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Abstract In recent times, there is a vested interest in the research and applications of extreme value mixture models
in the stock market and insurance as well as medical industries. This study aims to evaluate the fit of two extreme value
mixture models namely Stable-Normal-Stable (SNS) and Stable-KDE-Stable (SKS), where KDE represents the Kernel
density estimator, for three FTSE/JSE indices namely All Share Index (ALSI), Banks Index, Mining Index and the USD/ZAR
currency exchange rate. These novel models aim to capture the characteristics of South African financial data as compared to
the existing commonly fitted extreme value mixture models. The results highlight the robustness of the SNS and SKS mixed
model for each daily returns when conducting a graphical bulk model and comprehensive tail model analysis. Financial
practitioners looking to curb losses and study alternatives for financial modeling in the South African financial industry
using an extreme value mixed model approach may find the SNS and SKS model application beneficial.
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1. Introduction

In recent times, a plethora of extreme value mixture models were explored. Extreme value models are frequently
used to describe the distribution of events that are rare in nature. Describing the likelihood of unusual behaviour
has brought about the need for dependable and statistically justifiable models to be developed. The scarcity of
extremal data should be noted therefore suggesting that making inferences is complicated. Applications of extreme
value theory are seen extensively in number of industries such as hydrology, medicine as well as the insurance and
finance industry.

It is well known that in the last decade South Africa has experienced bleak economic growth, high levels of crime,
corruption and unemployment. These socio-economic issues have worsened with the unprecedented COVID-19
global pandemic and the Russia-Ukraine war. The requirement for reliable models that monitor the movement of
volatile indices and exchange rates during globally disruptive events is of major importance in curtailing risk and
implementing the relevant macroeconomic structural changes and governance essential for financial stability.

Literature references that financial data displays heavy tails and skewness and a possible solution of dealing with
this problem is to recommend a volatility model that adequately describes the features of financial data. Noteworthy
work by [17] proposed an extreme value mixture model that fits the GPD model at the upper and lower tail and
the Normal distribution is fitted as the bulk model between the two tails. The mixture model created by [17] is
an extension of literature by [10] where a two-stage model is developed where at the initial stage a Generalised
Autoregressive Conditional Heteroskedasticity (GARCH) model is fitted to capture volatility clustering and the
latter stage fits a Generalised Pareto Distribution (GPD) to the tails.
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This main contribution of this paper is to propose new extreme value mixture models namely, the Stable-Normal-
Stable (SNS) and Stable-KDE-Stable (SKS), where KDE represents the Kernel density estimator, models to three
FTSE/JSE stock market indices and the United States of American Dollar to the South African Rand. Distribution
density plots of the fitted SNS and SKS models validate the adequacy of the models on each of the return series
investigated in this study.

This study highlights the usefulness of extreme value mixture models in context and application of a South
African financial perspective and recommends the SNS and SKS models as alternate distributions to consider
when fitting large sets of economic data.

2. Literature Review

An extreme value mixture model where the bulk distribution is a parametric distribution and GPD is modeled at
the tails was studied by [2]. The two distributions are spliced at some point known as the threshold that is treated
as a parameter to be estimated. This paper used the truncated gamma distribution as the bulk model.

[15] adopted a semi-parametric Bayesian approach that includes for the bulk distribution, a mixture of weighted
gamma densities and the GPD model for the tail. BIC or DIC statistics is used to determine the number of gamma
components in the bulk model.

Like [15] and extending on the work of [2], [8] proposed a mixture model comprising a mixture of exponential
distribution components below a threshold and the GPD is fitted for the threshold excess. The EM algorithm is
utlised for parameter estimation where a mixture of two exponential distributions is used to model the Danish fire
and a medical claim data sets.

[11] evaluated a data driven approach and proposed a two-tailed mixture model. The GPD model is suggested to
fit the tails and a normal distribution is fitted as the bulk density. The estimation process involves the ordering and
standardisation of data. [6] summarizes the 6-step estimation procedure.

