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Abstract The paper involves predicting new lifetimes in step-stress accelerated life tests with Type-II censoring using
the Gompertz distribution. It introduces point predictors and explores constructing prediction intervals for future lifetimes.
The evaluation includes an extensive simulation study and an analysis of actual dataset. Predictors are compared based on
biases and mean square prediction errors, and assessment of prediction intervals considers average lengths and coverage
probabilities. Maximum likelihood predictor excels as a point predictor, while shortest-length based method outperforms in
constructing prediction intervals.
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1. Introduction

A step-stress accelerated life test (SSALT) is a reliability testing methodology used to assess the performance and
longevity of a product or system by subjecting it to increasing levels of stress in discrete steps. Instead of applying
a constant high stress level, SSALT involves gradually increasing the stress levels over a series of steps. The key
steps in a SSALT include selecting stress levels, defining the durations for each step, collecting data on failures
or performance degradation at each step, and then using statistical analysis to extrapolate the results to predict
the product performance under normal operating conditions. SSALT is valuable for identifying weak points in a
product design and estimating its expected lifespan under real-world usage, see Nelson [1]. Indeed, there has been
limited discussion regarding the prediction issue associated with the step-stress model in the existing literature.
Basak [2], as well as Basak and Balakrishnan ([3], [4]), examined the issue of predicting the failure times of items
subjected to censoring within a step-stress model based on the Exponential distribution and involving progressive
Type-I censoring, progressive Type-II censoring, and Type-II censoring, respectively. More recently, Amleh and
Raqab ([5], [6]), and Amleh [7], discussed the prediction problem in the context of a step-stress plan using different
distributions and models. These distributions include the Lomax distribution under the cumulative exposure (CE)
model, the Weibull distribution under the Khamis-Higgins (KH) model, and the Rayleigh distribution under the CE
model, respectively. Furthermore, Amleh and Raqab [8] considered the Bayesian prediction of new order statistics
under the KH model for Type-II censored Weibull data.
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1.1. Cumulative Exposure Model

Nelson [1] presented the most widely used model, commonly referred to as the CE model. This model assumes that
the remaining lifespan of the experimental units relies solely on the cumulative exposure they have encountered,
without any consideration of the specific manner in which the exposure was accumulated. Furthermore, the units
that continue to operate will experience failure based on the cumulative distribution corresponding to the stress
level currently under testing, and this process will initiate from the previously accumulated stress level. See Kundu
and Ganguly [9]. Assuming the presence of three stress levels (S1, S2, S3) undergoing fixed-time changes (τ1, τ2),
we also presume that the lifetime distribution functions under stress levels S1, S2, and S3 are denoted as F1, F2,
and F3, respectively. Additionally, these distribution functions are considered to be part of the same family of
distributions. The experimental setup involves initiating n identical units, each initially exposed to stress level S1,
with lifetimes following the cumulative distribution function (CDF) F1(t). The failure times of units are recorded,
and the surviving units continue until time τ1, when the stress is elevated to S2. Subsequently, the units follow the
CDFF2(t), commencing from the previously accumulated fraction of failures. This process repeats as the stress
levels transition from S2 to S3, with the corresponding lifetime distributions changing to F3(t), and so forth. The
CDF of lifetime in the CE model, derived from the segments of the CDFs corresponding to three stress levels, is
represented as follows:

G(t) =


G1(t) = F1(t) for0 < t < τ1

G2(t) = F2(t− τ1 + h1) forτ1 ≤ t < τ2,

G3(t) = F3(t− τ2 + h2) forτ2 ≤ t < ∞
(1)

where h1 represents the equivalent starting time for F2, can be obtained by solving the equation

F1(τ1) = F2(h1),

and the equivalent starting time for F3, denoted as h2, can be acquired through the solution of the equation.

F2(τ2) = F3(h2).

Continuing with the same approach, we eventually arrive at

G(t) = Fi(t− τi−1 + hi−1), τi−1 ≤ t < τi, i = 1, 2, ...,m,

with τ0 = h0 = 0, τm = ∞, and hi, i = 1, 2, . . . ,m, is a solution of the equation

Fi(τi) = Fi+1(hi).

Fig. 1 illustrates the CE model for a failure mode, considering the alteration of three stress levels at predetermined
times.

1.2. Type-II Censored Samples

The Type-II censored sample is created by ending a life-testing experiment upon observing a designated number
of failures, denoted as r, and censoring the remaining units n− r. Specifying the number of failures introduces
randomness to the time-to-failure of a test unit, resulting in an unknown termination time before the experiment.
While this is a drawback of Type-II censoring, it offers the advantage of ensuring the necessary number of failures
is obtained during the life test. For additional information regarding Type-II censoring and the related inferential
issues, one can consult references such as Lawless [10], Cohen and Whitten [11], and Cohen [12].
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1.3. The Gompertz Distribution

The Gompertz distribution is a continuous probability distribution that is often used to model survival data or
lifetime data. It is named after Gompertz [13], who introduced the distribution to model human mortality rates.
Since then, it has found applications in various fields, including actuarial science, demography, biology, and
reliability engineering.

Figure 1. The plot of CE model.

Regarding the Gompertz distribution, Hakamipour and Rezaei [14] presented an optimal method for devising
a SSALT using the Gompertz distribution, considering two stress variables and Type-II censoring. Almarashi
and Abd-Elmougod [15] discussed the lifetime problem under the SSALT of two separate risks with Gompertz
distribution. Alghamdi [16] conducted an analysis of the product’s failure time by employing a constant-stress
accelerated life test (CSALT) that considered two independent competitive risks, all within the framework of the
Gompertz distribution. The probability density function (PDF), CDF, reliability function (RF) and hazard rate
function (HRF) of the two-parameter Gompertz distribution are given, respectively, by

f(t) = λθeθt−λ(eθt−1), t ≥ 0, θ, λ ≥ 0, (2)

F (t) = 1− e−λ(eθt−1), t ≥ 0, θ, λ ≥ 0, (3)

R(t) = e−λ(eθt−1), t ≥ 0, θ, λ ≥ 0, (4)

h(t) = λθeθt, t ≥ 0, θ, λ ≥ 0, (5)

Here, T denotes a random variable (typically representing time, age, or survival time), λ is the shape parameter
and θ is the scale parameter. The Gompertz distribution exhibits a positively skewed pdf, featuring a longer tail
on the right side, along with an increasing HRF over time. Originally, it is used for modeling human mortality
rates, it demonstrates an exponential increase in mortality rates with age, making it suitable for analyzing failure
or death rates of systems or populations over time, see Pollard and Valkovics [17]. Utilizing the R programming
language, we have generated multiple figures to visually elucidate the Gompertz distribution. These include Fig.
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2, illustrating the PDF, Fig. 3, displaying the CDF, Fig. 4, showcasing the RF and Fig. 5, presenting the HRF. Each
of these figures portrays the effects of varying λ and θ values on the distribution’s characteristics.

