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Abstract The study presented in this paper improves the Multi-Objective Artificial Bee Colony (MOABC) method. It
evaluates its performance using Generational Distance (GD), Spread (SP), and Hypervolume (HV) metrics on the Zitzler-
Deb-Thiele (ZDT) benchmark functions. Subsequently, the improved MOABC method, along with Multi-Objective Particle
Swarm Optimization (MOPSO) and the Non-Dominated Sorting Genetic Algorithm II (NSGA-II), is applied to optimize the
design of a square planar spiral inductor. The objectives are to maximize the quality factor (Q) and minimize the inductor area
(A) simultaneously while maintaining a necessary inductance of 4 nH at a 2.4GHz operating frequency, utilizing 0.13µm
CMOS technology. The optimization findings are verified and confirmed using Advanced Design System (ADS) Momentum,
demonstrating the feasibility of multi-objective optimization for integrated inductor design.
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1. Introduction

Multi-objective problems are a common type of problem that involves optimizing multiple objectives
simultaneously [1]. Instead of generating a single solution, these problems aim to provide a set of solutions,
known as the Pareto front. Each solution on the Pareto front represents a trade-off between two or more objectives
optimized using the same set of variables. Various algorithms have been proposed to solve these problems, and their
effectiveness is measured using several metrics. These metrics are real values that assess specific characteristics
of a given Pareto front, such as the diversity of solutions or the volume of the area generated by the Pareto front
[2]. Using multi-objective metrics, researchers can compare the quality of an observed Pareto solution set obtained
by a multi-objective optimization method and select the algorithm with the desired performance. Over the past
three decades, metaheuristics have been increasingly used to solve complex and challenging problems in different
engineering fields [3]. They have gained popularity rapidly as they have proven to be more ingenious and efficient,
providing good approximate solutions within a reasonable time [4], [5], [6].

Recently, multi-objective optimization approaches have been successfully employed in numerous studies to
optimize analog and radio-frequency (RF) integrated circuits. In [7], a study was conducted to evaluate the
performance of two multi-objective techniques, namely, Multi-Objective Artificial Bee Colony (MOABC) and
Multi-Objective Particle Swarm Optimization (MOPSO), for the optimal design of a CMOS Low Noise Amplifier
(LNA) cascode with inductive source degeneration. In [8], the Non-Dominated Sorting Genetic Algorithm (NSGA-
II) was applied to size a biomedical instrumentation amplifier. A comparative study presented in [9] evaluated the
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performance of two evolutionary-based algorithms, NSGA-II and the Multi-Objective Evolutionary Algorithm
based on Decomposition (MOEA/D), for automating the analog/RF circuit design process.

In this work, the performance of three well-known metaheuristic-based multi-objective algorithms is compared:
Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [10], [11], Multi-Objective Particle Swarm Optimization
(MOPSO) [12], [13], and Multi-Objective Artificial Bee Colony (MOABC) [14], [15]. The evaluation uses a set of
metrics: Generational Distance (GD), Spread (SP), and Hypervolume (HV) [16], [17]. This study contributes to the
field by comparing the performance of these algorithms on a standardized set of problems using various metrics.
The findings can help researchers and practitioners select the most suitable algorithm for a specific multi-objective
problem, potentially saving time and resources while improving optimization outcomes. Additionally, the paper
focuses on optimizing the dimensions of a square planar spiral inductor by applying the MOABC, MOPSO, and
NSGA-II algorithms to create a Pareto front that simultaneously maximizes the quality factor (Q) and minimizes
the area of the inductor. Simulations performed with Keysight’s ADS Momentum simulator provide results that
align with the optimization outcomes, confirming the validity of this approach.

The paper is organized as follows: Section 2 provides an overview of multi-objective metaheuristic algorithms
and the metrics used to evaluate the Pareto front. Section 3 details the experimental setup, including the
methodology employed, the obtained results, and their analysis and discussion. Section 4 describes the planar
spiral inductor and presents the experimental results of its optimization. Finally, Section 5 concludes the paper by
summarizing the findings, highlighting limitations, and suggesting avenues for future research.