A model similar to the work of [11] is investigated by [17], where Bayesian inference is used as the method
of estimation. The Normal distribution is recommended as the bulk distribution and GPD for the lower and upper
tails. A novel finding with this approach is the absence of influence of the bulk distribution on tail model fitting. A
possible drawback pointed out by [6] deals with the misfit of the model, more especially the bulk model.

A flexible extreme value mixture modelling framework was defined by [9] where the standard kernel density
estimator is the bulk model and the GPD is the tail models. The performance of the proposed two-tailed
mixture extreme value model was evaluated by empirical analysis and simulation study for determining normal
physiological measurements for pre-mature infants.

There is limited research on the topic of modelling Stable distributions to the tail component of extreme value
mixture models to the best of our literature knowledge. The central theme of this study is to investigate the
suitability of the SNS and SKS mixture model for the JSE financial data and USD/ZAR currency exchange rate
that exhibit heavy tails and asymmetry.

3. Research and Methodology

The likelihood of extreme variation from the median probability distributions that are applied to understand
uncommon events or anomalous behaviours is what is described by [6] as extreme value theory. [14] notes that the
extrapolation of information from the extremal portions of distributions as opposed to the centers of distributions
is the key idea behind extreme value theory.

Typically, parametric, semi-parametric and non-parametric methods are three approaches applied in extreme
value theory. Extreme value mixture models usually have two components. The first component is a model that
defines non-extremal data below a threshold known as the bulk model and the second component, known as the tail
model, refers to the data above a certain threshold. In most cases, the bulk model is a parametric or non-parametric
distribution, and the tail model is an adaptable threshold model like the GPD. This paper explores the possibility
of fitting Nolan’s S0-paramterisation stable model.
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3.1. Univariate stable distributions

Stable distributions are a four-parameter family of models based on stable laws. The literature of stable distributions
was derived from the pioneering work of Paul Lévy in the 1920s.

[12] outlines stable laws as:

(i) The sum of two Normally distributed random variables yields a Normal random variable. If Y is Normal,
then Y1 and Y2 are independent and identical to Y with any positive constants a and b.

aY1 + bY2
d
= cY + d (1)

for c ≥ 0 and d ∈ R where d
= denotes equality in distribution.

(ii) Any random variable is symmetrically stable if it is stable and symmetrically distributed around 0, that is,
Y

d
= −Y.

(iii) A random variable is strictly stable if d = 0.

There are three special cases where stable distributions that can be expressed as closed-form densities. The family of
stable distributions is a rich class of models and includes the Normal, Cauchy, and Lévy distributions as subclasses
described by their density functions. The Normal distribution is stable when α = 2 and skewness β = 0, when

α = 1 and β = 0 then Cauchy Laws are described and Lévy distributions are stable with α =
1

2
and β = 1.

The next subsection discusses the characterization and parameterization of Stable distributions where stable
parameters will be discussed in more detail.

3.1.1 Characterization and parameterization of Stable distributions
Stable distributions are defined by four parameters, namely α, β, γ and δ. The index of stability is explained by

the parameter α where 0 < α < 2. Skewness is denoted by the parameter β where −1 < β < 1. The distribution is
symmetric if β = 0. If β > 0, the distribution is skewed to the right and if β < 0, then the distribution is skewed to
the left. The scale parameter is denoted by γ > 0. The parameter δ denotes the rightward or leftward shift of the
distribution. It is called the location parameter. The distribution has a leftward shift if δ < 0. On the other hand,
the distribution has a rightward shift if δ > 0. Multiple parameterizations are used to describe stable laws. This is
due to historical evolution and the many challenges observed when investigating stable distributions. The notation
S (α, β, γ, δ, k) is used to label the class of stable laws. The four parameters α, β, γ and δ need to be estimated and
the integer k distinguishes between the different parameterizations [13].

