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Abstract
This paper presents a technique for addressing multiobjective optimization issues subject to inequality constraints. This
technique converts the original problem into a single-objective optimization without constraints by employing an augmented
Lagrangian function and an ϵ-constraint method. Specifically, the augmented Lagrangian function transforms problems with
multiple objectives into a single objective function, while the ϵ-constraint method changes constrained optimization problems
into unconstrained ones. We provide two propositions complete with proofs to verify the admissibility and Pareto optimality
of the solutions derived. Furthermore, we conduct a comparative analysis with two established methods, NSGA-II and
BoostDMS, focusing on the convergence and distribution of solutions across fifty test problems sourced from existing
literature. The collective theoretical and empirical evidence suggests that our proposed method is superior for solving
multiobjective optimization problems.
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1. Introduction

Recently, the application of multiobjective optimization concepts has been instrumental in addressing specific
challenges in various domains, including physics, economics, transportation, and social choice [1, 31, 39, 43].
Research has been conducted on problems with single- or multiple-objective optimization under constraints. The
main aim of researchers is the development of methods which are able to solve completely non-linear optimization
problems. With regard to the difficulties with the constraint function, many methods use some penalty functions
to combine the objective functions and constraint function by a penalty function [36, 37, 41, 42]. That allows to
transform the initial problem formulation into a single objective function optimization without constraints. For this
last formulation, we find many proposed methods to reach the optimal solutions.

We have many studies using the penalty functions in order to make easy the obtaining of optimal solutions but
the Lagrangian penalty function is one of the well knew and used in the resolution of constrained optimization
problems. Many are works, in the literature, in with Lagrangian penalty function has proved its performance
in helping to reach optimal solution in the single-objective optimization. Birgin et al. proposed some results on
this topic: global minimization using an augmented Lagrangian method with variable lower-level constraints [5];
practical augmented Lagrangian methods for constrained optimization [4]; optimality properties of an augmented
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Lagrangian method on infeasible problems[3]; and a study on the application of an augmented Lagrangian
algorithm to some portfolio problems [2]. Cao et al. [7] proposed some work on an augmented Lagrangian interior-
point approach to large-scale NLP problems in graphics processing units. Some studies on the convergence of
inexact augmented Lagrangian methods for problems with convex constraints are presented by [25]. He et al. [28]
are focused on a nonlinear augmented Lagrangian for constrained minimax problems. Augmented Lagrangian
applied to the convex quadratics problem is the paper of [32]. Pan et al. [34] used Lagrangian relaxation for the
multiple constrained robust shortest path problem. A new augmented Lagrangian method for equality constrained
optimization with simple unconstrained sub-problem is the contribution of Zhang et al.

In spite of the abundance of research in the field of single-objective optimization, there is limited work on
multiobjective optimization using the Augmented Lagrangian method. In this context, the Augmented Lagrangian
method has also attracted the interest of researchers in multiobjective optimization. For instance, Fazzio, N.S. [20]
dedicated their thesis to the study of the Augmented Lagrangian method for multiobjective optimization. Another
approach was explored in 2020 by G. Cocchi et al. [10], and later refined by the same authors in 2021 in [9]. They
propose an enhancement of the previous multiobjective Augmented Lagrangian method by using a set of mutually
non-dominant points and employing an Armijo-type line search to enrich the approximate Pareto front. More
recently, in 2023, Ashutosh Upadhayay et al. [45] proposed an Augmented Lagrangian method based on the cone
method for solving multiobjective optimization problems.

In this work, the main contributions and highlights of this study are presented as follows:

• Introduction of an algorithm developed using the ϵ-constraint approach in conjunction with the augmented
Lagrangian method to solve continuous multi-objective problems with convex constraints.

• Analysis of the global convergence of the point sequences generated by the algorithm towards Pareto-
stationarity under key assumptions such as that the problem is of a convex nature and the objective functions
as well as the constraints are continuous and differentiable.

• Evaluation of the performance of the proposed method compared to state-of-the-art approaches already
established in the literature.

To assess the performance of the proposed method, we compare the obtained numerical solutions to those
generated by methods such as NSGA-II [12], and BoostDMS [16], using various performance metrics. The
obtained results demonstrate that our method outperforms most other methods on the majority of test problems.