2. Background

This section outlines the multi-objective algorithms chosen for the study, the metrics used, and some key
characteristics of the benchmark test functions.

2.1. Multi-objective meta-heuristic algorithms

Multi-objective optimization algorithms are commonly used to optimize multi-objective problems because they can
avoid local optima and are versatile enough to handle various issues. They can easily incorporate linear and non-
linear inequality and equality constraints. These features make them a preferred choice for solving multi-objective
problems [18].

2.1.1. Multi-Objective Artificial Bee Colony
The original Artificial Bee Colony (ABC) algorithm, developed by Karaboga in 2005, is inspired by the intricate

foraging behaviors of bee colonies [19]. This algorithm models three types of bees: employed bees, onlooker bees,
and scout bees. Employed bees search for potential solutions, represented as food sources within the optimization
problem’s domain. Onlooker bees assess the quality of these solutions, while scout bees are dispatched to explore
new solutions through a random search when current solutions are insufficient. The Multi-Objective Artificial Bee
Colony (MOABC) algorithm is structured into five main phases: Initialization, Employed Bee Phase, Onlooker
Bee Phase, Scout Bee Phase, and Archive Updating. Detailed explanations of these phases can be found in the
referenced literature [20], [21]. The MOABC pseudocode and flowchart are shown in Figures 1 and 2, respectively.



Begin
Initialization phase ()
Number of variables, Population, MaxIteration, and Limit.
Employed Bees phase ()
for i=1 to FoodNumber do

Randomly choose a parameter k.
Randomly choose a parameter j.
Use equation (1) to obtain a new solution:

sol ji = food j
i + rand[−1, 1] · (food j

i − food j
k) (1)

if the new food source position dominates the previous one then
Update the position.

end
else

Increment the trial by one.
end

end
Onlooker bee phase ()
Assess the quality of the food source positions discovered by the employed bee.
for i=1 to FoodNumber do

Randomly choose the parameter k.
Randomly choose the parameter rp from the archive.
Use equation (2) to obtain the new solution.

solrpi = foodrp
i + rand[−1, 1] · (ARrp

k − foodrp
i ) (2)

if the new food source position dominates the previous one then
Update the position.

end
else

Increment the trial by one.
end

end
Scout Bees phase ()
for i=1 to FoodNumber do

if I have the maximum trial then
Reset the trial value to zero.
Generate a random solution by equation (3):

food i = lb+ rand[1, d] · (ub− lb) (3)

end
end
End

Figure 1. Pseudocode of MOABC algorithm.
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Figure 2. Flowchart of the MOABC algorithm.

The MOABC adjustment process involved adjusting the population size and limit parameters. The population
size was optimized to balance the computational demands with the diversity of solutions. The limit parameter,
determining how quickly bees abandon exhausted sources, was calibrated through testing to balance exploration
and exploitation, which is crucial for preventing premature convergence and ensuring efficient search behavior.

2.1.2. Multi-Objective Particle Swarm Optimization
The particle swarm optimization technique, introduced by Eberhart and Kennedy in 1995 [22], was derived

from the coordinated movement of birds in a flock. Coello and Pulido [23] proposed the MOPSO algorithm to
tackle multi-objective optimization problems. This technique utilizes the principle of Pareto dominance to identify
non-dominated solutions and employs an elitist selection based on the crowding distance factor. The algorithm
also saves the discovered solutions in an external archive, and a flexible grid oversees the archive and directs the
updating of particles [24]. The position and velocity of each particle [25] are computed in every iteration using the
following equations :

V
(n+1)
id = ω · V n

id + c1 · randn
1 (pbest

n
id −Xn

id) + c2 · randn
2 (gbest

n
id −Xn

id) (4)

X
(n+1)
i = Xn

i + V
(n+1)
i (5)

Where i denotes the index of the particle (1, 2, . . . , N ); N represents the size of the swarm; d denotes the
dimension of the search space (1, 2, . . . , D); and n denotes the iteration number. V n

id and V
(n+1)
id represent the

d-dimensional velocity of particle i in iterations n and n+ 1, respectively. Xn
id and X

(n+1)
id represent the d-

dimensional positions of particle i in iterations n and n+ 1, respectively. pbestnid and gbestnid represent the personal



best and global best of particle i in iteration n, respectively. rand1 and rand2 are random values between 0 and
1. The cognitive weight denoted as c1, and the social weight, denoted as c2, are often assigned a value of 2. The
MOPSO pseudocode and flowchart are shown in Figures 3 and 4, respectively.

