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Abstract In this paper we propose a new estimator of the entropy of a continuous random variable. The estimator is
obtained by modifying the estimator proposed by Vasicek (1976). Consistency of the proposed estimator is proved, and
comparisons are made with Vasicek’s estimator (1976), Ebrahimi et al.’s estimator (1994) and Correa’s estimator (1995).
The results indicate that the proposed estimator has smaller mean squared error than considered alternative estimators. The
proposed estimator is applied to a real data set for illustration.
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1. Introduction

Entropy is a useful measure of uncertainty and dispersion, and has been widely employed in many pattern analysis
applications. The entropy of a distribution function F with a probability density function f is defined by Shannon
(1948) as:

H(f) = −
∫ ∞

−∞
f(x) log f(x) dx. (1)

There is an extensive literature on estimating the Shannon entropy nonparametrically. For example, Vasicek (1976),
Ebrahimi et al. (1994) and Correa (1995) have proposed estimates for the entropy of absolutely continuous random
variables.
Among the various entropy estimators discussed in the literature, Vasicek’s estimator has gained prominence in
developing entropy-based statistical procedures due to its simplicity. To motivate the estimator, express H(f) in
the form of

H(f) =

∫ 1

0

log

{
d

dp
F−1(p)

}
dp, (2)

by using the fact that the slope d
dpF

−1(p) is simply the reciprocal of the density function at the pth population
quantile, i.e.,

d

dp
F−1(p) =

1

f(F−1(p))
.

So an intuitive idea of estimating the slope would be to estimate F by the empirical distribution function Fn and
replace the differential operator by a difference operator. This motivation yields a very simple estimator of the
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slope which is n/2m times the difference between two sample quantiles whose indexes are 2m apart, one on the
upper side of the th sample quantile and the other on pthe lower side. The entropy estimator is then given by

HVmn =
1

n

n∑
i=1

log
{ n

2m
(X(i+m) −X(i−m))

}
. (3)

Here, the window size m is a positive integer smaller than n/2, X(i) = X(1) if i < 1, X(i) = X(n) if i > n
and X(1) ≤ X(2) ≤ ... ≤ X(n) are order statistics based on a random sample of size n. Vasicek proved that
HVmn → H(f) as n → ∞, m → ∞, m/n → 0 .
Ebrahimi et al. (1994), adjusted the weights of Vasicek’s estimator, in order to take into account the fact that the
differences are truncated around the smallest and the largest data points. (i.e. X(i+m) −X(i−m) is replaced by
X(i+m) −X(1) when i ≤ m and X(i+m) −X(1) is replaced by X(n) −X(1) when i ≥ n−m+ 1). Their estimator
is given by

HEmn =
1

n

n∑
i=1

log

{
n

cim
(X(i+m) −X(i−m))

}
,

where

ci =

 1 + i−1
m , 1 ≤ i ≤ m,

2, m+ 1 ≤ i ≤ n−m,
1 + n−i

m , n−m+ 1 ≤ i ≤ n.

They proved that HEmn → H(f) as n → ∞, m → ∞, m/n → 0. They compared their estimator with Vasicek’s
estimator and Dudewicz and Van der Meulen (1987) estimator, and by simulation, showed that their estimator has
smaller bias and mean squared error. Also, they mentioned that their estimator is better, in terms of bias and MSE,
than Mack’s estimator, kernel entropy estimator and Theil’s (1980) estimator.
Correa (1995) proposed a modification of Vasicek estimator which produces a smaller MSE; considering the sample
information represented as

(Fn(X(1)), X(1)), (Fn(X(2)), X(2)), ..., (Fn(X(n)), X(n)),

rewriting Eq. (2) as

HVmn = − 1

n

n∑
i=1

log

{
(i+m)/n− (i−m)/n

X(i+m) −X(i−m)

}
,

and noting that the argument of log is the equation of the slope of the straight line that joins the points
(Fn(X(i+m)), X(i+m)) and (Fn(X(i−m)), X(i−m)) , Correa (1995) used a local linear model based on 2m+ 1
points to estimate the density of F (x) in the interval (X(i+m), X(i−m)) ,

F (x(j)) = α+ βx(j) + ε j = m− i, ...,m+ i .