The rest of this paper is organized as follows. In Section 2, some preliminaries are given. Section 3 introduces
the augmented Lagrange penalty method based on the e-Constraint approach. In Section 4, we present an algorithm
for its application accompanied by a theoretical convergence study of the algorithm. In Section 5, we propose the
numerical application to test problems existing in the literature. We end in section 6 with a conclusion and some
remarks.

2. Preliminaries

As a minimization problem can be transformed into a maximization problem and vice versa, we will present our
results for the case of minimization. Multiobjective optimization problems can be formulated by :

min : F (x) = (f1(x), f2(x), . . . , fq(x))

s.t. :

{
gi(x) ≤ 0 ∀i ∈ I = 1, . . . , l,
x ∈ Rn,

(1)

where, F : Rn → Rq, gi : Rn → R are continuous and differentiable functions. X represents a non-empty convex
set. Let X denote the feasible space of problem (1), defined as X = {x ∈ Rn : g(x) ≤ 0}.

For the rest of this work, we will consider problem (1), whose objective functions are convex and constraints
functions are continuous.

The following definitions present the basic concepts of optimal solutions in multiobjective programming.
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Definition 1 ([18])
A feasible solution x∗ ∈ X is called efficient or Pareto optimal, if there is no other x ∈ X such that F (x) ≤ F (x∗).
If x∗ is efficient, F (x∗) is called a nondominated point.

Definition 2 ([18])
A feasible solution x∗ ∈ X is called weakly efficient (weakly Pareto optimal) if there is no x ∈ X such that
F (x) < F (x∗), i.e., fi(x) < fi(x

∗) for all i = 1, 2, . . . , q.

Now, a necessary condition for a Pareto-stationary point is given by the following definition.

Definition 3
A point x∗ ∈ X is said to be Pareto-stationary for Problem (1) if, for all x ∈ X ,

max
j=1,q

∇fj(x
∗)⊤(x− x∗) ≥ 0.

Note also that, if x∗ is not Pareto stationary, there exists a x ∈ X such as max
j=1,q

∇fj(x
∗)⊤(x− x∗) < 0.

Thus, a well-known equivalent characterization of a Pareto-stationary point from the point of view of the
projection is given by the following lemma.

Lemma 1
A point x∗ ∈ X is said to be Pareto-stationary for Problem (1) if, for all x ∈ X ,

x∗ = ΠX

[
x∗ − max

j=1,q
∇fj(x

∗)⊤(x− x∗)

]
, (2)

where ΠX [x] is the projection operator of the point x in the convex set X .

Now, what should be noted is that if we have one objective, a point x∗ is said to be Pareto stationary if
∇f(x∗)⊤(x− x∗) ≥ 0, ∀x ∈ X , and its equivalent term from the point of view of the projection is given by
the following relation x∗ = ΠX [x∗ −∇f(x∗)].

Definition 4
We call the ideal point of the problem (1) the vectors z∗ ∈ Rq whose components z∗j are obtained by individually
minimizing each objective function fj , j = 1, 2, . . . , q under the constraints of the problem (1). That is to say :

z∗j = min fj(x)

s.t :

{
gi(x) ≤ 0, ∀i = 1, . . . ,m,
x ∈ Rn.

(3)

The ϵ-constraint approach is a method used to transform problem (1) into a single-objective form as follows:

min fp(x),

s.t :

 fj(x) ≤ ϵj , ∀j = 1, 2, . . . , q, j ̸= p,
gi(x) ≤ 0, ∀i ∈ I = 1, . . . , l,
x ∈ X .

(4)

where ϵj ∈
[
ϵmin
j , ϵmax

j

]
are determined respectively by minimize and maximize fj(x) under the constraint

x ∈ X . Let us set gi(x) = fi(x)− ϵi, i = 1, . . . , q, i ̸= p, then problem (1) is reworded as follows:

min f ϵ
p(x),

s.t :

{
gi(x) ≤ 0, ∀i ∈ I = 1, . . . ,m, i ̸= p,
x ∈ X ,

(5)

with m = p− 1 + l

Proposition 1 ( [13])
Any solution to the problem (5) is an optimal Pareto solution for any upper bound vector given by:

ϵ = (ϵ1, ϵ2, · · · , ϵp−1, ϵp+1, ϵp+2, . . . , ϵq)
⊤
.
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3. Main results

The method we have presented in this paper is based on the projected gradient, which requires some conditions
before use. It concerns the convexity and compactness of decision space; objective and constraint functions must
be differentiable. The above two assumptions provide the basis for these requirements.