Begin
Initialization stage
Particle Initialization: Position, Velocity, and Archive.
while Iteration < MaxIteration do

for Each Particle do
Select leader.
Update Position and Velocity.
Mutation.
Evaluation.
Update pbest.

end
Update gbest.
Update Archive.
Selection by crowding distance factor.

end
Update Archive.
End

Figure 3. Pseudocode of MOPSO algorithm.

Start
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Velocity and Archive

Update Position and
Velocity of each particle

Evaluate Particles

Find Global best
then store in Archive

Update the memory
of each particle

Termination
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End
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No

Yes

Figure 4. Flowchart of the MOPSO algorithm.



The MOPSO adjustment process involved careful tuning of key parameters such as inertia weight, cognitive
coefficients, and social coefficients. The inertia weight used a decreasing strategy to facilitate a smooth transition
from the exploration to the exploitation phases. The cognitive and social coefficients were calibrated to balance the
individual and collective intelligence of the swarm, impacting both the speed of convergence and the quality of the
solution set.

2.1.3. Non-Dominant Sorting Genetic Algorithm II
The Non-Dominant Sorting Genetic Algorithm II technique was developed by Deb et al. [26], [27] as an approach

that incorporates both elite and diversity-preserving mechanisms. NSGA-II starts by generating a parent population
P0 through a random process. These solutions are then sorted into various non-domination fronts, where each
solution is assigned a fitness level corresponding to its non-domination front. The first front represents the best
solutions, while subsequent fronts represent progressively worse solutions. Based on the crowded comparison
criterion and crossover and mutation operators, binary tournament selection is used to create the initial child
population Q0 of size N .

For t > 1, the NSGA-II method works as follows:

• The populations of parent Pt and child Qt are combined.
• The non-domination approach is used to sort the population Rt = Pt ∪Qt, which has a size of 2N .
• Selected solutions from the first front are used to build a new parent population Pt+1 until the population

size exceeds N .
• For each non-dominated front of Rt, the crowding distance Fi is computed.
• Selection, crossover, and mutation operators are used to create the new population Qt+1.

The NSGA-II pseudocode and flowchart are shown in Figures 5 and 6, respectively.

Begin
Initialize Population.
Generate Population randomly with size N .
Evaluate Objectives Values.
Assign Rank (front) based on Pareto - sort.
Generate children population.
Binary tournament selection.
Crossover and mutation.
for i = 1 to g do

for each Parent and child in population do
Assign Rank (front) based on Pareto - sort.
Generate sets of non-dominated solutions.

end
Determine Crowding distance.
Adding solutions to the next generation starting from the 1st front until individuals.

end
Select points on the lower front with high crowding distance.
Create the next generation.
Binary tournament selection.
Crossover and mutation.
End

Figure 5. Pseudocode of NSGA-II algorithm.
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Figure 6. Flowchart of the NSGA-II algorithm.

The NSGA-II adjustment process involved carefully fine-tuning the probabilities of crossover and mutation to
optimize search robustness and maintain genetic diversity within the population. We set the crossover probability to
promote an effective combination of genetic attributes, ensuring a balanced exchange. Simultaneously, the mutation
probability was kept sufficiently low to prevent significant changes while being high enough to encourage the
exploration of new solution spaces.