Instead of taking only two points to estimate the slope β, as Vasicek does, he uses all the sample points between
X(j−m) and X(j+m), via least square method. The consequent estimator of entropy proposed by Correa (1995) is
given by

HCmn = − 1

n

n∑
i=1

log


i+m∑

j=i−m

(X(j) − X̄(i))(j − i)

n
i+m∑

j=i−m

(X(j) − X̄(i))
2

 ,

where

X̄(i) =
1

2m+ 1

i+m∑
j=i−m

X(j) .
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He compared his estimator with Vasicek’s estimator. The mean square error (MSE) of his estimator is consistently
smaller than the MSE of Vasicek’s estimator. No comparison has been made with Ebrahimi et al.’s estimator.
Correa’s estimator can be generalized to the two–dimensional case.
Many researchers have used the estimators of entropy for developing entropy-based statistical procedure. See for
example, Esteban et al. (2001), Park (2003), Choi et al. (2004), Goria et al. (2005), Choi (2008), Jarrahiferiz and
Alizadeh (2017), and Alizadeh and Jarrahiferiz (2020).
It is clear that

si(m,n) =
n

2m
(X(i+m) −X(i−m)) (4)

is not a correct formula for the slope when i ≤ m or i ≥ n−m+ 1. In order to correctly estimate the slopes at
these points the denominator and/or the numerator should be modified for i ≤ m or i ≥ n−m+ 1. Our goal in
this paper is, therefore, to remedy this situation, in a way different from that of Ebrahimi et al.
In Section 2, we introduce an estimator of entropy and show that it is consistent. Scale invariance of variance and
mean squared error of the proposed estimator is established. In Section 3 we report results of a comparison of our
estimator with the competing estimators by a simulation study. In Section 4, we apply the proposed estimator to a
real data example. Some conclusions are presented in Section 5.

2. The New Estimator

We propose to estimate the entropy H(f) of an unknown continuous probability density function f by

HAmn =
1

n

n∑
i=1

log

{
n

2man
(X(i+m) −X(i−m))

}
, (5)

where
an = 1− 1√

n
,

and X(i−m) = X(1) for i ≤ m and X(i+m) = X(n) for i ≥ n−m.
Comparing (5) and (3) we obtain

HAmn = 1
n

n∑
i=1

log
{

n
2man

(X(i+m) −X(i−m))
}
= 1

n

n∑
i=1

log
{

n
2m (X(i+m) −X(i−m))

}
− 1

n

n∑
i=1

log an

= HVmn − 1
n

n∑
i=1

log an = HVmn − log
(
1− 1√

n

)
.

(6)

Also, from Ebrahimi et al. (1994), we have

HEmn = HVmn +
2

n

{
m log(2m) + log

(m− 1)!

(2m− 1)!

}
. (7)

Therefore, we obtain from (6) and (7)

HEmn = HAmn +
2

n

{
m log(2m) + log

(m− 1)!

(2m− 1)!

}
+ log

(
1− 1√

n

)
.

Remark. Theil (1980) computed the entropy H(fn
ME) of an empirical maximum entropy density fn

ME , which
is related to HV1n, HE1n and HA1n, as follows.

H(fn
ME) = HV1n + 2−2 log 2

n

= HA1n + log
(
1− 1√

n

)
+ 2−2 log 2

n

= HE1n + 2−4 log 2
n .
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Theorem 1. Let X1, . . . , Xn be a random sample from distribution F (x). Then

HAmn ≥ HVmn .

Proof. From (6) we have

HAmn = HVmn − log

(
1− 1√

n

)
.

Since log
(
1− 1√

n

)
< 0 the proof is complete.

The next theorem states that the scale of the random variable X has no effect on the accuracy of HAmn in
estimating H(f). Similar results have been obtained for HVmn and HEmn by Mack (1988) and Ebrahimi (1994),
respectively.