Assumption 1
The set X ⊆ Rn is closed and convex.

Assumption 2
The objective function F has bounded level sets in the multiobjective sense, i.e., the set {x ∈ Rn, F (x) ≦ F (x0)}
is compact.

3.1. Principle

As a reminder, the Augmented Lagrangian method developed in the work of E. G. Birgin [4] is a method that
allows the transformation of a constrained optimization problem into an unconstrained problem. Let us consider
problem (5) and pose

Lρk
(x, µk, ϵ) = f ϵ

p(x) +
ρk
2

m∑
i=1

max

{
0, gi(x) +

µk
i

ρk

}2

. (6)

The problem (5) after penalization becomes:

min
x∈X

Lρk
(x, µ, ϵ), (7)

where ρk > 0 is a penalization parameter, and µk ∈ Rm
+ is a vector of the approximate Lagrange multiplier

associated with constraints. These parameters are updated at each iteration as follows [25] :

µk+1
i = max

{
0, µk

i + ρkgi(x
k+1)

}
. (8)

Under the assumption that the objective functions and constraints are differentiable, this implies that the function
defined by equation (6) is also differentiable. Consequently, the gradient of the function (6) can be expressed as
follows:

∇Lρk
(x, µk, ϵ) = ∇f ϵ

p(x) +

m∑
i=1

[
max

{
0, ρkgi(x) + µk

i

}]
∇gi(x). (9)

However, a stationary point of the Augmented Lagrangian sub-problem is given by the following definitions.

Definition 5
Let be ϵ fixed. A point x∗ ∈ X is a Pareto-stationary point if and only if

x∗ = ΠX
[
x∗ −∇Lρk

(x, µk, ϵ)
]
, (10)

where ΠX (x) is the projection of x in the convex space X .

Thus, the following definition gives a characterization of the α-stationary of the Augmented Lagrangian
sub-problem [25].

Definition 6
Let α ≥ 0 and ϵ. A point x∗ ∈ X is said to be α-Pareto-stationary of the Lagrange sub-problem if and only if∥∥x∗ −ΠX

[
x∗ −∇Lρk

(x, µk, ϵ)
]∥∥ ≤ α. (11)
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3.2. Algorithm

The following Algorithm presents the augmented Lagrangian method based on the approach of the ϵ-constraint.

Algorithm 1 Augmented Lagrangian based on ϵ-Constraint approch (ALBϵ) .

1: Require: µ ≫ 0, β > 0, µ0 ∈ Rm
+ , ρ0 > 0, x0 ∈ Rn, γ ≥ 0

2: for k = 1, 2, 3, . . . do
3: Find xk+1 an αk-Pareto-Point of Rn of

f ϵ
p(x) +

ρk
2

[
m∑
i=1

max

{
0, gi(x) +

µk
i

ρk

}2
]

4: for i = 1, 2, 3, . . . ,m do
5: µk+1

i = Π[0;µ]

(
max

{
0,

µk
i

ρk
+ gi(x

k+1)
})

6: σk+1
i = min

{
µk
i

ρk
,−gi(x

k+1)
}

7: end for
8: if

∥∥σk+1
∥∥ ≥ β

∥∥σk
∥∥ then

9: ρk+1 = γρk
10: else
11: ρk+1 = ρk
12: end if
13: end for

Algorithm 1 starts with the selection of a priority objective function that will be minimized. The other objective
functions are individually minimized under the initial constraints to obtain the components of the vector ϵ. With
that, each objective function is transformed into a new constraint by considering the corresponding ϵ value as
its maximum value. After that, the initial problem is transformed into a parametric single-objective optimization
problem, as shown in equation (5). Next, an arbitrary choice of µ is made to fix the lower and upper bounds of the
value of µ. Also, in the same way, µ0 and ρ0 are chosen, they will be updated at each iteration in accordance with
steps 8 to 11 and at step 13 of the Algorithm 1. Step 7 is dedicated to solving the Lagrangian sub-problem.
Under the assumptions presented above, we apply the projected gradient method [17, 19, 23, 24, 44], which is one
of the iterative methods for solving the sub-problem of the Algorithm 1. The determination of step length in the
iterative step is determined using Armijo’s rule [21, 26]. The well-defined nature of the algorithm follows directly
from lemma 4 in the work of Fliege and Sviater [23]. Note that a backtracking Armijo-type line search, is an Rn-
decreasing method, i.e., the values of the objective function always decrease in partial order per component in a
finite number of iterations.