2.2. Performance metrics

The performance of several Multi-Objective Evolutionary Algorithms (MOEAs) for a specific problem was
evaluated by running each algorithm for the same number of iterations. The obtained solutions, also known
as Pareto front approximations, were assessed using two quality metrics: solution diversity, which analyzes the
distribution of points within the solution set, and solution accuracy, which measures how close the solutions are to
the true Pareto front. Three metrics frequently employed in recent literature were used [28]. These metrics, listed
in order of popularity, are Generational Distance (GD), Spacing (SP), and Hypervolume (HV). The definitions of
these metrics are as follows:

2.2.1. Generational distance
The Generational Distance (GD) is widely recognized as a key indicator of convergence quality in multi-

objective optimization [29], [30]. It measures the average distance from the Pareto front produced by an
optimization algorithm to the true Pareto front, as depicted in Figure 7. The GD is calculated using Equation 6,
where p represents the number of non-dominated solutions on the true Pareto front and a lower GD value indicates
better algorithm performance. Here, n represents the number of non-dominated solutions the algorithm generates
for a problem with M objective functions. The term di refers to the shortest distance from each non-dominated
solution to the true Pareto front, illustrated in Figure 7, and is computed according to Equation 7.

GD =

(∑|Q|
i=1 d

p
i

) 1
p

|Q|
(6)

di =
|P∗|
min
k=1

(
M∑

m=1

(
PF i

m − PF ∗i
m

)2) 1
2

(7)

Figure 7. Schematic representation of GD metric for MOPs.



2.2.2. Spacing
The Spacing (SP) quantifies the uniformity of distribution among non-dominated solutions on a Pareto front. It

is defined mathematically as:

Sp =

√√√√ 1

|Q|

|Q|∑
i=1

(di − d̄)2 (8)

Where:

• di represents the shortest distance (Euclidean distance) between any given point si from the set Q and the
nearest point on the Pareto front approximation generated by the same algorithm.

• d̄ is the mean of these distances di, calculated as d̄ = 1
|Q|
∑|Q|

i=1 di.

A lower value of Sp indicates a more uniform distribution of solutions, meaning each point is approximately
equidistant from its neighbors. This metric is crucial for evaluating the distribution and uniformity of the solutions,
which is vital for detecting clustering or irregular spacing along the curve. Figure 8 provides a schematic
representation of the Sp metric.

Figure 8. Schematic representation of Sp metric for MOPs.

2.2.3. Hypervolume
The hypervolume indicator (HV) was first introduced by Zitzler and Thiele [31]. It is used to assess either the

area (in multi-objective problems) or the volume between a chosen reference point (r∗), (r∗ = r∗1 , . . . , r
∗
m) in Ω,

and the Pareto front achieved by the algorithm’s non-dominated solutions. This concept is illustrated in Figure 9,
which depicts the total area of the HV . Effective algorithms should ensure that non-dominated solutions not only
extend away from the reference point but are also evenly spread between the boundary solutions and the actual
Pareto front. Ideally, a large HV value indicates a favorable Pareto front generated by the algorithm. The HV is
mathematically defined as follows:

HV =

|P |∑
i=1

vi (9)



Where (r∗) is a vector defined by the worst objective values of the actual Pareto front, and vi represents the
hypervolume of the i− th hypercube defined by (r∗) and the diagonal corner of each non-dominated solution,
assuming there are n such solutions.

Figure 9. Schematic representation of HV metric for MOPs.

3. Tests and validation

In this paper, the performance of several algorithms is evaluated and validated by comparing them using a
set of benchmark functions specifically created for multi-objective optimization problems. The focus is on five
well-known ZDT benchmark functions [32], recognized for their unconstrained environments and distinct Pareto
optimal frontier shapes. These functions are mathematically modeled and detailed in Table 1. The evaluation uses
performance metrics obtained through MATLAB on a system with an Intel Core i5 CPU @ 1.6 GHz and 4 GB
of DDR3 RAM. This setup examines how effectively multi-objective optimization techniques handle convex and
non-linear issues.

Comparative analyses were conducted among the Multi-Objective Artificial Bee Colony (MOABC), Non-
dominated Sorting Genetic Algorithm II (NSGA-II), and Multi-Objective Particle Swarm Optimization (MOPSO)
algorithms. Each algorithm was tested across five case studies, with 100 iterations and populations, as depicted
in Table 2. Figure 10 displays the statistical results of several algorithms applied to multi-objective benchmark
functions. Except for MOPSO and NSGA-II on certain ZDT problems, it was found that all three methods
effectively converged towards the Pareto front in most cases.