Theorem 2. Let X1, . . . , Xn be a sequence of i.i.d. random variables with entropy H(f) and let Yi = kXi, i =
1, ..., n, where k > 0. Let HAX

mn and HAY
mn be entropy estimators for HX(f) and HY (g) respectively. (here g is

pdf of Y = kX). Then the following properties hold.
i ) E

(
HAY

mn

)
= E

(
HAX

mn

)
+ log k,

ii ) V ar
(
HAY

mn

)
= V ar

(
HAX

mn

)
,

iii )MSE
(
HAY

mn

)
= MSE

(
HAX

mn

)
.

Proof. Since
HV kX

mn = HV X
mn + log(k),

then from (6) we have
E(HAkX

mn) = E(HV kX
mn )− log

(
1− 1√

n

)
= E(HV X

mn) + log(k)− log
(
1− 1√

n

)
= E(HAX

mn) + log(k) .

Also
V ar(HAkX

mn) = V ar(HV kX
mn ) = V ar(HV X

mn) = V ar(HAX
mn) ,

and
MSE(HAkX

mn) = V ar(HAkX
mn) +

{
E(HAkX

mn)−HKX(f)
}2

= V ar(HAX
mn) +

{
E(HAX

mn) + log(k)−HX(f)− log(k)
}2

= V ar(HAX
mn) +

{
E(HAX

mn)−HX(f)
}2

= MSE(HAX
mn) .

Therefore, the proof of this theorem is complete.

Theorem 3. Let C be the class of continuous densities with finite entropies and let X1, . . . , Xn be a random sample
from f ∈ C. If n → ∞, m → ∞ and m/n → 0, then

HAmn → H(f),

in probability.

Proof. It is obvious by (6) and consistency of HVmn.

3. Simulation study

A simulation study was performed to analyze the behavior of the proposed estimator of entropy, HAmn. Some
comparisons among Vasicek’s estimator, Correa’s estimator, Ebrahimi et al.’s estimator and our estimator were
done. For each sample size 100000 samples were generated and the bias and RMSEs of the estimators were
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Table 1. Root of mean square error and absolute bias of estimators in estimate of entropy H(f) for standard normal
distribution.

RMSE(AB)
n HVmn HCmn HEmn HAmn R1 R2 R3

5 0.994
(0.902)

0.789
(0.671)

0.658
(0.509)

0.521
(0.308) 47.58 33.97 20.82

10 0.621
(0.560)

0.467
(0.382)

0.405
(0.305)

0.322
(0.181) 48.15 31.05 20.49

20 0.375
(0.329)

0.266
(0.195)

0.249
(0.172)

0.194
(0.076) 48.27 27.07 22.09

30 0.282
(0.243)

0.194
(0.128)

0.186
(0.118)

0.149
(0.041) 47.16 23.20 19.89

50 0.198
(0.165)

0.133
(0.074)

0.127
(0.065)

0.110
(0.013) 44.44 17.29 13.39

Table 2. Root of mean square error and absolute bias of estimators in estimate of entropy H(f) for exponential distribution
with mean one.

RMSE(AB)
n HVmn HCmn HEmn HAmn R1 R2 R3

5 0.931
(0.747)

0.744
(0.491)

0.660
(0.352)

0.578
(0.154) 37.92 22.31 12.42

10 0.564
(0.436)

0.434
(0.238)

0.399
(0.181)

0.363
(0.058) 35.64 16.36 9.02

20 0.353
(0.256)

0.269
(0.113)

0.264
(0.101)

0.244
(0.005) 30.88 9.29 7.58

30 0.273
(0.190)

0.208
(0.068)

0.206
(0.064)

0.195
(0.013) 28.57 6.25 5.34

50 0.197
(0.129)

0.155
(0.033)

0.151
(0.029)

0.149
(0.024) 24.37 3.87 1.32

computed. We considered normal, exponential and uniform distributions which are the same three distributions
considered in Correa (1995).
Still an open problem in entropy estimation is the optimal choice of m for given n. We choose to use the following
heuristic formula (see Grzegorzewski and Wieczorkowski (1999)):

m =
[√

n+ 0.5
]
.