3.3. Convergence Study

The following propositions present the admissibility and optimality of the solutions given by the Algorithm 1.
Proposition 2 shows that an iterated xk+1 of the Algorithm 1 is admissible, i.e., that xk+1 belongs to the space
X = {x ∈ Rn | g(x) ≤ 0}, the Proposition 3 shows that a limit point x∗ of the sequence

{
xk
}

generated by the
Algorithm 1 is weakly Pareto optimal of the problem (5).

Lemma 2
Let x∗ be a limit point of the sequence

{
xk+1

}
generated by the Algorithm 1. If x∗ ∈ X , then for any i = 1, · · · ,m

such as gi(x∗) ≤ 0, we have lim
k→∞

min

{
µk
i

ρk
,−gi(x

k+1)

}
= 0.
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Proof
From the Algorithm instructions, we have µk

i ≥ 0 for any k. There are two possible cases that arise.

(a) ρk bounded.
In this case, there is a k0 such as for any k ≥ k0, we have ρk → ρk0 . Thus, for k0 ≥ 1∥∥∥∥min

{
µk0

i

ρk0

,−g(xk0+1)

}∥∥∥∥ ≤ β

∥∥∥∥min

{
µk0−1
i

ρk0−1
,−g(xk0)

}∥∥∥∥ (12)∥∥∥∥min

{
µk0+1
i

ρk0+1
,−g(xk0+2)

}∥∥∥∥ ≤ β

∥∥∥∥min

{
µk0

i

ρk0

,−g(xk0+1)

}∥∥∥∥ (13)∥∥∥∥min

{
µk0+2
i

ρk0+2
,−g(xk0+3)

}∥∥∥∥
...

≤ β2

∥∥∥∥min

{
λk0−1
i

ρk0−1
,−g(xk0)

}∥∥∥∥
...

(14)

∥∥∥∥∥min

{
µk0+η
i

ρk0+η
,−g(xk0+η+1)

}∥∥∥∥∥ ≤ βη

∥∥∥∥min

{
µk0−1
i

ρk0−1
,−g(xk0)

}∥∥∥∥ . (15)

When η → ∞, since β ∈ [0; 1[, we have :

βη

∥∥∥∥min

{
µk0−1
i

ρk0−1
,−g(xk0)

}∥∥∥∥→ 0, (16)

which implies that
∥∥∥∥min

{
µ
k0
i

ρk0
,−g(x∗)

}∥∥∥∥ = 0. Moreover, if gi(x∗) < 0 we have µ∗
i = 0.

(b) ρk Unbound.
By definition, we have the sequence

{
µk
i

}
bounded which implies

lim
k→∞

µk
i

ρk
= 0 and gi(x

∗) < 0. (17)

Thus, for k ∈ K sufficiently large, we have : lim
k→∞

min

{
µk
i

ρk
,−gi(x

k+1)

}
= 0. Hence the result.

Proposition 2
Let

{
xk+1

}
be a sequence generated by the Algorithm 1 whose limit point is x∗. Then, each point x∗ is feasible

point for the problem (4).

We will then demonstrate that any limit point generated by Algorithm 1 is Pareto-stationary.

Proposition 3
Let
{
xk+1

}
be a sequence generated by the Algorithm 1 whose limit point is x∗. Then, any point x∗ of the sequence{

xk+1
}

is Pareto-stationary of the problem (4).