According to Table 3, the MOABC algorithm showed superior convergence accuracy in all ZDT benchmark
tests compared to the others. For the spread (SP) metrics, all algorithms consistently achieved values below 0.1
across all ZDT challenges. Particularly noteworthy is that the MOABC algorithm outperformed others in all ZDT
benchmarks, consistently demonstrating robust performance across all measured metrics.



Table 1. Mathematical models and characteristics of five ZDT test functions

Function Name Mathematical Model Formula Search Domain Function Characteristic

ZDT1

f1(x) = x1

f2(x) = g(x) · h(f1(x), g(x))

g(x) = 1 +
9

(n− 1)

n∑
i=2

xi

h(f1(x), g(x)) = 1−

√
f1(x)

g(x)

0 ≤ x∗
i ≤ 1 for 1 ≤ i ≤ 30 Convex Pareto optimal front

ZDT2

f1(x) = x1

f2(x) = g(x) · h(f1(x), g(x))

g(x) = 1 +
9

(n− 1)

n∑
i=2

xi

h(f1(x), g(x)) = 1−
(
f1(x)

g(x)

)2

0 ≤ x∗
i ≤ 1 for 1 ≤ i ≤ 30 Concave Pareto optimal front

ZDT3

f1(x) = x1

f2(x) = g(x) · h(f1(x), g(x))

g(x) = 1 +
9

(n− 1)

n∑
i=2

xi

h(f1(x), g(x)) = 1−

√
f1(x)

g(x)
− f1(x)

g(x)
sin(10πf1(x))

0 ≤ x∗
i ≤ 1 for 1 ≤ i ≤ 30 Disconnected Pareto optimal fronts

ZDT4

f1(x) = x1

f2(x) = g(x) · h(f1(x), g(x))

g(x) = 1 + 10(n− 1) +

n∑
i=2

(
x2
i − 10 cos(4πxi)

)
h(f1(x), g(x)) = 1−

√
f1(x)

g(x)

0 ≤ x∗
i ≤ 1 for 1 ≤ i ≤ 30 Many local fronts, single global convex front

ZDT6

f1(x) = 1− e−4x1 sin6(6πx1)

f2(x) = g(x) · h(f1(x), g(x))

g(x) = 1 +

(
9

(n− 1)

n∑
i=2

xi

) 1
4

h(f1(x), g(x)) = 1−
(
f1(x)

g(x)

)2

0 ≤ x∗
i ≤ 1 for 1 ≤ i ≤ 30 Non-uniform distribution, non-convex front

.



Table 2. Control parameters of all algorithms

Parameters MOABC MOPSO NSGA-II

Max Iteration 100 100 100
Population size 100 100 100
Dimension of the solution space (D) 4 4 4
Number of employed bees (50% of NCS) 50 - -
Number of onlooker bees (50% of NCS) 50 - -
Number of scouts (1) 1 - -
Limit (=Number of onlooker bees*D) 100 - -
Size of the external archive (sizeAR) 25 25 -
Weight Damping Rate (Wdamp) - 0.99 -
Weight factor (w) - 0.5 -
Acceleration coefficient (0.5 ≤ C1 ≤ 2.5) - 1 -
Acceleration coefficient (0.5 ≤ C2 ≤ 2.5) - 2 -
Number of Grids per Dimension (NGrid) - 7 -
Inflation Rate (α) - 0.1 -
Leader Selection Pressure (β) - 2 -
Deletion Selection Pressure (γ) - 2 -
Mutation Rate (µ) - 0.1 -
Crossover ratio (pc) - - 0.8
Mutation ratio (pm) - - 0.3

 

Figure 10. True and obtained Pareto fronts by MOABC, MOPSO, and NSGA-II algorithms on 5 ZDT test problems.