[13] describes the S0-parameterization as: A random variable Y is S (α, β, γ, δ; 0) if

Y
d
=

{
γ
(
Z − βtanπα

2

)
+ δ, α ̸= 1;

γZ + δ, α = 1.
(2)

where Z ≡ Z(α, β). In this case Y has characteristic function:

E
(
eitY

)
=

{
exp(−γα |t|α [1 + iβ

(
tanπα

2

)
(sign(t))× (|γt|1−α − 1)] + iδt), α ̸= 1;

exp(−γ |t| [1 + iβ 2
π (sign(t))× log(γ |t|)] + iδt), α = 1.

(3)

[13] mentions using the S0-parameterization for statistical inferences, and numerical functions, as it has
the simplest form for the characteristic function that is continuous in all four parameters. The S0-
parameterization acknowledges a location-scale family. If Z ∼ S(α, β, γ, δ; 0), then for α ̸= 0, b ∈ R, aZ + b ∼
S(α, sign(α)β, |a| γ, aδ + b; 0).

Stable parameter estimation
[13] positions that many standard parameter estimation procedures fail to work for data due to the scarcity of

closed-form densities for stable distributions. The are several methods of stable parameter estimation and one
cannot consider any specific method as superior or most effective, however, the maximum likelihood method is the
most often used for stable parameter estimation.

In this study, stable parameters are estimated using maximum likelihood method for the lower and upper tails and
thereafter the Anderson-Darling goodness-of-fit test is applied as part of a tail model analysis to test the suitability
of the fitted univariate stable models at the tail component.
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4. Stable-Normal-Stable mixture model

This study investigates the fit of the Stable-Normal-Stable (SNS) model using Nolan’s S0 - parmeterisation on the
South African currency and stocks. The SNS mixture model is a two-tailed model where the Normal distribution
is fitted as the bulk model and the stable model is fitted to the tails. The SNS model is described as:

F (x|θ) =

 ϕ (ul|µ, σ) [1−G (−x|αl, βl, γl, δl)] x ≤ ul;
ϕ (ul|µ, σ) , ul < x < ur;
ϕ (ur|µ, σ) + [1− ϕ (ur|µ, σ)G (−x|αr, βr, γr, δr)] x ≥ ur.

(4)

where, θ = (ul, αl, βl, γl, δl, µ, σ, ur, αr, βr, γr) , G(�α, β, γ, δ, u are the fitted Stable distribution function for the
upper (shown by subscript r ) and lower tail (shown by subscript l) with ϵ, the four stable parameters and threshold
u.ϕ(�µ, σ) is the Normal distribution with mean µ and σ as standard deviation.

4.1. SNS parameter estimation

In this study, a piecewise method of estimation is used to create the SNS model. The basic principle behind the
piecewise method is the assumption that data follows different distributions over its range therefore the mixture
model should be modelled in “pieces”. Also, to the best of our knowledge, analytic software that makes use of
stable models at the tails of extreme value mixture models have not been explored before. In this context, the
thresholds ul and ur need to be pre-determined before proceeding to fit the respective stable tail and Normal bulk
model.

5. Kernel Density Estimation (KDE)

5.1. Univariate Kernel Density Estimator

[6] describes the traditional kernel density estimator as:

f̂ (y; y, λ) =
1

nλ

n∑
i=1

K((y − yi)/λ) (5)

where K(�) is the kernel density function which is usually symmetric and λ is bandwidth parameter. K(y) ≥ 0
and

∫
K(y)dy = 1 are two conditions that are satisfied by the kernel function.

Scale notation Kλ(y) = λ−1K
( y

λ

)
is used to denote another formula for the kernel function:

f̂ (y; y, λ) =
1

n

n∑
i=1

Kλ (y − yi) (6)

An interpretation of the kernel estimate at a point y by [16] is the average of n kernel ordinates at that specific
point. Uniform, Normal and bi-weight among other functions are suggested by literature for kernel functions. The
Gaussian probability density function is a popular choice for the Kernel function, where the bandwidth λ takes the
role of standard deviation and controls the spread of the kernel. [16] also note that the choice of the kernel function
is not as critical as the choice of the bandwidth.

