
3. Updating the common variance parameters using the NlcOptim R-package.

3. Crypto asset allocation strategies and risk assessment

Let rt be the q-dimensional vector of log-returns on the q cryptocurrencies at time t. The dynamic asset allocation
theory assumes that an investment in the different currencies at each time t can be reallocated for the next period
t+ 1 according to a portfolio Pt+1. Thus, the amounts of American dollars (USD) invested in the different
currencies are given in the vector Pt+1.

In this paper no transaction costs are assumed and the amounts of USD may be reallocated freely and
instantaneously to arbitrary short or long positions across the different cryptocurrencies, subject initially only to
the constraint P ′

t1 = 1, where 1 is the unity vector. The choice of the best model over a chosen time interval can
be done based on the cumulative returns given by the USD amount r∗t = P ′

trt (the realized return of the portfolio
at time t).

3.1. Dynamic portfolio optimization across hidden market regimes

The Markowitz’s (1952) portfolio model is based on the concept of diversification. Thus, the different assets
composing a portfolio at each time t cannot be selected individually and must be chosen according to the predicted
correlation of their returns with those of the other assets. This selection process allows to minimize the portfolio
variance given an expected rate of return.

For the implementation of the different dynamic allocation strategies we need the predicted correlation matrix,
as well as, the expected return vector, which may be computed using our composite hidden Markov model and the
other baseline models. In the case of the CHMFA model, the predicted mean vector µt+1|t and covariance matrix
Ωt+1|t of the log-return vector rt can be computed as follows:

µt+1|t = E(rt+1|D1:t) = µj (8)

and

Ωt+1|t = V ar(rt+1|D1:t) = BjH
(j)
t+1|tB

′
j +Ψj (9)

where

H
(j)
t+1|t = diag

[
h̃
(j)
lt+1|t

]
l=1,...,k

§For more details on the variational parameters q
(j)
t , ξ(j)t and the minimization of the Kullback-Leibler divergence KL(Q∥p), one can

refer to Saidane and Lavergne (2007a).
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and ∀j = 1, ..., ns,

h̃
(j)
lt+1|t = a1jl + a2jlE(f (i)

lt |D1:t) + a3jlE(f (i) 2
lt |D1:t) + a4jlE(h(i)

lt |D1:t)

= a1jl + a2jlf
(i)
lt|t + a3jlf

(i) 2
lt|t + a4jlh

(i)
lt|t

In this case, the predicted conditional volatilities of the different crypto assets ω(j)
l,t+1|t are given by the diagonal

elements of the covariance matrix (9) and the optimal future state can be identified as follows:

S∗
t+1|t = argmax

j
p(St+1 = j|R1:t; Θ) , 1 ≤ t ≤ no − 1

where Θ denotes the set of the model parameters. In this case, the posterior probabilities maximized by S∗
t+1|t are

given by:

p(St+1 = j|R1:t) =

ns∑
i=1

P (St+1 = j, St = i|R1:t)

=

ns∑
i=1

p(R1:t|St+1 = j, St = i)p(St+1 = j, St = i)

p(R1:t)

=

ns∑
i=1

p(R1:t, St = i)pij

p(R1:t)

≈
ns∑
i=1

ξ
(i)
t pij

where ξ
(i)
t are the responsibilities assigned to factor model i for the observation vector rt.

Our dynamic optimization problem consists at each time t to find the optimal allocation strategy by minimizing
the portfolio’s risk for a certain expected return value:

argmin
Pt+1

{
P ′
t+1Ωt+1|tPt+1

}
s.t P ′

t+1µt+1|t = m
and P ′

t1 = 1

(10)

In this case, we call efficient frontier (curve) the set of all portfolios that minimize the risk subject to a predefined
expected return. The mean-variance optimal (efficient) portfolio P(m)

t+1 is the solution to the quadratic optimization
system (10), which can be obtained as follows:

P(m)
t+1 = Ω−1

t+1|t(λµt+1|t + δ1) (11)

where

λ = 1′Ω−1
t+1|te

and

e =
(1m− µt+1|t)

d
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and

d = (1′Ω−1
t+1|t1)(µ

′
t+1|tΩ

−1
t+1|tµt+1|t)−

(
1′Ω−1

t+1|tµt+1|t

)2

Two other allocation solutions can also be obtained by solving the previous quadratic system. The first one,
depending only on the predicted covariance matrix, called strictly risk-averse strategy, is given by:

P(mv)
t+1 =

(
1′Ω−1

t+1|t1
)−1

Ω−1
t+1|t1 (12)

The second one, called target-independent strategy, is centered on the boundary of the efficient curve:

P(me)
t+1 =

(
1′Ω−1

t+1|tµt+1|t

)−1

Ω−1
t+1|tµt+1|t (13)

Finally, we note that there are many other extensions of the basic strategies (11-13). For example, if we allow
for short and long investment positions by removing all the resources constraints imposed on the vector Pt+1, we
obtain the unconstrained targeted mean efficient portfolio corresponding to a given expected return m, as follows:

P(∗m)
t+1 =

mΩ−1
t+1|tµt+1|t(

µ′
t+1|tΩ

−1
t+1|tµt+1|t

) (14)

In section 4, all these dynamic allocation strategies (11-14) will be used in conjunction with the different
competing models in order to evaluate the forecasting accuracy of these models, as well as, their ability to measure
the risk associated with cryptocurrency portfolios.