This paper addresses the problem of predicting the failure lifetimes of censored units based on the Gompertz
distribution within a simple step-stress plan under a CE model. In Section 2, we provide a description of the
model under consideration. Numerical techniques are employed in Section 3 to acquire the maximum likelihood
estimates (MLEs).

Figure 2. PDF Plot of the Gompertz distribution considering different values of λ and θ.

Section 4 introduces various point predictors, such as the maximum likelihood predictor (MLP), conditional
median predictor (CMP), and best unbiased predictor (BUP). Moving on to Section 5, several approaches for
constructing prediction intervals (PIs) of censored lifetimes are proposed. In Section 6, a simulation study and real
data analysis are conducted to evaluate the effectiveness of the prediction procedures. Ultimately, the conclusion
of the paper is presented in Section 7.

2. Model Description

We posit that the failure time data originates from a CE model. Additionally, we are considering a simple step stress
model with two stress levels, S1 and S2, and employing Type-II censoring. The lifetime distributions at stress levels
S1 and S2 are presumed to adhere to a Gompertz distribution. This distribution shares a common shape parameter
λ while having distinct scale parameters, θ1 and θ2, for the respective stress levels. Within the context of the simple
step-stress model combined with Type-II censoring, we start with a set of n identical units that are simultaneously
subjected to a life-test. Initially, each of these units is exposed to stress level S1. Subsequently, the experiment
continues until a predetermined time denoted as τ , at which point the stress level is switched to S2. The experiment
persists until a specified number of failures, denoted as r, are observed. Let n1 represent the count of units failing
before τ , and let n2 represent the count of units failing after τ , so that the total number of failures is given by
r = n1 + n2. If the count of failures, r, is reached before τ , the test is terminated; otherwise, the experiment
persists after time τ until the required r failures are observed.
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1372 PREDICTION OF NEW LIFETIMES OF A STEP-STRESS TEST

Figure 3. CDF Plot of the Gompertz distribution considering different values of λ and θ.

Figure 4. RF Plot of the Gompertz distribution considering different values of λ and θ.

The ordered failure times that are observed will be represented as:

{t1:n < ... < tn1:n < τ ≤ tn1+1:n < ... < tr:n}. (6)

Our model is based on the following fundamental assumptions:

1. For any level of stress, the life of test units follows a Gompertz distribution.
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Figure 5. HRF Plot of the Gompertz distribution considering different values of λ and θ.

2. The scale parameters θi, at test step i, for i = 1, 2, are assumed to be corresponding to stress levels S1 and
S2.

3. A CE model holds, i.e., the remaining life of a test product depends only on the CE it has seen.
4. The shape parameter λ is constant for both stress levels.

By applying Eq. (1), the CDF of the simple step-stress model with two stress levels, S1 and S2, is expressed as
follows:

F (t) =

{
F1(t), 0 ≤ t < τ

F2(t− τ + h), τ ≤ t < ∞
(7)

The alteration in stress level from S1 to S2 space leads to a change in the lifetime distribution at stress level S2,
shifting it from F2(t) to F2(t− τ + h), where

F1(τ) = F2(h),

after finding the solution for h in the aforementioned equation, we obtain h =
θ1
θ2

τ .

Consequently, the Gompertz CE model for a simple step-stress test can be expressed as follows:

G(t) =

{
G1(t) = 1− e−λ(eθ1t−1), 0 ≤ t < τ

G2(t) = 1− eλ(e
θ1τ+θ2(t−τ)−1), τ ≤ t < ∞

(8)

with the corresponding PDF

g(t) =

{
g1(t) = λθ1e

θ1t−λ(eθ1t−1), 0 ≤ t < τ

g2(t) = λθ2e
θ1τ+θ2(t−τ)−λ(eθ1τ+θ2(t−τ)−1), τ ≤ t < ∞

(9)
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3. Maximum likelihood Estimation

Given the provided Type-II censored data in Eq. (6), it is possible to derive the likelihood function and subsequently
determine the MLEs for the unknown parameters λ, θ1 and θ2. The likelihood function of this censored sample can
be formulated as follows:

L(λ, θ1, θ2|t) =
n!

r!
{Πr

i=1g(ti:n){1−G(tr:n)}n−r}, 0 < t1:n < ... < tr:n′ (10)

see Arnold et al. [18]. In this context, r represents the sum of n1 and n2, while t =
(t1:n, . . . , tn1:n, τ, tn1+1:n, . . . , tr:n) stands for the collection of recorded Type-II censored data. The non-
existence of the MLE for θ1 is clear when n1 = 0, and for θ2 when n1 = r. MLEs for θ1 and θ2 are viable only
within the condition that 1 ≤ n1 ≤ r − 1. When the condition 1 ≤ n1 ≤ r − 1 is satisfied, the likelihood function
in Eq. (10) transforms to

L(λ, θ1, θ2|t) =
n!

n1!n2!
{Πn1

i=1g1(ti:n)}{Π
n1

i=n1+1g1(ti:n)} × {1−G2(tr:n)}n−r,

0 < t1:n < ... < tn1:n < τ ≤ tn1+1:n < ... < tr:n < ∞,

(11)

accordingly, the likelihood function can be written as:

L(λ, θ1, θ2|t)α

Πn1

i=1{λθ1e
θ1ti:n−λ(eθ1ti:n−1)}

×Πr
i=n1+1{λθ2eθ2τ+θ2(ti:n−τ)−λ(eθ1τθ2(ti:n−τ )−1)}

×
[
e−λ(eθ1τθ2(tr:n−τ )−1)

]n−r

,

it can be streamlined in the following manner

L(λ, θ1, θ2|t)α

θn1θn2λre−(n−r)λ[eθ2 (tr:n−τ)+θ1τ−1]

× en1λ+θ1Σ
n1
i=1ti=n−λΣ

n1
i=1e

θ1ti:n

× en2λ+θ2Σ
r
i=n1+1(ti:n−τ)+n2θ1τ−λΣr

i=n1+1e
θ2 (ti:n−τ)+θ1τ .