5.2. Selecting the Bandwidth

Various methods for choosing the bandwidth λ is discussed in literature. The simplest way to select the bandwidth
parameter λ is to plot various values and choose the parameter value that best suits the underlying density. The
other possible method to select the bandwidth parameter is to minimize an error criterion, for example, the Mean
Square Error (MSE).
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4 EXTREME VALUE STABLE MIXTURE MODELLING

5.3. Stable-KDE-Stable (SKS) mixture model

A two-tailed Kernel Stable model, namely, the Stable-KDE-Stable model is evaluated in this study. [9] proposed a
two-tailed model by joining a standard kernel density estimator between two extreme value GPD tail models. [6]
describes the two-tailed model introduced by [9] as:

F (y|θ) =


ϕul

[1−G (−y|ϵl, σul
,−uul

)] , y ≤ ul;

ϕul
+ (1− ϕul

− ϕur )
H (y|X,λ)−H (ul∥X,λ)

H (ur|X,λ)−H (ul|X,λ)
ul < y < ur;

(1− ϕur
) + ϕur

G (y|ϵr, σur
, ur) y ≥ ur.

(7)

where θ = (X,λ, ul, σul
, ϵl, ϕul

, u2, σur , ϵr, σur ) is the parameter vector. ϕul
and σur are estimated as sample

proportions less than the lower threshold ul and above the upper threshold ur. G (−y|ϵl, σul
,−uul

) and
G (y|ϵr, σur

, ur) represents the unconditional GPD function for y < ul and y > ur respectively. H(�|y, λ) is the
distribution function of the kernel density estimator where λ is the bandwidth.

The rationale behind choosing the SNS and SKS models is primarily because of the flexible characteristics
of the 0-parameterization stable model. Stable distributions are known to have a robust fit to the underlying
data and therefore is an apt choice when considering the tail component of EVT mixture models. With this, the
prediction of extreme events is likely to be more accurate as compared to traditional EVT modelling approaches.

5.4. Anderson-Darling (AD) test

The Anderson-Darling goodness of fit test was the result of extensive research by T.W. Anderson and D.A. Darling
[1]
The Anderson-Darling test statistic A2 is defined as:

A2
n = −

n∑
i=1

2i− 1

n

(
ln(F̂ (x(i))) + ln(1− F̂ (x(n+1−i)))

)
− n (8)

where x(1) < · · · < x(m) is the ordered sample size m from smallest to largest and F (x) is the underlying
theoretical cumulative distribution to which the sample is compared.

The null hypothesis x(1) < · · · < x(m) comes from the underlying distribution of F (x) . The null hypothesis is
rejected at a specified level of significance α , if the test statistic A2 is greater than the critical value for a table of
critical values at different sample sizes. Generally, critical values of the Anderson-Darling test statistic depend on
the distribution being tested. The goodness-of-fit of several distributions may evaluated using the Anderson-Darling
test.

6. Empirical data and analysis

The data sets used in this study are the daily FTSE/JSE All-Share Index, FTSE/JSE Banks Index, FTSE/JSE
Mining Index and USD/ZAR prices obtained from McGregor BFA and were recorded over the period from 13
August 2010 to 14 August 2020. The return series for each index is calculated as the first backward differences of
the index values’ natural logarithm. For day t, the daily log return rt is defined as:

rt = ln (Pt)− (Pt−1) (9)

where, Pt is the price at day t.
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Figure 1. Time series plot of JSE Indices and USDZAR exchange rate (left) and one day returns (right).