3.2. Sequential VaR and ES computations

In this section, we follow a similar methodology to that detailed in Saidane (2022b) for the computation of the VaR
and ES risk measures. Monte Carlo simulations are performed in a rolling window scheme using Nms = 25.000
random scenarios, to achieves a balance between accuracy and efficiency. The steps of the Monte-Carlo approach,
based on the simulation of random scenarios from the composite hidden Markov factor analysis model, are detailed
as follows:

Step 1: A loss probability level α% for the VaR measure is chosen.
Step 2: Nms different random scenarios are simulated from the predictive distribution of the conditionally
heteroskedastic latent factors fst+1|t with the highest variational parameter, ξ(j)t , as follows:

(a) Standardized factors f∗t are first simulated from N (0, Ik).
(b) Thereafter, the Cholesky decomposition of H(j)

t+1|t is used to find the lower triangular matrix H
(j)∗
t+1|t and

to calculate

fst+1|t = H
(j)∗
t+1|tf

∗
t

Step 3: Nms different random scenarios are simulated from the predictive distribution of the idiosyncratic
factors ϵst+1|t with the highest variational parameter, ξ(j)t , as follows:

(a) Standardized factors ϵ∗t are first simulated from N (0, Iq).
(b) Thereafter, the Cholesky decomposition of Ψj is used to find the lower triangular matrix Ψ∗

j and to
calculate
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ϵst+1|t = µj +Ψ∗
jϵ

∗
t

Step 4: Nms portfolio return scenarios are simulated from the composite hidden Markov model, using the 4
dynamic allocation strategies (section 3.1), as follows:

Rm
t+1|t = Pm

t+1
′rst+1|t

Rmv
t+1|t = Pmv

t+1
′rst+1|t

Rme
t+1|t = Pme

t+1
′rst+1|t

R∗m
t+1|t = P∗m

t+1
′rst+1|t

where

rst+1|t = Bjf
s
t+1|t + ϵst+1|t

Step 5: In this step, we ignore the portion of the α% worst simulated returns. The predicted VaR measure
at time t, for each allocation strategy, is calculated as the minimum of the remaining simulated returns. The
predicted ES, called also conditional VaR, is calculated as the mean value of the loss exceeding VaR. In this
case, the ES can be interpreted as the average loss in the worst α% of cases.

4. Data and empirical findings

The main focus of this paper is the use of the composite hidden Markov factor analysis model to predict the VaR
and ES in a crypto-portfolio context. Our dataset downloaded from the ”Yahoo Finance” website¶, consists of the
closing prices listed in US dollars of the six most popular cryptocurrencies, namely the Bitcoin (BTC), Litecoin
(LTC), DASH, Ethereum (ETH), Ripple (XRP), and the Stellar (XLM) currencies. The dataset covers the period
from October 01, 2018 until September 30, 2022 (i.e. 1460 daily returns).

Cryptocurrencies’ prices are driven by a supply and demand process without any dividend distribution
mechanism. In this case, they can be modeled as a geometric Brownian motion process, and the realized volatility
proposed by Alizadeh et al. (2002) can also provide a good proxy measure for the true observed volatility.

The forecasting performance of our methodology is evaluated here by applying the one-day rolling window
approach (see Saidane, 2022a). The dataset is divided into a training set with observations from October 01, 2018,
to September 30, 2019 (365 log-returns), on which we train and estimate the parameters of our composite hidden
Markov model and those of other baseline prediction methods presented in the literature, such as: the standard
factor analyzed hidden Markov model (FAHMM) (Saidane and Lavergne, 2006), the switching dynamic state-
space model (SSSM) (Saidane and Lavergne, 2009), the conditionally heteroskedastic latent factor model (CHFM)
(Saidane, 2017, 2023) and the mixed factorial HMM (MFHMM) (Saidane, 2019).

On the prediction set, we compute a one-step ahead out-of-sample forecast for the mean and the volatility of the
first trading day of October 2019, using the different models. Thereafter, the realized log-returns for October 1,
2019 are added and those of 2018 are dropped from the training set and the different models are again estimated
and used to predict the mean and the volatility of the next trading day. This process continues until we obtain mean
and volatility predictions from October 01, 2019 to September 30, 2022 (1095 daily predictions).

In order to select the optimal model that will ensure the most probable forecast, we run different configurations
(by varying the number of common latent factors and HMM states), using the maximum likelihood principle on
the rolling-window data sample (a window size of 365 trading days). Minimizing the Schwarz’s (1978) or BIC
criterion - calculated after each EM implementation - enables us to obtain the optimal model among all possible
sub-models. The same procedure is performed for all the other competing models.

¶https://finance.yahoo.com/crypto/
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4.1. Data description

Table 1 reports some summary statistics for the six cryptocurrency daily return series on the period ranging from
October 01, 2018 to September 30, 2022. Returns are calculated as log-differences between closing prices.

Table 1. Descriptive statistics for the daily cryptocurrency log-returns from 01/10/2018 to 30/09/2022.