(12)

The expression for the log-likelihood function can be represented as follows:

l(λ, θ1, θ2|t)α

n1logθ1 + n2logθ2 + rlogλ− (n− r)λ
[
eθ2(tr:n−τ)+θ1τ − 1

]
+ rλ+ θ1Σ

n1

i=1ti:n − λΣn1

i=1e
θ1ti:n

+ θ2Σ
r
i=n1+1(ti:n − τ) + n2θ1τ − λΣr

i=n1+1e
θ2(ti:n−τ)+θ1τ .

(13)

By taking the derivatives of the log-likelihood function with respect to λ, θ1 and θ2 as given in Eq. (13), we derive
the subsequent set of likelihood equations. The likelihood equations are obtained as:

∂l(λ, θ1, θ2|t)
∂λ

=
r

λ
+ (r − n)

[
eθ2(tr:n−τ)+θ1τ − 1

]
+ r − Σn1

i=1e
θ1ti:n − Σr

i=n1+1e
θ2(ti:n−τ)+θ1τ1 = 0. (14)

∂l(λ, θ1, θ2|t)
∂θ1

= (r − n)τλeθ2(tr:n−τ)+θ1τ +
n1

θ1
+Σn1

i=1ti:n

− λΣn1

i=1ti:ne
θ1ti:n + n2τ − λΣr

i=n1+1τe
θ2(ti:n−τ)+θ1τ = 0.

(15)
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∂l(λ, θ1, θ2|t)
∂θ2

= (r − n)(tr:n − τ)λeθ2(tr:n−τ)+θ1τ +
n2

θ2

+Σr
i=n1+1(ti:n − τ)− λΣr

i=n1+1(ti:n − τ)eθ2(ti:n−τ)+θ1τ = 0.

(16)

Solving these equations is necessary to determine the MLEs for the parameters λ, θ1 and θ2. The process of
estimation, involving Eq.s (14), (15) and (16), cannot be solved analytically. As a result, these equations can be
solved simultaneously using a numerical approach like the Newton-Raphson method or other similar techniques.
The algorithm for generating the data and calculating the MLEs for the parameters λ, θ1 and θ2 is carried out using
the subsequent procedure:
First step: Create a set of randomly chosen values with a total of n elements, following a uniform distribution
U(0, 1) . Then, derive the order statistics from these values:

U1:n < U2:n < ... < Un:n.

Second step: Determine the random variable n1 for which

Un1 < P (T ≤ τ) = G1(τ) ≤ Un1+1:n,

where T symbolizes the time of failure, leading to the following :

Un1
< 1− e−λ(eθ1τ−1) ≤ Un1

+ 1 : n.

Third step: Create the required censored sample using the order statistics Ui:n in the subsequent manner:

ti:n =

{
1
θ1
log

(−1
λ log(1− Ui:n) + 1

)
, i = 1, 2, ..., n1

1
θ2
log

(−1
λ log(1− Ui:n + 1

)
− θ1

θ2
τ + τ, i = n1 + 1, ..., r

(17)

Fourth step: Calculate the MLEs for λ, θ1 and θ2 using Eq.s (14), (15) and (16), relying on the censored data
t1:n, t2:n, . . . , tn1:n, tn1+1:n, . . . , tr:n , as described in Eq. (17). For more details, see Alkhalfan [19].

4. Prediction for Simple Step-Stress Model

In this discussion, we address the issue of predicting future failure times using observed ones within the framework
of Gompertz CE model. Let T1:n < T2:n < ... < Tr:n represent the observed ordered lifetime units, referred to as
the informative sample. Additionally, Ts:n , where s = r + 1, . . . , n, denotes the yet-to-be observed future lifetimes
drawn from the same sample. The prediction problem revolves around determining how we can predict the future
lifetimes Ts:n, based on the observed ordered statistics Ti:n, 0 < i ≤ r.
Due to the Markovian property of censored order statistics, it is established that the conditional distribution of
Y = Ts:n given T = t, where:

t = (t1:n, ..., tn1:n, tn1+1:n, ..., tr:n),

is equivalent to the distribution of Y = Ts:n given Tr:n = tr:n. Consequently, the density of Y given T = t
corresponds to the density of the (s− r)− th order statistic among (n− r) units from the population. This

population has a left-truncated density
g(y)

1−G(tr:n)
, where y > tr:n, and G(y) and g(y) are defined in Section 2 as

given in Eq.s (8) and (9), respectively. Hence, we can represent the density of Y = Ts:n given T = t as follows:

gTs:n|τ(y|λ,θ1,θ2,data) =
(n− r)!

(s− r − 1)!(n− s)!
λθ2e

θ1τ+θ2(y−τ)

× {1− e−λ[eθ1τ+θ2(y−τ)−eθ1τ+θ2(tr−τ)]}s−r−1

× e−λ(n−s+1)[eθ1τ+θ2(y−τ)−eθ1τ+θ2(tr−τ)], y > tr:n.