Table 3. Statistical results of GD, SP, and HV metrics on ZDT benchmark functions

Test
Function

Algorithm/GD metric Algorithm/SP metric Algorithm/HV metric

MOABC MOPSO NSGA-II MOABC MOPSO NSGA-II MOABC MOPSO NSGA-II

ZDT1 Best 8.52E-04 1.22E-03 2.45E-03 8.52E-04 2.65E-03 1.43E-02 7.20E-01 6.19E-01 7.16E-01
Mean 8.52E-04 1.83E-03 2.59E-03 8.52E-04 5.56E-03 1.63E-02 7.17E-01 5.93E-01 7.09E-01
Worst 1.06E-03 2.44E-03 2.72E-03 1.06E-03 8.48E-03 1.83E-02 7.14E-01 5.68E-01 7.02E-01

ZDT2 Best 8.54E-04 1.06E-03 2.21E-03 2.69E-03 2.57E-03 2.84E-03 4.56E-01 3.66E-01 4.42E-01
Mean 8.91E-04 5.91E-03 4.47E-03 2.75E-03 2.73E-02 3.14E-02 4.52E-01 3.22E-01 4.24E-01
Worst 9.29E-04 1.07E-02 6.72E-03 2.81E-03 5.20E-02 5.99E-02 4.49E-01 2.36E-01 4.00E-01

ZDT3 Best 4.93E-03 2.74E-03 3.72E-03 1.84E-02 7.91E-03 2.13E-02 8.33E-01 8.35E-01 8.25E-01
Mean 5.02E-03 2.74E-03 3.72E-03 1.93E-02 7.91E-03 2.13E-02 8.32E-01 8.28E-01 8.19E-01
Worst 5.11E-03 3.52E-03 5.97E-03 2.01E-02 1.16E-02 4.56E-02 8.29E-01 7.93E-01 8.08E-01

ZDT4 Best 1.08E-03 8.19E-02 5.84E-03 4.01E-03 1.36E-01 5.17E-02 7.20E-01 1.85E-01 7.19E-01
Mean 1.08E-03 8.19E-02 5.84E-03 4.01E-03 1.36E-01 5.17E-02 7.17E-01 1.17E-01 7.06E-01
Worst 1.17E-03 8.28E-02 8.15E-03 4.64E-03 1.45E-01 7.77E-02 7.15E-01 8.29E-02 6.70E-01

ZDT6 Best 1.03E-03 8.02E-02 2.32E-01 2.72E-03 3.92E-01 3.13E-01 4.26E-01 4.18E-01 0.00E+00
Mean 1.03E-03 8.02E-02 2.38E-01 2.72E-03 3.92E-01 3.13E-01 4.23E-01 4.11E-01 0.00E+00
Worst 1.16E-03 9.01E-02 2.45E-01 3.21E-03 4.40E-01 5.43E-01 4.19E-01 4.01E-01 0.00E+00

4. Application example: planar spiral inductor

This section evaluates the performance of the planar spiral inductor using the MOABC, MOPSO, and NSGA-II
algorithms. The square shape of the planar spiral inductor, as depicted in Figure 11, was employed in this study. The
geometry of this inductor is determined by the following parameters: the outer diameter (dout), the inner diameter
(din), the turn width (w), the spacing between turns (s), and the number of turns (n). Figure 12 depicts the π-model
of the spiral inductor, which comprises the following components: series inductance (Ls), series resistance (Rs),
capacitance of the parallel plates between the spiral and the center-tap underpass (Cs), capacitance between the
spiral and the oxide capacitance (Cox), substrate capacitance (Csi), and substrate resistance (Rsi).

 

𝑠 
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Figure 11. A square shape of spiral inductor.



Figure 12. π-model of a spiral inductor.

The expressions for the parasitic elements Rs, Cs, Cox, Csi, and Rsi are presented below [33]:

Rs =
l

σwδ
(
1− e(

−t
δ )
) (10)

Cs =
ϵox

tox,M1−M2

nw2 (11)

Cox =
1

2

ϵox
tox

lw (12)

Csi =
1

2
Csublw (13)

Rsi =
2

Gsublw
(14)

where σ represents the conductivity of the metal, t the thickness of the metal trace, δ the skin depth, and ϵox the
permittivity of the oxide. tox,M1−M2 represents the oxide thickness located between the spiral and the center-tap
underpass, tox represents the oxide thickness between the spiral and the substrate, l is the total length of the spiral,
Csub is the substrate capacitance per unit area, and Gsub is the substrate conductance per unit area.