Cryptocurrency
Statistic BTC LTC DASH ETH XRP XLM
Mean 0.00148 0.00129 0.00067 0.00244 0.00153 0.00099
Std. Dev. 0.0380 0.0521 0.0588 0.0493 0.0583 0.0572
Min -0.3717 -0.3618 -0.3721 -0.4235 -0.4233 -0.3363
Q3 0.0177 0.0260 0.0248 0.0269 0.0199 0.0239
Med. 0.00108 0.00042 0.00068 0.00156 -0.00062 -0.00067
Q1 -0.0150 -0.0253 -0.0250 -0.0207 -0.0216 -0.0263
Max 0.1875 0.3083 0.5704 0.2595 0.5601 0.7492
Skewness -0.4048 -0.1254 1.1563 -0.3613 1.3406 2.1367
Kurtosis 11.710 8.7233 17.477 9.3983 19.343 29.802
BJ test 4655.5 1996.5 13074 2522.2 16685 44811
p-values (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
LB(1) 141.83 135.76 127.98 116.46 131.70 128.56
p-values (0.0178) (0.0191) (0.0218) (0.0236) (0.0204) (0.0211)

From this table we can see that the empirical skewness is larger than 1 for the DASH, XRP and XLM currencies
and negative for the other currencies. On the other hand, the empirical kurtosis for all the return series are
greater than 3, with the smallest kurtosis corresponding to the LTC returns (8.7233) and the largest to the XLM
(29.802). This indicates that all the log-returns have skewed and leptokurtic distributions and deviate from the
normal distribution assumption. Furthermore, the p-values of the Bera and Jarque (1982) BJ test are all very small
(< 0.0001), which confirm that all the crypto asset log-return are not normally distributed. From this table, we can
see also that all the p-values of the Ljung and Box (1978) LB(1) test for the squared return of the crypto asset prices
are very low, so we reject the null hypothesis of absence of first order correlation. Following Bollerslev (1987), we
can interpret the presence of significant correlations between the squared returns as a sign of volatility clustering,
which imply that small (large) changes in volatility tend to be followed by small (large) ones and can be modeled
and predicted using conditional heteroskedastic family models.

All the crypto asset closing prices, together with their corresponding log-returns are plotted in Figure 1. This
figure shows a strong evidence of serial correlation in the data and a persistence in the conditional variances of the
different series.

We note finally that the sample correlation coefficients are fairly large for the pairs BTC-LTC (0.7941), BTC-
ETH (0.8200), LTC-ETH (0.8259), DASH-LTC (0.7261) and XRP-XLM (0.7239). These results imply a possibility
of a strong comovement between all the crypto asset log-returns. In this case, a multivariate Markov-switching
factorial approach with time-vaying volatility seems to be more suitable for modeling and forecasting the VaR and
ES of cryptocurreny portfolios during crisis periods.

4.2. Forecasting strategy and performance metrics

In order to examine the prediction performance of our CHMFA approach and the other benchmark models, we used
four accuracy metrics: the mean absolute error (MAE), the mean square error (MSE) and the Theil-U statistic. We
used also the ”correct directional change” (CDC) metric, which evaluates the aptitude of each model to correctly
forecast the next trading day’s movement direction in volatility. These metrics are given by the following formulas:

MAE =
1

n

n∑
t=1

∣∣σ2
t − σ̂2

t

∣∣ (15)
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Figure 1. The cryptocurrency historical prices and their corresponding log-returns for the period 01-10-2018 - 30-09-2021.

MSE =
1

n

n∑
t=1

(
σ2
t − σ̂2

t

)2
(16)

Theil-U =

n∑
t=2

(
σ̂2
t − σ2

t

)2
n∑

t=2

(
σ2
t − σ2

t−1

)2 (17)

CDC =
1

n

n∑
t=1

dt where dt =

{
1 if (σ2

t − σ2
t−1) · (σ̂2

t − σ̂2
t−1) ≥ 0

0 otherwise (18)

MAE is the mean of absolute differences between pairs of predicted volatilities σ̂2
t obtained from the different

models and actual volatilities σ2
t . MSE is the mean of squared differences between actual and predicted volatilities.

The Theil-U statistic is the ratio of the mean squared prediction error of our models to that from a random walk
prediction. The advantage of this metric is that it is independent from the variable’s scale. Theil-U’s less than 1
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Table 2. Forecasting accuracy of the different models for the period October 01, 2019-September 30, 2022.

Model
Currency Statistic CHFM FAHMM SSSM MFHMM CHMFA

BTC MAE 0.0477 0.0512 0.0428 0.0456 0.0407
MSE 0.00838 0.00953 0.00752 0.00774 0.00682
Theil-U 1.621 1.689 0.592 0.611 0.548
CDC 66.72% 68.18% 79.44% 74.83% 85.52%

LTC MAE 0.0382 0.0406 0.0341 0.0360 0.0276
MSE 0.00726 0.00843 0.00671 0.00692 0.00594
Theil-U 1.544 1.282 0.430 0.447 0.388
CDC 67.21% 70.01% 80.62% 76.11% 88.17%

DASH MAE 0.0572 0.0594 0.0516 0.0548 0.0493
MSE 0.00871 0.00926 0.00741 0.00778 0.00715
Theil-U 1.079 0.931 0.557 0.589 0.528
CDC 64.19% 66.46% 83.04% 80.42% 87.85%