(18)

Three point predictors are presented in the following subsections.
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4.1. Maximum Likelihood Predictor

Kaminsky and Rhodin [20] proposed the MLP approach, which involves not only estimating the unknown
parameters in the given model but also predicting future order statistics. The predictive likelihood function (PLF)
of Y = Ts:n is given by

L(y, λ, θ1, θ2, |t) = gTs:n|T (y|t,θ1,θ2).gT (t,θ1,θ2) = gTs:n|Tr:n(y|tr:n,θ1,θ2).gT (t,θ1,θ2), (19)

where gTs:n|Tr:n
(y|tr:n, θ1, θ2 is the conditional density of Ts:n given the observed value of T = t, as in Eq. (18),

and gT (t, θ1, θ2) is the density of T . Actually, the PLF of Y = Ts:n can be expressed as:

L(y, λ, θ1, θ2|t)αΠn1

i=1g1(ti:n)× [G2(y)−G2(tr:n)]
s−r−1

g2(y) [1−G2(y)]
n−s

, 0 ≤ n1 ≤ r, r + 1 ≤ s ≤ n.
(20)

taking the case when 1 ≤ n1 < r ≤ n, we obtain

L(y, λ, θ1, θ2|t)αΠn1

i=1{λθ1e
θ1ti:n−λ(eθ1ti:n−1)}Πr

i=n1+1{λθ2eθ1τθ2(ti:n−τ)−λ(eθ1τθ2(ti:n−τ)−1)}

×
[
e−λ(eθ1τ+θ2(tr:n−τ)−1)−e−λ(eθ1τ+θ2(y−τ)−1)

]s−r−1

× λθ2e
θ1τ+θ2(y−τ)−λ(eθ1τ+θ2(y−τ)−1)

[
e−λ(eθ1τ+θ2(y−τ)−1)

]n−s

,

it can be simplified as follows.

L(y, λ, θ1, θ2|t)αθ1n1θ2
n2+1λr+1eθ1τ(n2+1)+θ2(y−τ)+nλ × e−λ(n−s+1)(eθ1τ+θ2(y−r))

× eθ1Σ
n1
i=1ti:n−λΣ

n1
i=1e

θ1ti:n+θ2Σ
r
i=n1+1(ti:n−τ)−λΣr

i=n1+1e
θ2(ti:n−τ)+θ1τ

×
[
e−λeθ1τ+θ2(tr:n−τ)

− e−λeθ1τ+θ2(y−τ)
]s−r−1

.

(21)

The log PLF can be expressed as

l(y, λ, θ1, θ2|t)αn1logθ1 + (n2 + 1)logθ2 + (r + 1)logλ

+ θ1τ(n2 + 1) + θ2(y − τ) + nλ− λ(n− s+ 1)eθ2(y−τ)+θ1τ

+ θ1Σ
n1

i=1ti:n − λΣn1

i=1e
θ1ti:n + θ2Σ

r
i=n1+1(ti:n − τ)− λΣr

i=n1+1e
θ2(ti:n−τ)+θ1τ

+ (s− r − 1)log
[
e−λeθ1τ+θ2(tr:n−τ)

− e−λeθ1τ+θ2(y−τ)
]
.

(22)

Taking the derivative of the log PLF in Eq. (22) with respect to y, λ, θ1 and θ2 yields the subsequent predictive
likelihood equations (PLEs). These equations should be solved to determine the point predictors of Y = Ts:n as
well as the estimates of λ, θ1 and θ2. The likelihood equations are given as:

∂l(y, λ, θ1, θ2|t)
∂λ

=
r + 1

λ
− (n− s+ 1)eθ2(y−τ)+θ1τ + n

+
(s− r − 1)eθ1τ

[
e−λeθ2(y−τ)+θ2(y−τ) − e−λeθ2(tr:n−τ)+θ2(tr:n−τ)

]
e−λeθ2(tr:n−τ) − e−λeθ2(y−τ)

− Σn1

i=1e
θ1ti:n − Σr

i=n1+1e
θ1(ti:n−τ)+θ1τ = 0.

(23)

∂l(y, λ, θ1, θ2|t)
∂θ1

=
n1

θ1
− (n− s+ 1)τλeθ2(y−τ)+θ1τ

+
(s− r − 1)λτeθ1τ

[
e−λeθ2(y−τ)+θ2(y−τ) − e−λeθ2(tr:n−τ)+θ2(tr:n−τ)

]
e−λeθ2(tr:n−τ) − e−λeθ2(y−τ)

+Σn1

i=1ti:n − λΣn1

i=1ti:ne
θ1ti:n−λΣr

i=n1+1τe
θ2(ti:n−τ)+θ1τ + (n2 + 1)τ = 0.

(24)
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∂l(y, λ, θ1, θ2|t)
∂θ2

=
n2 + 1

θ2
− (n− s+ 1)(y − τ)λeθ2(y−τ)+θ1τ

+
(s− r − 1)λeθ1τ

[
(y − τ)e−λeθ2(y−τ)+θ2(y−τ) − (tr:n − τ)e−λeθ2(tr:n−τ)+θ2(tr:n−τ)

]
e−λeθ2(tr:n−τ) − e−λeθ2(y−τ)

+Σr
i=n1+1(ti:n − τ)− λΣr

i=n1+1(ti:n − τ)eθ2(ti:n−τ)+θ1τ + (y − τ) = 0.

(25)

∂l(y, λ, θ1, θ2|t)
∂y

= −(n− s+ 1)θ2λe
θ2(y−τ)+θ1τ + θ2

+
(s− r − 1)λθ2

[
e−λeθ2(y−τ)+θ2(y−τ)+θ1τ

]
e−λeθ2(tr:n−τ) − e−λeθ2(y−τ)

= 0.

(26)

As it is not possible to solve Eq.s (23)-(26) directly, we use numerical methods to solve them concurrently. This
process aims to determine the MLP of Y and the associated estimators of λ, θ1 and θ2 , known as the predictive
maximum likelihood estimators (PMLEs). The point predictor obtained from this procedure will be denoted as ŶM ,
representing the resulting MLP of Y .

4.2. Conditional Median Predictor

Raqab and Nagaraja [21] introduced a point prediction method referred to as the CMP. A predictor Ŷ is termed the
CMP of Y if it constitutes the median of the conditional Y distribution when T is equal to t, that is

P (Y ≤ Ŷ |T = t) = Pθ(Y ≥ Ŷ |T = t),

by utilizing the conditional distribution of Y given T = t, we can access

P (Y ≤ Ŷ |T = t) = P

(
1− e−λ[eθ1τ+θ2(Y −τ)−eθ1τ+θ2(tr−τ)] ≥ 1− e

−λ
[
eθ1τ+θ2(Ŷ −τ)−eθ1τ+θ2(tr−τ)

]
|T = t

)
.