This study focuses on two objectives: f1(x) = −Q(x) and f2(x) = A(x). Here, Q denotes the quality factor at
the operating frequency, and A represents the inductor’s layout area, equal to d2out.

The expression for the quality factor (Q) is as follows [33], [34]:

Q =
ωLs

Rs
· Rp

Rp +

((
ωLs

Rs

)2
+ 1

)
Rs

·
(
1− R2

s(Cs + Cp)

Ls
− ω2Ls(Cs + Cp)

)
(15)

Where,

Rp =
1

ω2C2
oxRsi

+
Rsi(Cox + Csi)

2

C2
ox

(16)

Cp = Cox · 1 + ω2(Cox + Csi)CsiR
2
si

1 + ω2(Cox + Csi)2R2
si

(17)

In addition, the inductance (Ls) is given by the following expression [35]:

Ls = βdα1
outw

α2dα3
avgn

α4sα5 (18)



Where,

davg =
1

2
(dout + din) (19)

dout = din + 2nw + 2(n− 1)s (20)

The coefficients β and αi(i = 1, · · · , 5) depend on the inductor’s shape, and their values can be found in [35].
The optimization problem is formulated as follows:

minimize (f1(x), f2(x))
subject to Ls = Lspec,

g1(x) = 2n(w + s)− 2s− dout ≤ 0,
g2(x) = 0.2− din

dout
≤ 0,

g3(x) =
din

dout
− 0.8 ≤ 0,

g4(x) = 5w − din ≤ 0,

(21)

4.1. Results and discussion

This study aims to design a Lspec = 4 nH inductor operating at 2.4GHz using UMC 130 nm CMOS technology.
In this section, the primary objective is to find the optimal values of the variables dout, w, s, and n to optimize
two conflicting performances: maximizing the quality factor Q while minimizing the inductor area A, achieved by
generating a Pareto-optimal front. Tables 4 and 5 present the technological parameters and constraints of the design
variables, respectively.

Table 4. Technology parameters

Parameters value

Metal thickness (µm) 2.8
Metal conductivity (S/m) 3.7736 · 107
Oxide thickness (µm) 5.42
Oxide thickness between spiral and underpass (µm) 0.4
Permeability of vacuum µ0(H/m) 4π · 10−7
Vacuum permittivity ϵ0(F/m) 8.85 · 10−12
Permittivity relative of oxide ϵr 4
Permittivity relative of substrate ϵr 11.9
Substrate thickness (µm) 100
Substrate resistivity (Ω.m) 28

Table 5. Design variables bounds

Variable upper bound lower bound

dout (µm) 140 350
w (µm) 1 12
s (µm) 2.5 7.5
n 1.5 7.5



4.1.1. Optimization results
The results of the inductor optimization using MOABC, MOPSO, and NSGA-II are listed in Table 6, which

presents three solutions for each algorithm. Additionally, the Pareto front generated by MOABC, MOPSO, and
NSGA-II is shown in Figure 13. The results in Table 6 reveal that MOABC yields the highest quality factor value,
while NSGA-II achieves the lowest area value. The solutions illustrated in Figure 13 demonstrate that MOABC
provides superior results compared to MOPSO and NSGA-II, showing a better distribution of solutions on the
Pareto front. Consequently, MOABC offers a more suitable trade-off between the two conflicting objectives: the
quality factor and the area of the inductor.