ETH MAE 0.0461 0.0477 0.0398 0.0428 0.0366
MSE 0.00573 0.00590 0.00462 0.00498 0.00427
Theil-U 1.633 0.889 0.609 0.616 0.588
CDC 73.26% 76.75% 90.71% 87.34% 96.74%

XRP MAE 0.0170 0.0169 0.0157 0.0154 0.0161
MSE 0.00579 0.00585 0.00484 0.00561 0.00473
Theil-U 1.685 1.571 0.568 0.564 0.561
CDC 74.56% 72.33% 89.76% 86.17% 91.97%

XLM MAE 0.0234 0.0248 0.0172 0.0189 0.0133
MSE 0.00499 0.00522 0.00481 0.00496 0.00450
Theil-U 1.584 1.593 0.567 0.579 0.534
CDC 70.68% 74.03% 92.56% 88.32% 95.44%

indicate relatively improved prediction accuracy against the naive random walk benchmark; whereas values greater
than 1 indicate poor prediction performance.

Notice here that all the considered metrics are useful for measuring forecasting accuracy, but they doesn’t
consider the prediction’s direction (say, positive or negative). However, many trading strategies rely on the
prediction of the direction of volatility rather than its level. In this case, the CDC, as a measure of the direction
change accuracy, addresses this issue.

All the results obtained for the different models on the out-of-sample period, from 01/10/2019 to 30/09/2022, are
given in Table 2. From this table, we can see that Theil-U’s are generally greater than 1 for the CHFM and FAHMM
models, and less than 1 for the other models. We can see also, from the MSE values, the significant superiority
in terms of prediction ability of our CHMFA model with respect to the other competing models for the different
volatility series. On the other hand, based on the MAE results, we see that the MFHMM gives significantly better
forecasts than those obtained by the other models for the the XRP volatility. From the Theil-U metric results we
can argue that the only model which does not perform better than the random walk is the CHFM. In this case, the
Theil-U value is larger than one for all the cryptocurrencies considered.

In general, our composite hidden Markov factor analysis model performs better than the other competing models
in all of the three metrics. It gives also, the most accurate directional change predictions for all the cryptocurrency
volatilities. The switching dynamic state-space model is ranked second.
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4.3. The encompassing test

Despite their usefulness, the prediction evaluation measures used previously cannot determine if the forecasting
power of a model is ”significantly” better or worse than another. In order to assess the forecasting superiority of
a model over a given benchmark, we will follow the forecast-encompassing approach proposed by Harvey, et al.,
(1998). In this case, when a model M∗ gives useful information that is not contained in the benchmark M, we
say that the first model encompasses the second one. For more details on the implementation of this test and more
applications with financial data, in a rolling window framework, one can refer to Saidane and Lavergne (2011,
2009).

Table 3. Results of the encompassing tests for the BTC, LTC and DASH data on the period October 01, 2019-September 30,
2022.

Forecast σ̂2
kt from ↓

Forecast error
Currency σ2

jt − σ̂2
jt from ↓ CHFM FAHMM SSSM MFHMM CHMFA

BTC CHFM NA 0.2783 0.0324 0.0428 0.0206
FAHMM 0.0460 NA 0.0311 0.0394 0.0212
SSSM 0.4163 0.4810 NA 0.3376 0.0379
MFHMM 0.1104 0.6231 0.0348 NA 0.0243
CHMFA 0.6352 0.7106 0.0431 0.6602 NA

LTC CHFM NA 0.3172 0.0381 0.0336 0.0229
FAHMM 0.0411 NA 0.0488 0.0372 0.0247
SSSM 0.5270 0.5206 NA 0.4617 0.0631
MFHMM 0.1857 0.4913 0.0314 NA 0.0305
CHMFA 0.6118 0.6780 0.1196 0.7142 NA

DASH CHFM NA 0.4207 0.0406 0.0389 0.0337
FAHMM 0.0462 NA 0.0461 0.0388 0.0381
SSSM 0.6854 0.6371 NA 0.6608 0.0402
MFHMM 0.3722 0.5704 0.0394 NA 0.0387
CHMFA 0.6429 0.6208 0.4321 0.6934 NA

Tables 3 and 4 summarize the results of this test for the individual cryptocurrency volatility series. The model
forecast (independent variable), is given at the top of the tables and the model prediction error (dependent variable)
is given down the left side of the tables. The p-values of the regression coefficients used in this test are given in the
entries of the tables. In this case, a p-value less than 0.05 means that the prediction from the corresponding model
given at the top of the table explains the prediction error from the corresponding model given down the left side of
the table, and this result imply that the second model cannot encompass the first one.

From Table 3, we can see that the p-values related to the LTC currency are all greater to the significance level 5%
in the SSSM and CHMFA rows. These results indicate that the prediction errors of these models are not explained
by any other model’s forecasts, which in turn imply that these models are not encompassed by any of the other
competing models. We can see also that the forecasts obtained from the SSSM and CHMFA models can explain
the prediction errors of the other benchmarks at the significance level of 5%. From here, we can conclude that the
CHFM, FAHMM and MFHMM models are encompassed by the SSSM and our CHMFA framework.