In Figure 1, the plots specify several trends in mean and variance over time indicating non-stationarity. The
variance diverges over time demonstrating heteroscedasticity and volatility clustering which is probable when
dealing with financial data. Isolated extreme returns caused by shocks to financial markets are apparent, such as
the 2015 stock market crash and the 2019-2020 global COVID-19 pandemic.
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6 EXTREME VALUE STABLE MIXTURE MODELLING

Table 1. Descriptive summary statistics of daily return of financial stock market indices and exchange rate

ALSI Banks Index Mining Index USDZAR
Panel A:Descriptive Statistics

Number of observations 2499.00 2499.00 2499.00 2675.00
Minimum 0.1023 2.3021 0.1589 -0.0460
Maximum 0.0726 0.0991 0.1346 0.0603

Mean 0.0003 -0.0008 0.0002 -0.0003
Skewness -0.7310 -41.0875 -0.1605 -0.1671

Excess Kurtosis 8.8822 1919.8771 6.0443 2.7766
Panel B: Testing for normality, autocorrelation and heteroscedasticity

Test Statistic p-value Statistic p-value Statistic p-value Statistic p-value
Jarque-Bera 8455.2667 < 0.0001∗∗∗ 385117.132 < 0.0001∗∗∗ 3823.93 < 0.0001∗∗∗ 874.3992 < 0.0001∗∗∗

Ljung Box 67.2900 < 0.0001∗∗∗ 7.0024 0.9967 47.62 0.0005 11.7751 0.9236
ARCH LM Test 936.0966 < 0.0001∗∗∗ 0.0000 0.9900 50.0300 0.0000 15.4100 0.0000

Testing for unit root and stationarity
Unit root test Statistic p-value Statistic p-value Statistic p-value Statistic p-value

ADF Test –13.6259 0.01 –12.9576 0.01 –13.5509 0.01 –14.7402 < 0.0001∗∗∗

PP Test -2586.908 0.01 -2548.281 0.01 -2430.247 0.01 -2688.028 0.01
KPSS Test 0.1303 0.10 0.0914 0.10 0.2394 0.10 0.0431 0.10

∗∗∗ symbolizes a very small p-value

Descriptive Statistics for the daily closing prices of the FTSE/JSE financial stock indices returns and USD/ZAR
are shown in Table 1 in Panel A. The excess kurtosis value indicates the leptokurtic behaviour of these return
series. This means that the empirical distribution of the daily returns is much heavier than the frequently fitted
normal distribution. Excessively large values for skewness and excess kurtosis are seen for the Banks Index returns
and perhaps describe the inadequate performance of the South African economy [4]. The Jarque-Bera test for
normality gives a p-value less than 0.0001 for all four returns, thus rejecting the normality assumption at all levels
of significance. Panel B displays tests for normality, autocorrelation and heteroscedasticity are shown. The null
hypothesis of normality for the Jarque-Bera test is rejected at 5% level of significance for all stock and currency
returns. This deduces the use of heavy tailed models when analyzing the returns series should be considered.

The Ljung box test provides mixed results. The significant p-values of the Ljung box test for ALSI and the
Mining Index suggest rejecting the null hypothesis of no autocorrelation. The null hypothesis for FTSE/JSE Banks
Index and USD/ZAR exchange rate is rejected inferring that the return series exhibit serial correlation.

Viewing the results from Panel C, it can be deduced at a 5% level of significance, the null hypothesis of a
unit root is rejected, and it can be decided that all return series are stationary. The KPSS test showed that all
returns are stationary since all p-values are 0.1 which is greater than 0.05 thus the null hypothesis of stationarity is
rejected.

6.1. Results and discussion

SNS parameter estimates are shown in Table 2 where µ̂ denotes the estimated
Normal mean, σ̂ is the estimated Normal standard deviation of the Normal bulk model. α̂l, β̂l, γ̂l, δ̂l represents the
lower stable tail estimated parameters. Similarly, α̂r, β̂r, γ̂r, δ̂r describes the upper stable tail estimated parameters.
Table 3 shows the bulk parameter estimates for the SKS model. Since a piecewise estimation approach was adopted,
the fitted stable table tail model is the same as Table 2 for each quantile threshold point.
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6.1.1. Fitted stable tail densities

Figure 2. FTSE/JSE ALSI stable tail model density plots.
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Figure 3. FTSE/JSE Banks Index stable tail model density plots.
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Figure 4. FTSE/JSE Mining Index stable tail model density plots.
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Figure 5. USD/ZAR stable tail model density plots.