It can be demonstrated that, given T = t, the distribution of

W = 1− e
−λ

[
e
θ1τ+θ2(Y −τ)−e

θ1τ+θ2(tr−τ)
]
,

represents a Beta distribution with the parameters s− r and n− s+ 1, which is symbolized as Beta (s− r, n−
s+ 1). Therefore, let B denote a random distribution of Beta (s− r, n− s+ 1), and MB be the median of B, the
CMP of Y can be derived as follows:

Ŷcmp = τ − θ1
θ2

τ +
1

θ2
log

[
eθ1τ+θ2(tr−τ) − 1

λ
log(1−MB)

]
. (27)

The CMP of Y can be approximated by substituting the MLEs of λ, θ1, and θ2 into Eq. (27).

4.3. Best Unbiased Predictor

A point predictor Ŷ for the random variable Y = Ts:n is referred to as the BUP of Y if its prediction error’s mean,
E(Ŷ − Y ) , is zero, and the variance of its prediction error, V ar(Ŷ − Y ), is equal to or smaller than that of any
other unbiased predictor for Y . Utilizing the conditional PDF of Y given T = t, as presented in Eq. (18), the BUP
of Y is determined by the following expression:

ŶBUP = E(Y |T ) =
∫ ∞

tr:n

ygTs:n|T (y|λ, θ1, θ2, data)dy.
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Using the binomial expansion:

{1− e−λ[eθ1τ+θ2(y−τ)−eθ1τ+θ2(tr−τ)]}s−r−1

= Σs−r−1
k=0

(
s− r − 1

k

)
(−1)s−r−k−1

× e−λ(s−r−k−1)[eθ1τ+θ2(y−τ)−eθ1τ+θ2(tr−τ)],

we attain

ŶBUP = (s− r)

(
n− r

s− r

)
λθ2

× Σs−r−1
k=0

(
s− r − 1

k

)
(−1)s−r−k−1 × eλ(n−r−k)[eθ1τ+θ2(tr−τ)]

×
∫ ∞

tr:n

yeθ1τ+θ2(y−τ)e−λ(n−r−k)[eθ1τ+θ2(y−τ)]dy.

(28)

Approximating the BUP of Y involves replacing the MLEs of the unknown parameters λ, θ1, and θ2 into Eq. (28).

5. Prediction Intervals

In the context of the prediction problem, one of the aspects is to predict the future lifetimes of unobserved events.
This is done by creating PIs for Y = Ts:n, where s represents the time point from r + 1 to n, based on the available
Type-II censored sample T = (T1:n, T2:n, . . . , Tr:n). In this section, we explore three methods to obtain such PIs.

5.1. Pivotal Method

Let us consider the random variable

W = 1− e−λ[eθ1τ+θ2(Y −τ)−eθ1τ+θ2(tr−τ)], Y > tr:n. (29)

Because the conditional distribution of W given T = t follows a Beta distribution with parameters s− r and
n− s+ 1,W can be regarded as a pivotal quantity to derive the PI of Y . When we take (1− α), where 0 < α < 1,
as a prediction coefficient and apply Eq. (29), we acquire the following result:

P
(
Bα

2
< W < B1−α

2

)
= 1− α,

where Bα represents the 100 α-th percentile of the Beta distribution with parameters (s− r, n− s+ 1). Thus,
a(1− α)100% pivotal PI for Y is denoted as (L1(T ), U1(T )), where

L1(T ) = τ − θ1
θ2

τ +
1

θ2
log

[
eθ1τ+θ2(tr−τ) − 1

λ
log(1−Bα

2
)

]
,

U1(T ) = τ − θ1
θ2

τ +
1

θ2
log

[
eθ1τ+θ2(tr−τ) − 1

λ
log(1−B1−α

2
)

]
.

The approximate evaluation of the prediction limits L1(T ) and U1(T ) can be achieved by substituting λ, θ1 and θ2
with their corresponding MLEs.
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5.2. Highest Conditional Density Method

The conditional distribution of W = 1− e−λ[eθ1τ+θ2(Y −τ)−eθ1τ+θ2(tr−τ)] given T = t is Beta (s− r, n− s+ 1).
Consequently, the conditional pdf of W is:

g(w) =
(n− r)!

(s− r − 1)!(n− s)!
ws−r−1(1− w)n−s, 0 < w < 1. (30)

The density described in Eq. (30) forms a unimodal function in w. An interval (x1, x2) is referred to as the highest
conditional density (HCD) with a content of (1− α) if (x1, x2) = {x : x ∈ [0, 1], f(x) ≥ k} ⊆ [0, 1], where∫ x2

x1

f(u)du = 1− α,

for some k > 0. When r + 1 < s < n , the function g(w) is unimodal, reaching its peak at δ =
s− r − 1

n− r − 1
∈ (0, 1).

Thus, acquiring the HCD PI involves identifying two percentiles, x1 and x2 , such that P (W < x1) = P (W >
x2) =

α
2 , with x1 ≤ δ ≤ x2 , satisfying ∫ x2

x1

g(w)dw = 1− α, (31)

g(x1) = g(x2). (32)

See Casella and Berger [22]. Eq.s (31) and (32) can be expressed in a simplified form as

Bx2(s− r, n− s+ 1)−Bx1(s− r, n− s+ 1) = 1− α, (33)

(
1− x2

1− x1

)n−s

=

(
x1

x2

)s−r−1

. (34)

Here, Bν(a, b) represents the incomplete beta function, and Γ(·) stands for the gamma function.

Bν(a, b) =
Γ(a+ b)

Γ(a)Γ(b)

∫ ν

0

ua−1(1− u)b−1du.

Hence, a (1− α)100% HCD PI for Y is defined as (L2(T ), U2(T )), with

L2(T ) = τ − θ1
θ2

τ +
1

θ2
log

[
eθ1τ+θ2(tr−τ) − 1

λ
log(1− x1)

]
,

U2(T ) = τ − θ1
θ2

τ +
1

θ2
log

[
eθ1τ+θ2(tr−τ) − 1

λ
log(1− x2)

]
.