The results in Table 3 also indicate that the prediction errors of our CHMFA for the BTC, LTC and DASH
currencies are not explained by any other model’s forecasts at the significance level of 5%. On the other hand,
the forecasting errors of the competing models are significantly explained by the predictions obtained by our
model (except for the LTC), which imply that our proposed framework encompasses in general all the competitors.
Furthermore, the results for the ETH, XRP and XLM currencies reported in Table 4, confirm in turn that our
CHMFA-based framework performs better than all the other competing forecasting models.
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Table 4. Results of the encompassing tests for the ETH, XRP and XLM data on the period October 01, 2019-September 30,
2022.

Forecast σ̂2
kt from ↓

Forecast error
Currency σ2

jt − σ̂2
jt from ↓ CHFM FAHMM SSSM MFHMM CHMFA

ETH CHFM NA 0.3815 0.0453 0.0481 0.0374
FAHMM 0.0419 NA 0.0446 0.0327 0.0281
SSSM 0.5503 0.5127 NA 0.4865 0.0422
MFHMM 0.263 0.5922 0.0418 NA 0.0332
CHMFA 0.6824 0.7452 0.5301 0.7110 NA

XRP CHFM NA 0.3824 0.0428 0.0317 0.0388
FAHMM 0.0486 NA 0.0455 0.0424 0.0391
SSSM 0.5608 0.5881 NA 0.5772 0.0347
MFHMM 0.3851 0.5115 0.0461 NA 0.0362
CHMFA 0.6463 0.6240 0.3443 0.6673 NA

XLM CHFM NA 0.5874 0.0462 0.0419 0.0308
FAHMM 0.0421 NA 0.0407 0.0449 0.0324
SSSM 0.6307 0.6011 NA 0.6224 0.0396
MFHMM 0.4853 0.5537 0.0465 NA 0.0343
CHMFA 0.6159 0.6045 0.1484 0.7254 NA

Note finally, that all these results show that the SSSM and the CHMFA oftentimes encompass the other
competing prediction models. Our CHMFA model is never encompassed by the other models, whereas all the rival
model are encompassed at least once. Hence, our framework, which nests the CHFM and FAHMM outperforms,
in terms of encompassing tests, all benchmark approaches.

4.4. Empirical comparisons of the different portfolio strategies

In this section, all the comparisons will be conducted on the basis of the forecasting accuracy of the different
competing models, using the dynamic allocation strategies presented in the previous section. Like the approach
developed by Levy and Lopes (2021a), our sequential strategy allows to update the parameters of the model and to
predict the future volatility, simultaneously. Levy and Lopes (2021b) have proposed an analogous procedure based
on the dynamic factor risk model, but without any regime change.

In order to permit out-of-sample forecasting comparisons, the entire period from 01/10/2018 to 30/09/2022
is divided into training and forecasting periods. On the training set, from 01/10/2018 to 30/09/2019 (365
observations), we fitted our CHMFA model and the other baseline models to the daily cryptocurrency log-returns.
Then, we used the 4 dynamic portfolio allocation strategies to assess the (one-step ahead) forecasting accuracy of
the different models on the forecasting period, from 01/10/2019 to 30/09/2022 (1095 predictions).

The performance, in terms of cumulative returns, of the different models and the different allocation strategies
are evaluated here through the one-day rolling window methodology. In Figure 2, we depict the cumulative return
paths of the different dynamic strategies (with a predefined target daily return m = 0.002) used in conjunction with
our BIC-optimal CHMFA model and the other BIC-optimal competing models. We can see clearly from this figure
the dominance of our composite hidden Markov model for the different portfolio strategies.

According to the results of the previous encompassing tests and the cumulative returns given in Figure 2, we can
affirm that the shifts in the volatility dynamics are much better detected by our CHMFA model. The SSSM is the
”second classified” model. These models often give very close portfolio weights. In terms of cumulative financial
returns they dominate all the other benchmarks for the different allocation strategies, except in the unconstrained
strategy case where the dynamic switching SSM dominates the other models for the period up to the end of 2020.

From Figure 2, we can see also the strong similarity in the portfolio cumulative return paths given by the CHMFA
and SSSM models, in the case of the efficient mean-variance strategy. The most notable deviations appear during
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Figure 2. Cumulative returns, expressed in percentages, of the 4 dynamic allocation strategies).

periods of high volatility, where our CHMFA-based approach can capitalize more gains in the short-term than the
switching dynamic SSM model. In the short term, the flexibility of our CHMFA model leads to high fluctuations in
the weights of the cryptocurrency portfolios, that the constrained strategies can permanently capitalize on, resulting
in a persistence of cumulative returns in the long term.

Figures 3-6 show the trajectories of the portfolio weights obtained by the optimal CHMFA model for the different
dynamic allocation strategies. In this case, we used the target return m = 0.002. The plotted points are the relative
portfolios weights, given by the real weights divided by 1′Pt and expressed in percentage terms. From these
figures we can directly compare the constrained and unconstrained portfolio weights. In the constrained case, the
real weights equal the relative ones. Through these figures we can see the significant fluctuations of the portfolio
weights in response to the changes in the volatility regimes during 2022. As shown by Figure 2, these fluctuations
have been translated into a considerable decrease in the cumulative financial returns during this period.

We can see from Figure 3 how the efficient mean-variance strategy turned rapidly in 2022 from long into short
positions on the the DASH, XRP and XLM currencies. This figure shows also how this constrained strategy held
long BTC and ETH positions for most of the time. Furthermore, we note that the specific mean related to the Bitcoin
µ1 is positive on the entire out-of-sample prediction period, which justifies the long positions (positive weights) on
this currency (generally characterized by a low specific risk during this period) and confirms the previous results.