Figures 2, 3, 4, and 5 shows that the fitted stable tail segment of the SNS and SKS model fits best for all returns
at all tails quantile specifically the extreme data values. Overfitting is noticed as the tail section reaches the bulk
component which is expected behaviour of stable models where variability is noticed. Mixed results are seen for
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the 99% upper tail of the Banks index where descriptive statistics have previously shown extreme kurtosis and
heavy tails. Generally, this suggests the stable model for the tails as a worthy alternative to the tail model for risk-
averse practitioners.Table 4 and Table 5 shows the results of the Anderson Darling Goodness-of-fit test on the tail
components of the fitted SNS and SKS models.

Table 4. Anderson Darling Goodness of fit test of the stable lower tail model for the SNS and SKS mixture models.

Lower Tail Quantiles
1% lower tail 2.5% lower tail 5% lower tail 10% lower tail

FTSE/JSE ALSI
AD Test Statistic 0.2363 0.5988 0.8688 1.0311

p-value 0.9771 0.6485 0.4337 0.3413
FTSE/JSE Banks Index

AD Test Statistic 0.2298 0.4069 0.7775 1.3615
p-value 0.9800 0.8414 0.4973 0.2133

FTSE/JSE Mining Index
AD Test Statistic 0.2286 0.4062 0.9290 2.0496

p-value 0.9805 0.8421 0.3966 0.0863
USD/ZAR

AD Test Statistic 0.6671 3.2959 0.7694 1.7949
p-value 0.5855 0.0195 0.5034 0.1195

The results from the Anderson-Darling goodness-of fit tests in Table 4 confirm the results seen in the stable
density lower tail plots where the suggested stable model serves as a good fit at all quantile thresholds for the lower
tail. For the each of the four return index series, the fitted stable tail model favours the null hypothesis of model
adequacy at a 5% level of significance for all quantiles thus confirming formally that the stable models ought to be
considered for the tail portion of extreme value mixture models.

Table 5. Anderson Darling Goodness of fit test of the stable upper tail model for the SNS and SKS mixture models.

Upper Tail Quantiles
99% lower tail 97.5% lower tail 95% lower tail 90% lower tail

FTSE/JSE ALSI
AD Test Statistic 0.1315 0.8604 1.2868 1.3250

p-value 0.9996 0.4390 0.2366 0.2244
FTSE/JSE Banks Index

AD Test Statistic 0.5916 0.8516 0.5783 1.5101
p-value 0.6543 0.85164 0.6685 0.1741

FTSE/JSE Mining Index
AD Test Statistic 0.2703 0.3339 0.7417 2.729

p-value 0.9584 0.9104 0.5247 0.03771
USD/ZAR

AD Test Statistic 0.2674 0.6262 0.9962 1.1420
p-value 0.9602 0.6230 0.3591 0.2906

Similar to Table 4, results from the Anderson-Darling goodness-of fit in Table 5 confirm the suggested stable
upper tail model serves as a good fit at all quantile thresholds except for the 90% upper tail quantile threshold for
the FTSE/JSE Mining Index return series. The fitted stable tail model fails to reject the null hypothesis of model
adequacy at a 5% level of significance. At a 1% level of significance the upper tail fitted stable model is deemed
to be a good fit at all upper quantile threshold points, once again confirming the flexibility and robustness of fitted
stable distributions for the tail portion of extreme value mixture models.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



K. NARADH, K. CHINHAMU AND R. CHIFURIRA 13

6.1.2. Fitted bulk densities

Figure 6. FTSE/JSE ALSI returns Bulk density plots for fitted models.