Proof
Let K ⊆ {0, 1, · · · } such that

lim
k→∞,k∈K

xk+1 = x∗. (18)

From the previous Proposition, we have x∗ that is feasible, i.e., x ∈ X such that gi(x∗) ≤ 0, i = 1, . . . ,m. Let us
assume by contradiction that there exists y ∈ X such that gi(y) ≤ 0, i = 1, . . . ,m, et ∇f ϵ

p(x
∗)⊤(y − x∗) < 0.
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From the instruction of the Algorithm 1, posing

H̃k
i = max

{
0, gi(x

k+1) +
µk
i

ρk

}
(19)

and

x̂k+1 = ΠX

[
xk+1 −∇f ϵ

p(x
k+1)− ρk

m∑
i=1

H̃k
i ∇gi(x

k+1)

]
(20)

which implies that at each iteration, ∥∥xk+1 − x̂k+1
∥∥ ≤ αk. (21)

From the properties of the projection, we obtain for all y ∈ X ,(
xk+1 −∇f ϵ

p(x
k+1)− ρk

m∑
i=1

H̃k
i ∇gi(x

k+1)− x̂k+1

)⊤ (
y − x̂k+1

)
≤ 0. (22)

By adding and subtracting xk+1, and rearranging, we get

∇f ϵ
p(x

k+1)⊤(y − xk+1) ≥ −∇f ϵ
p(x

k+1)⊤(xk+1 − x̂k+1) +
∥∥xk+1 − x̂k+1

∥∥2 +
(xk+1 − x̂k+1)T (y − xk+1)− ρk

(
m∑
i=1

H̃k
i ∇gi(x

k+1)

)⊤ (
y − xk+1

)
−

ρk

(
m∑
i=1

H̃k
i ∇gi(x

k+1)

)⊤ (
xk+1 − x̂k+1

)
. (23)

Using the convexity of g, the last two terms of (23) can be bounded as follows :

− ρk

(
m∑
i=1

H̃k
i ∇gi(x

k+1)

)⊤ (
y − xk+1

)
− ρk

(
m∑
i=1

H̃k
i ∇gi(x

k+1)

)⊤

.
(
xk+1 − x̂k+1

)
≥ ρk

m∑
i=1

H̃k
i

(
gi(x

k+1)− gi(y)
)
− ρk

(
m∑
i=1

H̃k
i ∇gi(x

k+1)

)⊤ (
xk+1 − x̂k+1

)
≥

ρk

m∑
i=1

H̃k
i gi(x

k+1)− ρk

m∑
i=1

H̃k
i

∥∥∇gi(x
k+1)

∥∥∥∥xk+1 − x̂k+1
∥∥ . (24)

Now, considering the term

ρk

m∑
i=1

H̃k
i gi(x

k+1) , if gi(xk+1) ≥ 0, (25)

we have

ρk

m∑
i=1

H̃k
i gi(x

k+1) =

m∑
i=1

max
{
0, ρkgi(x

k+1) + µk
i

}
gi(x

k+1)

=

m∑
i=1

max
{
0, ρkgi(x

k+1)2 +µk
i gi(x

k+1)
}

≥
m∑
i=1

max
{
0, µk

i gi(x
k+1)

}
≥

m∑
i=1

min
{
0, µk

i gi(x
k+1)

}
(26)
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Otherwise, if gi(xk+1) ≥ 0 we have

ρk

m∑
i=1

H̃k
i gi(x

k+1) =

m∑
i=1

max
{
0, ρkgi(x

k+1) + µk
i

}
gi(x

k+1)

=

m∑
i=1

max
{
0, ρkgi(x

k+1)2 +µk
i gi(x

k+1)
}

≥
m∑
i=1

min
{
0, µk

i gi(x
k+1)

}
(27)

However, we can rewrite

ρk

m∑
i=1

H̃k
i gi(x

k+1) ≥
m∑
i=1

min
{
0, µk

i gi(x
k+1)

}
. (28)

Recalling that
∥∥xk+1 − x̂k+1

∥∥ ≤ αk, we can rewrite

−ρk

m∑
i=1

H̃k
i

∥∥∇gi(x
k+1)

∥∥∥∥xk+1 − x̂k+1
∥∥ ≥ −ρk

m∑
i=1

H̃k
i

∥∥∇gi(x
k+1)

∥∥αk

= −αk

m∑
i=1

max
{
0, ρkgi(x

k+1) + µk
i

}∥∥∇gi(x
k+1)

∥∥ . (29)