Generally, with increasing n, an optimal choice of m also increases, while the ratio m/n tends to zero. Tables 1-3
contain the absolute bias (AB) and root of mean square error (RMSE) values of the four estimators at different
sample size for each of the three considered distributions.

In the last four columns of each table, we have shown the quantity

Ri =
Hi −HAmn

Hi
× 100 , i = 1, 2, 3, 4

which shows the RMSE-performance of the HAmn with respect to the others three, where H1 = HVmn, H2 =
HCmn and H3 = HEmn.
Moreover, Figures 1-3 display root of mean square error (RMSE) values of the four estimators at different sample
size for each of the three considered distributions.
We observe that the proposed estimator performs well as compared with other estimators. The proposed estimator
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Table 3. Root of mean square error and absolute bias of estimators in estimate of entropy H(f) for uniform distribution on
(0,1).

RMSE(AB)
n HVmn HCmn HEmn HAmn R1 R2 R3

5 0.773
(0.693)

0.569
(0.457)

0.457
(0.303)

0.357
(0.103) 53.82 37.26 21.88

10 0.454
(0.422)

0.292
(0.241)

0.234
(0.166)

0.170
(0.041) 62.55 41.78 27.35

20 0.275
(0.261)

0.157
(0.130)

0.134
(0.102)

0.086
(0.008) 68.73 45.22 35.82

30 0.210
(0.201)

0.111
(0.093)

0.096
(0.076)

0.059
(0.0004) 71.90 46.85 38.54

50 0.155
(0.151)

0.076
(0.065)

0.063
(0.051)

0.037
(0.0017) 76.13 51.32 41.27

Figure 1. RMSE of the estimators in estimate of entropy for the normal distribution.

has smaller bias and mean squared error than others. For all sample sizes and under different distributions we
can see that the new estimator behaves better than the other estimators. Therefore, the proposed estimator can be
confidently recommended in practice.
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Figure 2. RMSE of the estimators in estimate of entropy for the exponential distribution.

Table 4. Entropy values and absolute bias of the estimators in estimate of entropy H(f) of data.

HVmn HCmn HEmn HAmn

Entropy value -0.13146 -0.06679 -0.04054 0.01337
Absolute bias 0.13146 0.06679 0.04054 0.01337

4. Applications to real data

In this section, the newly proposed estimator is applied to a real data set for illustration.
Example 1. We consider the data set discussed in Illowsky and Dean (2018) in Page 317, Table 5.1. The data set
consist of smiling times of 55 babies measured in seconds. The data are as follows.
10.4, 19.6, 18.8, 13.9, 17.8, 16.8, 21.6, 17.9, 12.5, 11.1, 4.9, 12.8, 14.8 ,22.8 ,20.0, 15.9, 16.3, 13.4, 17.1 ,14.5,
19.0, 22.8, 1.3, 0.7, 8.9, 11.9 ,10.9 ,7.3 ,5.9, 3.7, 17.9, 19.2, 9.8, 5.8, 6.9, 2.6, 5.8, 21.7 ,11.8, 3.4 ,2.1 ,4.5, 6.3, 10.7,
8.9, 9.4, 9.4 ,7.6, 10.0, 3.3, 6.7 ,7.8, 11.6, 13.8, 18.6.
The data originally follows a uniform distribution U(0,23). We standardize the data to U(0,1). For this transformed
data the values and the absolute bias of the considered estimators are obtained and presented in Table 4.
From Table 4, we observe that the proposed estimator HAmn performs well as compared with other estimators.
Therefore, in many practical applications, we expect that the proposed estimators are preferable to the competing
estimators.
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Figure 3. RMSE of the estimators in estimate of entropy for the uniform distribution

5. Conclusions

In this paper, we have first described some prominent methods for entropy estimation and then introduced a new
entropy estimator of a continuous random variable. The proposed estimator has constructed based on modification
of Vasicek entropy estimator. We have presented the properties of the proposed estimator. We finally have compared
the proposed estimator with some prominent existing estimators. We have shown that for different sample sizes the
new estimator behaves better than the competitors. Generally, the proposed estimator has a good performance and
it can be easily applied in practice.
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