Table 6. Optimization results

MOABC

Solutions Solution 1 Solution 2 Solution 3
dout (µm) 206.27 192.97 186.05
w (µm) 11.850 10.812 9.9643
s (µm) 2.5224 2.5013 2.5052
n 4.8191 5.1579 5.2496
A (µm2) 4.2545E+4 3.7239E+4 3.4613E+4
Q 12.0747 11.3786 10.9212
Ls (nH) 3.9995 3.9435 4.0079

MOPSO

Solutions Solution 1 Solution 2 Solution 3
dout (µm) 208.38 186.78 173.51
w (µm) 11.422 9.8928 9.2295
s (µm) 2.5 2.5 2.5
n 4.3387 5.2384 5.2384
A (µm2) 4.3424E+4 3.4888E+4 3.0106E+4
Q 12.0297 10.9313 10.2070
Ls (nH) 3.9510 4.0775 3.8028

NSGA-II

Solutions Solution 1 Solution 2 Solution 3
dout (µm) 195.85 182.98 165.66
w (µm) 10.853 9.8414 7.8502
s (µm) 2.6856 2.7353 2.7217
n 5.0576 5.4507 5.3848
A (µm2) 3.8357E+4 3.3482E+4 2.7444E+4
Q 11.4102 10.6171 9.3999
Ls (nH) 3.9645 3.8807 3.9283



  

Figure 13. Inductor Pareto front with MOABC, MOPSO, and NSGA-II.

4.1.2. Simulation results
The optimization results obtained using MOABC, MOPSO, and NSGA-II algorithms are compared against

electromagnetic (EM) simulations. Table 7 shows relative errors in quality factor Q and inductance Ls.
Additionally, Figure 14 displays the simulation results of the quality factor and inductance as functions of frequency
for each algorithm. As shown in Table 7, MOABC provides the lowest relative error for the quality factor compared
to the other algorithms. Figure 14 reveals that for all three algorithms, the inductance Ls remains constant up
to around 5 GHz, while the quality factor reaches its peak value near the operating frequency. Therefore, the
optimization results are consistent with the simulation results.



Table 7. Optimization and simulation results

MOABC

Solutions Solution 1 Solution 2 Solution 3
Q opt 12.0747 11.3786 10.9212
Q sim 14.029 14.035 13.758
Error(%) 13.9304 18.9270 20.6193
Ls opt(nH) 3.9995 3.9435 4.0079
Ls sim(nH) 4.332 4.109 4.129
Error(%) 7.6754 4.0277 2.9329

MOPSO

Solutions Solution 1 Solution 2 Solution 3
Q opt 12.0297 10.9313 10.2070
Q sim 14.492 13.698 13.282
Error(%) 16.9908 20.1978 23.1516
Ls opt(nH) 3.9510 4.0775 3.8028
Ls sim(nH) 3.833 4.202 4.195
Error(%) 3.0785 2.9629 9.3492

NSGA-II

Solutions Solution 1 Solution 2 Solution 3
Q opt 11.4102 10.6171 9.3999
Q sim 13.919 13.719 12.691
Error(%) 18.0243 22.6102 25.9326
Ls opt(nH) 3.9645 3.8807 3.9283
Ls sim(nH) 4.174 3.938 3.962
Error(%) 5.0192 1.4551 0.8506



 

(a)

 

(b)

 

(c)

Figure 14. Inductance and quality factor vs. frequency for (a) MOABC, (b) MOPSO, and (c) NSGA-II.



5. Conclusion

The paper presents a comparative analysis of three well-known multi-objective algorithms applied to the ZDT
benchmark functions. Three Pareto front metrics were used to evaluate their performance. Among these algorithms,
the MOABC algorithm consistently demonstrates superior convergence accuracy and HV values, making it the top
performer. The MOPSO algorithm struggles to find high-quality solutions, while the NSGA-II algorithm shows
mixed performance. Additionally, efforts focus on applying these three algorithms to achieve optimal sizing of the
inductor, aiming to maximize the quality factor (Q) while minimizing its area simultaneously. In summary, the
results demonstrate the efficacy of the MOABC algorithm and provide significant guidance for algorithm selection
in multi-objective optimization situations.

Limitations and Future Work:

This study identifies key findings but acknowledges several limitations. ZDT benchmark functions may not fully
capture the complexity of real-world problems, and the focus on analog circuit problems with specific parameters
may limit the generalizability of the results. The computational cost can also be significant, limiting practicality
for real-time applications or large-scale problems.

Future research should include more complex benchmark functions, apply the MOABC algorithm to other
engineering areas, and develop techniques for hybrid optimization systems that combine the strengths of MOABC
with different algorithms.
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