Equation (23) can therefore be rewritten as follows

∇f ϵ
p(x

k+1)⊤(y − xk+1) ≥ −∇f ϵ
p(x

k+1)⊤(xk+1 − x̂k+1) +
∥∥xk+1 − x̂k+1

∥∥2 +
(xk+1 − x̂k+1)⊤.(y − xk+1)

m∑
i=1

min
{
0, µk

i gi(x
k+1)

}
− αk

m∑
i=1

max
{
0, ρkgi(x

k+1) + µk
i

}∥∥∇gi(x
k+1)

∥∥ (30)

Now, there are two possible cases :

(i) ρk bounded,
according to Lemma 2, we have µk

i = 0

(ii) ρk → ∞ there exists a k0 such that for all k ≥ k0, we obtain

ρkgi(x
k+1) + µk

i < 0 and max
{
0, ρkgi(x

k+1) + µk
i

}
= 0. (31)

In each case (i) and (ii), since g(x∗) ≤ 0, for k sufficiently large, k ∈ K and continuous of ∇f ϵ
p and ∇g, with∥∥xk+1 − x̂k+1

∥∥→ 0, αk → 0 and
m∑
i=1

min
{
0, µk

i gi(x
k+1)

}
= 0 we obtain

∇f ϵ
p(x

∗)⊤(y − x∗) ≥ 0. (32)

This contradicts the initial hypothesis.
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4. Numerical Experiences

In this section, we present some numerical results of ALBϵ on some test problems. In addition, a comparison is
done with two other methods namely NSGA-II and BoostDMS method.
The following Table 1 gives the used parameters of each method.

Table 1. Value of used parameters for methods

Parameters
Methods

ALBϵ NSGA-II BoostDMS

Population 100 100 Parameter par default
Iteration number 100 2000 Parameter par default
Number of objective function assessment 10 000 200 000 10 000

In total, we performed the simulation on 50 test problems recorded in Table 2. Among the test problems found in
the literature, those that do not have boundary constraints, we have defined research boundaries on these problems.
For the implementation of ALBϵ, we used the parameters λ0 = (0, 1, 1, . . .)

⊤ ∈ Rm, ρ0 = 1, α∗ = 10−6, σ = 0.1,
γ = 4.

Table 2. List of Multiobjective optimization test problems

Problems n q Parameters bornes Source
BNH1 2 2 [0, 5]

2 [29]
SCH 1 2 [−4, 4] [37]
ZDT1 a 2 [0, 1]

n [12]
LAP1 2 2 [−7, 1]

2 [10]
LAP2 b 2 [0, 1]

n [10]
JOS1 c 2 [0, 1]

n [29]
ZLT1 d 2 [−1, 1]

n [29]
MLF1 1 2 [0, 20] [29]
BK1 2 2 [−5, 10]

2 [29]
SSFYY1 1 2 [−100, 100] [29]

VU2 2 2 [−3, 3]
2 [29]

COSH 1 2 [0, 5] [48]
KD1 2 2 [0.1, 1]× [0, 1] [14]
SRN 2 2 [−20, 20]

2 [29]
BNH3 2 2 [−7, 4]

2 [29]
SSFYY2 2 2 [−100, 100]

2 [29]
MIN-Ex 2 2 [0.1, 1]× [0, 5] [37]

We have dealt with the test problems with :
a ∈ {2, 5, 10, 15, 20, 25, 30}; b ∈ {2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100}; c ∈
{2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50} ; d ∈ {30, 35, 40, 45, 50}.
As in [6, 11, 38], we used the same metrics proposed for the comparison of the Algorithms. The metrics used are
the purity metric, the spreads metric, and the hyper-volume indicator. The purity metric measures the quality of the
Pareto front generated by an Algorithm. It gives the percentage of non-dominated solutions generated by method
[11]. The purity metric is given by the following formula :

Purity(S) =
| Fp,s

⋂
Fp |

| Fp,s |
, (33)
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with Fp,s the solutions generated by a solver s ∈ S for a problem p ∈ P where S is the set of solvers and P the
set of test problems. Fp represents the set of solutions generated by all solvers for the problem p (Fp =

⋃
Fp,s)

without the dominated points.
The spread metrics used are Γ-Spread and ∆-Spread. The Γ-Spread metric measures the maximum spacing of
solutions generated by a solver [11]. It is given by the following formula :