In relation with the previous results about the long positions on the Bitcoin, we can see from Figure 4 that the
target-independent, as well as, the constrained allocation strategies adopt short positions on the DASH and XLM
currencies. We note also that the BTC weights and those of the pair (DASH-XLM) globally compensate each other.

For the strictly risk-averse portfolio strategy with a minimum variance target, we can see from Figure 5 the small
weights related to the DASH currency in almost the entire study period. These low weights can be explained by the
DASH specific mean µ3, which is very close to zero on average during this period. We note also that the specific
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Figure 3. Dynamic weights P(m)
t for the optimal mean-variance efficient strategy using the best CHMFA.
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t for the optimal target-independent strategy using the best CHMFA.

variance of the DASH was very high in this period, which explains the corresponding small weights in the portfolio
and the high risk-aversion with regards to this currency during this period.

Indeed, when comparing figures 3 and 6, it is clear that the portfolio weight’s trajectories of the optimal
constrained mean-variance allocation strategy and the unconstrained strategy are very similar. We further notice
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that on the overall period, the unconstrained allocation strategies adopt long positions on the BTC, LTC, DASH and
ETH currencies, which reflect the portfolio response to the low specific risk levels associated with these currencies.
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Finally, we note that although the cumulative returns given by the dynamic switching SSM are very close to
those given by our CHMFA model during this period, the optimal portfolio weights obtained in this model were
rather more stationary through time. In this case our model takes into account the switching dynamic correlations
among various crypto asset returns and gives with the different allocation strategies more stationary weights than
those obtained by the other competing baseline models.

4.5. Monte Carlo VaR and ES analysis

In this section we seek to identify the most suitable prediction model to evaluate the VaR and ES with the different
dynamic crypto asset allocation strategies presented in section 3.1. For this reason, we estimated in a first time the
latent correlation structure of the observed log-returns, directly from our composite hidden Markov factor analysis
model and the other competing models. Thereafter, we followed the same one-day rolling window procedure used
when evaluating the forecasting performance of our model. The training set contains observations from October
01, 2018, to September 30, 2019 (365 log-returns) and the backtesting set contains 1095 VaR and ES predictions
(from October 01, 2019 to September 30, 2022).

To evaluate the accuracy of the VaR and ES predictions, in the out-of-sample period, we used a Monte Carlo-
based simulation approach similar to that described in Saidane (2022b). In each backtesting step, the observed
failure rates given by the different models for the significance levels 1%, 2%, 5% and 10% were recorded.
Furthermore, for each allocation strategy, we computed the p-values of the Kupiec’s (1995) unconditional coverage
test (UC), the Christoffersen’s (1998) independence (IND) and conditional coverage (CC) tests, the Engle and
Manganelli (2004) dynamic quantile (DQ) test as well as the Gaglianone et al. (2011) VaR quantile (VQ) test.

Tables 5 and 6 report the percentage of observed returns smaller than the prdicted VaR (hits rates), as well as the
p-values of the different tests. Results obtained for the Average Quantile Loss Function (AQL) of Gonzalez-Rivera
et al. (2004) are also reported. When using a suitable VaR estimate, we expect to not reject the null hypothesis that
means we have sufficient evidence to support the claim that the predicted hits rate is equal to the expected one and
that the hits occur independently. Furthermore, we wish also a procedure that minimizes the distance between the
daily realized returns and the predicted VaRs. In this case, the best approach among several alternative is the one
which minimizes the AQL function.

For all the allocation strategies and the coverage rates 10% and 5%, only three models confirmed the null
hypothesis that the predicted hits rate is equal to the expected one at the significance level 5%: the SSSM, the
MFHMM and our CHMFA framework. Note that the CHFM, as well as the FAHMM, presented p-values smaller
than 5% for most tests. Furthermore, following the approach developed by Hansen et al. (2011), we used a model
confidence set-based technique (MCS) and we found a set of high-performance models with small quantile loss
function. The results of these models are indicated in tables 5 and 6 in bold. According to these results, our model
proved also to be superior to all the other competing models for the different dynamic allocation strategies.

For the Coverage rates 2% and 1%, the best model is the CHMFA and the second one is the SSSM which reported
p-values larger than 5% for the UC and CC tests. Our results, show also the better quality of the best SSSM model
compared to the optimal MFHMM for the coverage rates 5% and 2%. Furthermore, from the results of the CC, DQ
and VQ tests, it appears that the optimal SSSM is more significant than the MFHMM model.

For the VaR 1%, our results show that only the CHMFA framework yielded p-values greater than 5% with the
different allocation strategies. Hence our model seems the most satisfactory and gives the best VaR predictions for
the different coverage rates. The second ranked model is the SSSM and the third one is the MFHMM.