In the specific situation where s = r + 1 and s < n, the function g(w) can be expressed as (n− r)(1− w)n−r−1,
where 0 < w < 1. This function is characterized by being decreasing with respect to w, and it takes the values
g(0) = n− r and g(1) = 0. Consequently, the PI for Y = Ts:n can be represented as (0, x2), where x2 = 1−
α1⧸(n−r). This finding leads to the following conclusion:

L2(T ) = tr:n,

U2(T ) = τ − θ1
θ2

τ +
1

θ2
log

[
eθ1τ+θ2(tr−τ) − 1

λ(n− r)
log(α)

]
.
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When both s = r + 1 and s = n, the function g(w) follows a uniform distribution U(0, 1). We define x1 and x2

as x1 = α⧸2 and x2 = 1− α⧸2, respectively. With these conditions in place, the following results are obtained

L2(T ) = τ − θ1
θ2

τ +
1

θ2
log

[
eθ1τ+θ2(tr−τ) − 1

λ
log

(
1− α

2

)]
,

U2(T ) = τ − θ1
θ2

τ +
1

θ2
log

[
eθ1τ+θ2(tr−τ) − 1

λ
log

(α
2

)]
.

At last, when s = n and s > r + 1, the density g(w) = (n− r)w(n−r−1), with 0 < w < 1, is an increasing function,
and it satisfies g(0) = 0 and g(1) = n− r. In this case, we choose the PI for Y to be in the form (x1, 1), such that∫ 1

x1

g(w)dw = 1− α,

indicating that x1 = α1⧸(n−r). Consequently, a (1− α)100% HCD PI of Y can be expressed as

L2(T ) = τ − θ1
θ2

τ +
1

θ2
log

eθ1τ+θ2(tr−τ) − 1

λ
log

1− α

1

n− r

 ,

U2(T ) = ∞.

5.3. Shortest-Length Based Method

The conditional distribution of W = 1− e−λ[eθ1τ+θ2(Y −τ)−eθ1τ+θ2(tr−τ)] given T = t is Beta (s− r, n− s+ 1), we
choose the values of constants c and d that fulfill the equation:

P
(
c < 1− e−λ[eθ1τ+θ2(Y −τ)−eθ1τ+θ2(tr−τ)] < d

)
= 1− α.

In this context, the values of constants c and d are selected to minimize the length of PI U3(T )− L3(T ). The
optimization problem for determining the shortest possible length of the (1− α)100% PI can be formulated as
follows:
Minimize the length = U3(T )− L3(T ), subject to

Bd(s− r, n− s+ 1)−Bc(s− r, n− s+ 1) = 1− α.

Creating the shortest length (SL) PI at a (1− α)100%, involves the process of minimizing the Lagrangian function:

R(c, d, z) =
1

θ2
log

[
eθ1τ+θ2(tr−τ) − 1

λ
log(1− d)

]
− 1

θ2
log

[
eθ1τ+θ2(tr−τ) − 1

λ
log(1− c)

]
− z [{Bd(s− r, n− s+ 1)−Bd(s− r, n− s+ 1)} − (1− α)] ,

here, z represents the Lagrange multiplier. Upon taking the derivatives of R with respect to c, d, and z,
respectively, we obtain:

∂R

∂c
= − 1

θ2(c− 1)(log(1− c)− λeθ1τ+θ2(tr−τ))
+ zp(c, s− r, n− s+ 1) = 0.

∂R

∂d
=

1

θ2(d− 1)(log(1− d)− λeθ1τ+θ2(tr−τ))
+ zp(d, s− r, n− s+ 1) = 0.

∂R

∂d
= [{Bd(s− r, n− s+ 1)−Bc(s− r, n− s+ 1)} − (1− α)] = 0.
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In this context, p(x, a, b) symbolizes the density of the Beta distribution with parameters a and b . The expressions
provided above can also be expressed equivalently as:

log(1− d)− λeθ1τ+θ2(tr−τ)

log(1− c)− λeθ1τ+θ2(tr−τ)
=

(c− 1)p(c, s− r, n− s+ 1)

(d− 1)p(c, s− r, n− s+ 1)
, (35)

Bd(s− r, n− s+ 1)−Bc(s− r, n− s+ 1) = 1− α. (36)

The values of c and d are determined through numerical solutions of Eq.s (35) and (36). Consequently, employing
this setup, a (1− α)100% PI of Y can be represented as (L3(T ), U3(T )), and it is determined by:

L3(T ) = τ − θ1
θ2

τ +
1

θ2
log

[
eθ1τ+θ2(tr−τ) − 1

λ
log(1− c)

]
,

U3(T ) = τ − θ1
θ2

τ +
1

θ2
log

[
eθ1τ+θ2(tr−τ) − 1

λ
log(1− d)

]
.

6. Simulation Study and Data Analysis

In this section, an extensive simulation study is employed to assess the effectiveness of the prediction methods
achieved in the preceding sections. Additionally, a real dataset is being used to display the accuracy and
applicability of the various prediction methods introduced in this paper.

Figure 6. The empirical CDF (dots); and the estimated CDF of Gompertz CE model based on MLE (solid line).
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Table 1. Biases and MSPEs of the point predictors for the censored lifetime.

Scheme 1: θ1 = 3, θ2 = 2.5, λ = 0.025 and τ = 0.8.