Figure 7. FTSE/JSE Banks Index returns Bulk density plots for fitted models.
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Figure 8. FTSE/JSE Mining Index returns Bulk density plots for fitted models.

Figure 9. USD/ZAR returns Bulk density plots for fitted models.
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The fitted Normal and KDE model density plots for the SNS and SKS models are shown in Figures 6, 7, 8 and
9 above for each stock indices and South African exchange rate. Evidently, the KDE model is a good fit across the
entire range of the bulk data as compared to the commonly used Normal distribution, however, the Normal model
is a close second alternative to model bulk data over the bulk return series range. This seems to be the opposite for
the FTSE/JSE Banks Index where the fitted Normal model out-performs the KDE model. This study places more
focus on the stable tail component where model robustness is of great interest especially from an extreme value
mixture modelling perspective.

7. Discussion

Extreme Value theory (EVT) is prevalently used to study the cases of unusual occurrences where mathematically
and statistically sound models are developed and extrapolated. Statistical inference has become more challenging
due to the well documented fact of heavy tails and skewness prominent in financial data. The traditional Gaussian
framework commonly used in financial applications for many years has shown to be inadequate by several empirical
studies in capturing the characteristics of financial data. This study highlights that extreme events in finance reveal
the likelihood of not only extreme losses (seen in the lower tail) but also extreme gains (seen in the upper tail).
Results from this study show that the monthly data series of South African Industrial Index (J520) data rejects the
normality assumption indicating that the return series is fat-tailed and that the fitted stable tail model provides an
adequate fit to extreme returns. Research by [9] highlights a drawback with proposed mixture models in industry
is the misspecification of the bulk model that has large impact of the fit of the tails. The non-parametric KDE
model is applied to the bulk model to deal with computational and inference challenges. In this regard, new EVT
mixture models, namely the SNS and SKS models are proposed as possible alternative models to be explored,
since Nolan’s S0 stable distribution is a flexible class of distributions that account for asymmetry and heavy
tails, provides a reasonable model for tail behaviour. This study delves into novel models that prove to be sound
alternatives to exploring Extreme Value theory in a South African financial context, however, with novelty comes
limitations. The SNS and SKS models in the current state can only be considered in a piece-wise manner on not in
its entirety due to computational challenges as Stable distributions describe a family of models, this includes the
Gaussian model among other parametric distributions such as the Cauchy and Levy model. Model validation also
becomes a challenge due to computational complexities. The data sets used in this study has minimal influence
on the methodologies of thes models as the ideology behind the SNS and SKS models were derived from the
extensive research and empirical analysis of univariate stable distributions that lead to a natural progression to
explore mixture model applications. In essence, both the SNS and SKS models can be explored further with other
datasets in various industries that exhibit heavy tails and skewness.

8. Conclusion

Statistical analyses from this study propose the new SNS and SKS mixed model as an alternate for modeling
extreme occurrences often observed in financial industries as these models prove to capture the complexities of
financial returns. Stable distributions are a wealthy family of models that are ideal for handling the heavy tail and
skewness properties seen in financial return series. For each return series, SNS and SKS parameters were estimated
and subsequently the distribution density plots, and Anderson Darling test analyzed the fit which mostly inferred a
good fit throughout the data overall. This article provides valuable findings to researchers or financial practitioners
who are interested with extreme value mixture modeling within the context of the South African financial setting
as an alternate to traditional models which, fails to capture the empirical characteristics of financial data. As
further research, as a comprehensive simulation study on the proposed mixture models should be considered
with applications to data outside of finance to understand and measure the versatility and robustness of the newly
proposed SNS and SKS models. Also, although the proposed models have a computational challenge, the robust
fit is worth exploring when analysts consider EVT mixed models. Essentially, this study recommends the practice
of extreme value mixture models in achieving a better understanding of the South African financial industry where
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financial modeling strategies are applied and validated. This study urges the consideration of applying the SNS
and SKS models across the African continent with similar economies or in other industries where the novel mixed
models that depict real world occurrences are highly vital.
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