Figures 7-8 display the VaR and ES for the different confidence levels using the optimal CHMFA with the
4 dynamic allocation strategies. A visual inspection shows that the behaviors of the predicted VaR and ES are
strongly affected by volatility shocks. These conclusions, in turn, imply that the latent cross-correlations between
the different crypto assets are directly related to the market volatility fluctuations. All these results are consistent
with the values of the AQL function reported in Tables 5 and 6. Furthermore, the Hits rates given in tables 5 and
6, confirm also the strong dependency between the VaR violations and the significant fluctuations in the market
volatility during this period. In this case, we can argue that the poor results given by the CHFM and FAHMM
methods are due to the fact that the correlations between the different crypto asset returns are subject to changes
in regime and are sensitive both to the level of volatility and its regime (high or low), but these models do not take
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Table 5. Results of the backtesting experiments using different models and different allocation strategies for the confidence
levels 90% and 95% on the period October 01, 2019-September 30, 2022.
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Table 6. Results of the backtesting experiments using different models and different allocation strategies for the confidence
levels 98% and 99% on the period October 01, 2019-September 30, 2022.
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Figure 7. Value-at-Risk for the different allocation strategies for the period from 01-10-2019 to 30-09-2021.

into account simultaneously the level and the regime switches in volatility. Accordingly, the risk manager should
account for volatility jumps and sudden shifts the time-varying co-movements among the different heterogeneous
crypto asset returns in order to better assess portfolio risks. In this situation, our composite hidden Markov
factor analysis model may be used to calibrate factor rotation strategies and to visualize how the co-movement
structure has evolved over time. In this context, a Monte Carlo simulation-based CHMFA approach should be
more appropriate to build the multivariate loss distribution for the different dynamic allocation strategies.

Finally, all the backtesting results about the ES are given in Table 7. To verify whether the ES is correctly
estimated, we used for the different allocation strategies the McNeil and Frey (2000) (McF) test as well as the
Bayer and Dimitriadis (2018) (BD) and Nolde and Ziegel (2017) (NZ) tests. For each model, if the p-value is
greater than the significance level, then the null hypothesis must not be rejected and the predicted ES does not
significantly differ from the expected one. In this case, the McF tests whether the mean of the exceedance residuals
is zero. The NZ and BD tests verify whether the predicted ES is accurately determined relative to a realized return
series.

We can see from this table that for the coverage rates 10% and 5%, the corresponding p-values of our CHMFA
model are largely greater than 0.05, regardless the allocation strategy used. Moreover, when the SSSM and
MFHMM are used all the p-values are also greater than 0.05, which imply that these models give an adequate
overall fit to the data and an accurate prediction for the ES. For the different allocation strategies and the ES 1%,
only the p-values of the optimal CHMFA model are greater that 0.05. For the coverage rate 2%, the best SSSM
gives also accurate predictions for the mean-variance efficient portfolio, the target-independent allocation strategy
and the strictly risk-averse strategy. All these results confirm that the use of the Monte Carlo simulation-based
CHMFA procedure described in Section 3.2 along with the different dynamic allocation strategies yields good ES
estimates.

Note finally that McF and NF can be also used to verify the accuracy of the VaR estimation results given in
tables 5 and 6. According to these results, we conclude that our CHMFA-based approach performed clearly better
than the other competing models for the different allocation strategies and the different confidence levels.
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Figure 8. Expected Shortfall for the different allocation strategies for the period from 01-10-2019 to 30-09-2021.

5. Conclusion

This article has proposed a Markov-switching multivariate framework for modeling the latent volatility
dynamics as well as the comovements within cryptocurrency markets and the time-varying correlations between
cryptocurrencies.

Our model is enough general and flexible and can be extended to contain multiple hidden states and a mixture
of conditionally heteroskedastic and standard latent factors, thanks to the employed Variational-EM algorithm. It
also shows a good forecasting accuracy, when applied to crypto asset selection using different allocation strategies
in a rolling window exercise. The forecast accuracy measures and the encompassing tests show that the composite
hidden Markov factor analysis model gives more accurate predictions than those obtained by typical benchmarks.
Here, we can argue that the correlations between the cryptocurrency returns expressed by the common latent factors
seem to be a valuable information for forecasting. In terms of cumulative financial returns, our framework provides
also the best performing portfolio for the different dynamic allocation strategies.

Furthermore, using the composite hidden Markov factor analysis approach for the log-returns of the Bitcoin,
Litecoin, DASH, Ethereum, Ripple, and the Stellar currencies, over the period 01/10/2018-31/09/2022, our results
show a significant improve in the forecasting performance of the Value-at-Risk (VaR) and the Expected Shortfall
(ES) of the optimal crypto-portfolio for the different allocation strategies. This confirms that our model is more
suitable for the risk assessment during periods of high volatility and increasing uncertainty, which often coincides
with increased speculation in the market. In such periods, non-switching models, are substantially inferior in VaR
and ES predictions suggesting that a comparison of predicted losses could serve as an easy, empirical pre-screening
device to detect such speculative bubbles.

Note finally that our model can be generalized to account for the time variability in the idiosyncratic risk and to
allow for non-homogeneous transition probabilities that depend on the time of day. These extensions would also
allow to further flexibility in the crypto asset allocation process and market risk management.
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Table 7. Backtesting results of the ES on the period October 01, 2019-September 30, 2022.

E
S

10
%

E
S

5%
E

S
2%

E
S

1%
M

od
el

P
t

M
cF

N
F

B
D

M
cF

N
F

B
D

M
cF

N
F

B
D

M
cF

N
F

B
D

C
H

FM
P

(m
)

t
0.

02
45

0.
04

02
0.