(n,r) s MLP CMP BUP

Bias MSPE Bias MSPE Bias MSPE

32 -0.0244 0.0066 -0.0039 0.0064 0.0292 0.0057

34 -0.0332 0.0086 -0.0106 0.0082 0.1215 0.0147

(40,30) 36 -0.0318 0.0095 -0.0056 0.0097 0.0318 0.0073

38 -0.0394 0.0118 -0.0070 0.0128 0.0990 0.0314

40 -0.0584 0.0182 -0.0103 0.0205 -0.0030 0.0121

42 -0.0216 0.0059 -0.0047 0.0056 -0.0138 0.0049

44 -0.0224 0.0057 -0.0039 0.0055 0.0002 0.0044

(50,40) 46 -0.0276 0.0071 -0.0065 0.0070 -0.0112 0.0043

48 -0.0220 0.0082 0.0018 0.0087 -0.0229 0.0064

50 -0.0435 0.0133 -0.0049 0.0149 0.0402 0.0134

52 -0.0191 0.0044 -0.0038 0.0042 -0.0141 0.0355

54 -0.0186 0.0052 -0.0025 0.0050 0.0135 0.0051

(60,50) 56 -0.0235 0.0059 -0.0061 0.0059 0.0037 0.0043

58 -0.0279 0.0071 -0.0083 0.0070 0.0085 0.0076

60 -0.0401 0.0105 -0.0076 0.0111 0.0152 0.0175

6.1. Simulation Study

In this part of the study, a Monte Carlo simulations are performed for evaluating the suggested prediction
techniques. For the point predictors, performance evaluation is measured by assessing biases and calculating mean
square prediction errors (MSPEs). The bias and MSPE of a predictor Ŷ of Y = Ts:n(s ≥ r + 1), are defined as
follows, respectively

Bias(Ŷ ) =
1

M
ΣM

K=1(Ŷk − Y ),

MSPE(Ŷ ) =
1

M
ΣM

K=1(Ŷk − Y )2.

Additionally, we conduct a comparison of the PIs discussed in Section 5 by evaluating their estimated average
lengths (Als) and coverage probabilities (CPs).
Hence, a comparative study is performed using various schemes of censoring and different sample sizes from the
Gompertz distribution within the context of the CE model. For specific values of n, r, and s, we create Type-II
censored samples following the procedure outlined in Section 3. This process is carried out according to the
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Scheme 2: θ1 = 2, θ2 = 1.5, λ = 0.03 and τ = 1.2.

(n,r) s MLP CMP BUP

Bias MSPE Bias MSPE Bias MSPE

32 -0.0393 0.0188 -0.0063 0.0182 0.0051 0.0172

34 -0.0542 0.0213 -0.0171 0.0202 -0.0075 0.0204

(40,30) 36 -0.0503 0.0265 -0.0073 0.0269 0.0004 0.0274

38 -0.0663 0.0371 -0.0140 0.0392 -0.0071 0.0399

40 -0.0939 0.0521 -0.0121 0.0625 -0.0004 0.0649

42 -0.0396 0.0156 -0.0115 0.0146 -0.0011 0.0147

44 -0.0410 0.0169 -0.0107 0.0163 -0.0017 0.0165

(50,40) 46 -0.0358 0.0195 -0.0022 0.0200 0.0053 0.0203

48 -0.0443 0.0244 -0.0043 0.0254 0.0026 0.0259

50 -0.0814 0.0408 -0.0210 0.0425 -0.0092 0.0435

52 -0.0398 0.0135 -0.0145 0.0125 -0.0047 0.0125

54 -0.0392 0.0147 -0.0128 0.0139 -0.0044 0.0140

(60,50) 56 -0.0330 0.0160 -0.0044 0.0159 0.0029 0.0161

58 -0.0403 0.0204 -0.0077 0.0204 -0.0008 0.0206

60 -0.0650 0.0316 -0.0131 0.0320 -0.0011 0.0326

subsequent schemes:

Scheme 1: θ1 = 0.4, θ2 = 0.7, λ = 1 and τ = 0.8.
Scheme 2: θ1 = 2, θ2 = 1, λ = 0.1 and τ = 1.

In both instances, we determine the point predictor values: MLP, CMP, and BUP. Additionally, we calculate 95%
PIs using pivotal quantity, HCD, and SL methods. We generate Type-II censored samples from the Gompertz
model using these two schemes, repeated M = 1000 times in the simulation. By employing these generated
samples, we calculate the MLEs of the parameters as well as the prediction biases and MSPEs for the predictors.
R software is used to accomplish these calculations. The outcomes from this process are displayed in Table 1.
Furthermore, Table 2 reports the ALs and CPs of the PIs.

The results obtained in these tables lead to make the following observations:

1. As s increases, the biases and MSPEs of the point predictors increase when considering constant values of n
and r. This result can be attributed to the variability in the lifetime to be predicted as s reaches higher values.

2. When considering the bias as a measure of predictive quality, it can be observed that the BUP has the best
results in most of the cases. In terms of the MSPEs, it can be noted that the point predictors are very
competitive. However, the MLP outperforms the CMP and the BUP when s reaches higher values. The
similarity in MSPEs for the three predictors when s is close to r might be due to the similarity between
MLEs and PMLEs in the analyzed cases. This leads to say that the MLP is a strong contender in terms of
predictive accuracy among the methods being compared.
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Table 2. ALs and CPs of 95% PIs of the censored lifetimes.

Scheme 1: θ1 = 3, θ2 = 2.5, λ = 0.025 and τ = 0.8.

(n,r) s Pivotal Method HCD Method SL Method

AL CP AL CP AL CP

32 0.1816 0.652 0.1682 0.646 0.1682 0.645

34 0.2532 0.795 0.2472 0.792 0.2460 0.0792

(40,30) 36 0.3159 0.874 0.3187 0.880 0.3119 0.876

38 0.3921 0.912 0.4233 0.927 0.3894 0.909

40 0.5667 0.951 ∞ 0.951 0.5631 0.948

42 0.1590 0.642 0.1470 0.626 0.1470 0.626

44 0.2246 0.837 0.2191 0.836 0.2178 0.839

(50,40) 46 0.2856 0.896 0.2883 0.895 0.2815 0.900

48 0.3567 0.949 0.3861 0.955 0.3538 0.938

50 0.5426 0.976 ∞ 0.982 0.5385 0.976

52 0.1451 0.651 0.1340 0.646 0.1340 0.647

54 0.2083 0.821 0.2030 0.811 0.2017 0.813

(60,50) 56 0.2632 0.899 0.2658 0.900 0.2591 0.901

58 0.3356 0.950 0.3641 0.967 0.3325 0.946

60 0.5120 0.981 ∞ 0.984 0.5076 0.978

3. The SL method appears to be more efficient than other methods based on the AL criterion, especially as s
increases. The HCD PIs outperform pivotal PIs for cases where s is close to r, while pivotal PIs become more
competitive as s approaches n. The SL PIs are generally superior based on both criteria. Another observation,
the CPs of all PIs tend to increase as s increases. In this sense, the CP is at its worst when predicting the
lifetime immediately following the last observed lifetime.

6.2. Data Analysis

To illustrate the predicting techniques proposed in this chapter, we conduct an analysis using real data. The dataset
utilized is sourced from the work of Han and Kundu [23]. It encompasses 31 instances of failure times (measured
in hundred hours) from a subset of 35 prototypes of a solar lighting apparatus, characterized by two primary failure
modes: controller malfunction and capacitor malfunction. In this study, the stress-inducing factor is temperature,
which was varied within the range of 293K to 353K during testing. The standard operational temperature is 293K,
and the stress alteration occurred over a period of 500 hours. These specific data have been previously employed
by Kotb and El-Din [24], as well as Amleh [7]. The recorded data are presented in Table 3.

For the purpose of illustrating the precision of our model, namely the Gompertz CE model, we have plotted
the actual cdf of the lifetimes in Fig. 6. alongside with the cdf derived from the MLEs. Precisely, to examine the
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Scheme 2: θ1 = 2, θ2 = 1.5, λ = 0.03 and τ = 1.2.

(n,r) s Pivotal Method HCD Method SL Method

AL CP AL CP AL CP

32 0.2947 0.637 0.2731 0.628 0.2731 0.629

34 0.4155 0.839 0.4057 0.83 0.4037 0.831

(40,30) 36 0.5245 0.880 0.5292 0.883 0.5178 0.876

38 0.6478 0.892 0.6991 0.915 0.6435 0.890

40 0.9545 0.943 ∞ 0.949 0.9482 0.937

42 0.2593 0.640 0.2398 0.621 0.2398 0.621

44 0.3740 0.824 0.3647 0.816 0.3626 0.821

(50,40) 46 0.4743 0.895 0.4787 0.894 0.4675 0.900

48 0.5967 0.934 0.6462 0.939 0.5919 0.934

50 0.8819 0.963 ∞ 0.969 0.8751 0.960

52 0.2400 0.653 0.2216 0.638 0.2216 0.639

54 0.3434 0.831 0.3346 0.833 0.3324 0.834

(60,50) 56 0.4397 0.915 0.4439 0.914 0.4328 0.912

58 0.5548 0.942 0.6020 0.947 0.5498 0.94

60 0.8491 0.979 ∞ 0.981 0.8418 0.975

Table 3. Lifetimes of prototypes of a solar lighting device on a simple step-stress test.

Temperature Level Recorded data

S1 : 293K 0.140 0.783 1.324 1.582 1.716 1.794 1.883 2.293 2.660 2.674 2.725 3.085 3.924 4.396 4.612 4.892

S2 : 353K 5.002 5.022 5.082 5.112 5.147 5.238 5.244 5.247 5.305 5.337 5.407 5.408 5.445 5.483 5.717

goodness-of- fit of the data to the Gompertz CE model, the Kolmogorov-Smirnov test is used. The test statistic for
the distance between the fitted and experimental distribution function is 0.1122 and the corresponding p-value is
0.866. Therefore, it is justified to use the Gompertz distribution within the CE model as a suitable model to fit these
data.

Assume that the life test ends when the 26th lifetime is observed. This means we have Type-II censored sample,
with a sample size of 35 with 26 failures occurred. Our objective is to calculate the point predictors for the lifetimes
that we have not observed yet: Y = Ts:n, where s takes values 28, 30, 31, 33, and 35. We also want to determine the
corresponding PIs. Initially, we determine the MLEs for λ, θ1 and θ2 by simultaneously solving Eq.s (14), (15) and
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Table 4. Point predictors and PIs for future lifetimes of Y = Ts:n.

Point predictors of Y = Ts:n

s True value MLP CMP BUP

28 5.408 5.374 5.405 5.415

30 5.483 5.457 5.497 5.506

31 5.717 5.504 5.550 5.559

33 —– 5.620 5.684 5.692

35 —– 5.818 5.928 5.940

95% PIs of Y = Ts:n

s True value Pivotal PI HCD PI SL PI

28 5.408 (5.341 , 5.598) (5.340 , 5.517) (5.339 , 5.515)

30 5.483 (5.369 , 5.740) (5.383 , 5.663) (5.373 , 5.650)

31 5.717 (5.391 , 5.8169) (5.418 , 5.746) (5.402 , 5.723)

33 —– (5.458 , 6.010) (5.516 , 5974) (5.481 , 5.903)

35 —– (5.581 , 6.429) (5.686 , ∞) (5.617 , 6.264)

(16). The computations yield λ̂ = 0.5254, θ̂1 = 0.1543 and θ̂2 = 1.4748. These estimates are then used to predict
future censored lifetimes and generate both point predictions and PIs, which are presented in Table 4.

The closeness of the point predictions to the actual values is evident using all the proposed predictors.
Furthermore, the acquired point predictions fall within all the considered PIs. It can be noted that all the obtained
PIs include the actual values of forthcoming order statistics. Additionally, it’s noticeable that the Pls become wider
as the parameter s increases. This is attributed to the increased variability in the fluctuation of Y = Ts:n, particularly
as Y diverges from observed failure times. Despite the close adherence of all PIs according to the AL criterion, the
intervals constructed using the SL method are characterized by their minimal length.

7. Conclusions

This paper focuses on predicting the future lifetimes of a simple step stress test using the Gompertz distribution
within the CE model. The study considers cases where data is Type-II censored. The paper introduces several point
predictors, including MLP, CMP, and BUP. In addition, the paper discusses another aspect of prediction, where we
construct PIs for these future lifetimes. Through an extensive Monte Carlo simulation, the performance of these
predictors is compared, taking into account biases and MSPEs. The evaluation of PIs includes considerations of
their ALs and CPs. In summary, it is observed that the MLP as a point predictor has the best performance. On the
other hand, the SL based PIs outperform the pivot and HCD PI.
It is important to note that although the study primarily addresses Type-II censoring, the techniques discussed can
also be adapted for other censoring schemes such as Type-I, hybrid or progressive censoring.
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