02
76

0.
03

78
0.

03
14

0.
03

09
0.

04
07

0.
03

94
0.

02
32

0.
02

42
0.

03
77

0.
00

16
P

(m
e
)

t
0.

02
26

0.
02

01
0.

01
72

0.
02

61
0.

03
79

0.
03

47
0.

01
53

0.
00

83
0.

03
07

0.
03

56
0.

04
21

0.
00

24
P

(m
v
)

t
0.

01
54

0.
03

86
0.

02
23

0.
03

52
0.

02
12

0.
02

60
0.

02
94

0.
03

46
0.

01
71

0.
01

37
0.

01
34

0.
03

81
P

(∗
m

)
t

0.
02

37
0.

02
04

0.
03

22
0.

03
41

0.
02

01
0.

03
66

0.
02

29
0.

00
62

0.
02

75
0.

02
69

0.
03

64
0.

01
44

FA
H

M
M

0.
03

82
0.

03
54

0.
03

34
0.

04
43

0.
04

29
0.

03
09

0.
04

16
0.

03
77

0.
04

35
0.

03
95

0.
03

30
0.

03
66

0.
03

47
0.

03
86

0.
03

78
0.

03
36

0.
03

74
0.

03
20

0.
03

54
0.

03
13

0.
04

05
0.

04
22

0.
03

81
0.

04
12

0.
04

58
0.

03
53

0.
03

22
0.

03
65

0.
04

55
0.

04
43

0.
03

88
0.

03
07

0.
03

31
0.

04
29

0.
03

77
0.

03
65

0.
03

64
0.

04
02

0.
04

43
0.

04
58

0.
03

57
0.

04
45

0.
03

39
0.

03
99

0.
04

45
0.

03
88

0.
03

62
0.

04
05

SS
SM

0.
57

28
0.

43
21

0.
55

37
0.

47
06

0.
25

36
0.

45
99

0.
12

17
0.

09
32

0.
10

32
0.

03
19

0.
03

54
0.

03
61

0.
41

49
0.

61
54

0.
41

39
0.

37
18

0.
64

44
0.

36
31

0.
09

28
0.

06
43

0.
08

59
0.

04
03

0.
04

32
0.

04
70

0.
38

91
0.

33
05

0.
41

85
0.

38
12

0.
30

02
0.

42
66

0.
14

86
0.

16
98

0.
14

22
0.

04
84

0.
02

03
0.

02
30

0.
64

16
0.

40
30

0.
40

81
0.

51
74

0.
39

56
0.

31
74

0.
02

55
0.

04
13

0.
04

23
0.

03
43

0.
02

81
0.

03
91

M
FH

M
M

0.
11

68
0.

20
29

0.
43

48
0.

38
42

0.
13

84
0.

08
48

0.
04

62
0.

04
81

0.
02

33
0.

03
60

0.
01

68
0.

02
18

0.
35

76
0.

29
64

0.
10

57
0.

16
93

0.
23

17
0.

12
43

0.
03

69
0.

01
36

0.
04

31
0.

03
57

0.
04

17
0.

03
67

0.
26

85
0.

34
51

0.
44

00
0.

30
37

0.
41

47
0.

21
23

0.
03

86
0.

03
88

0.
02

09
0.

04
90

0.
02

35
0.

04
31

0.
18

28
0.

22
71

0.
11

84
0.

24
99

0.
12

80
0.

34
85

0.
01

29
0.

04
19

0.
02

63
0.

01
03

0.
04

25
0.

03
54

C
H

M
FA

0.
77

55
0.

54
03

0.
94

69
0.

59
51

0.
67

91
0.

68
27

0.
81

62
0.

53
50

0.
78

97
0.

52
82

0.
81

71
0.

68
81

0.
73

17
0.

64
06

0.
84

44
0.

81
05

0.
65

53
0.

59
84

0.
63

08
0.

76
56

0.
90

75
0.

69
85

0.
51

83
0.

91
20

0.
52

36
0.

72
27

0.
76

99
0.

61
12

0.
70

62
0.

64
45

0.
61

70
0.

93
45

0.
65

11
0.

71
56

0.
94

27
0.

63
23

0.
52

44
0.

70
01

0.
51

24
0.

68
48

0.
67

71
0.

66
78

0.
85

66
0.

59
11

0.
84

80
0.

53
34

0.
52

75
0.

50
17

Stat., Optim. Inf. Comput. Vol. 12, March 2024



486 PORTFOLIO RISK ASSESSMENT USING COMPOSITE FACTORIAL HMMS

REFERENCES

1. Abbara, O., and Zevallos, M. (2018). Modeling and Forecasting Intraday VaR of an Exchange Rate Portfolio. Journal of Forecasting,
37 (7), pp. 729-738.

2. Alizadeh, S., Brandt, M. W., and Diebold, F. X. (2002). Range-Based Estimation of Stochastic Volatility Models. The Journal of Finance,
57 (3), pp. 1047-1091.

3. Bayer, S., and Dimitriadis, T., (2018). Regression Based Expected Shortfall Backtesting. arXiv preprint. [online]
https://arxiv.org/abs/1801.04112

4. Bera, A. K., and Jarque, C. M. (1982). Model specification tests: A simultaneous approach. Journal of Econometrics, 20 (1), pp. 59-82.
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