Γ-Spread(S) = max
j∈{1,...,q}

(
max

i∈{0,...,N}
{δi,j}

)
, (34)

where N represents the number of solutions generated by a solver, m is the number of objective functions, and
δi,j = fj(xk+1)− fj(xk) whose values of fj(xk) are arranged in ascending order. The ∆-Spread metric measures
the distribution of solutions generated by a solver [11]. It is calculated by the following formula :

∆-Spread(S) = max
j∈{1,...,q}

δ0,j + δN,j +

N−1∑
i=1

| δi,j − δi,j |

δ0,j + δN,j + (N − 1)δi,j
, (35)

where δi,j is the average of the δi,j with j = 1, ...., N − 1. δ0,j and δN,j represent the extreme points indexed by 0
and N + 1. Thus, we used the technique proposed in [11] to compute the extreme points for problems that do not
have an analytic front. We first removed the dominant points from the meeting on all these fronts. Then, for each
component of the objective function, we selected the pair corresponding to the highest distance in pairs measured
using fj(.).

For a minimization problem, the hyper-volume indicator measures the volume of the part of the objective space
that is dominated by the computed approximation to the Pareto front of a problem, bounded by a reference point
Wpp ∈ Rq[22]. The following formula gives the hyper-volume indicator :

where V olume(.) denotes the Lebesgue measure. As in [6], the coordinates of the reference point W p are
determined by the relation

wp
j = max

{
fj(x) : z ∈

⋃
s∈S

Fp,s

}
. (36)

The scaling of H(Fp,s) is given by :

HVp,s =
H(Fp,s)∏m

j=1

(
wp

j − lpj
) ∈ [0, 1] , (37)

with lpj = min
{
fj(x) : z ∈

⋃
s∈S Fp,s

}
.

We then use the performance profiles proposed in [16, 38, 6] for an appreciation of the performance of the
four metrics presented above. We refer the reader to the articles cited above for more information on performance
profiles. Recall that the performance profiles are presented by a diagram of a cumulative distribution function ρ(τ)
which is defined as follows :

ρs(τ) =
1

| P |
| {p ∈ P : rp,s ≤ τ} | (38)

with rp,s =
tp,s

min {tp,s : s ∈ S}
. Since performance profiles are used for metrics whose lowest value indicates

better performance, metrics such as Purity and Hypervolume, we will pose tp,s = 1/tp,s as proposed in [6].

4.1. Performance Profiles

Now, we present the performance profiles on the four metrics presented above on the 50 test problems. Figures 1,2
and 3 represents the performance profile on the purity of ALBϵ, NSGA-II, and BoostDMS methods.
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We can observe that on purity, ALBϵ is better than NSGA-II and BoostDMS in terms of efficiency. Figures 4,5
and 6 represents the performance profile of the Γ-Spread metric of the three methods. We can observe a dominance
of the ALBϵ method by the NSGA-II and BoostDMS methods. Considering Figures 7,8 and 9 and Figures 10,11
and 12, which represents the performances profiles of the ∆-Spread metric and the Hyper-volume indicator, we
notice that the ALBϵ method remains competitive.

Figure 1. Performance profile of Purity of ALBϵ and NSGA-
II

Figure 2. Performance profile of Purity of ALBϵ and
BoostDMS

Figure 3. Performance profile of Purity of ALBϵ ,BoostDMS
and NSGA-II

Figure 4. Performance profile of Γ-Spread of ALBϵ and
NSGA-II
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Figure 5. Performance profile of Γ-Spread of ALBϵ and
BoostDMS

Figure 6. Performance profile of Γ-Spread of ALBϵ

BoostDMS and NSGA-II

Figure 7. Performance profile of δ-Spread of ALBϵ and
NSGA-II

Figure 8. Performance profile of δ-Spread of ALBϵ and
BoostDMS

Figure 9. Performance profile of δ-Spread of ALBϵ

BoostDMS and NSGA-II
Figure 10. Performance profile of Hypervolume of ALBϵ and
NSGA-II

The following tables present a statistical study of the 50 test problems. It is about the average, minimum and
maximum values obtained on the four metrics.
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Figure 11. Performance profile of Hypervolume of ALBϵ and
BoostDMS

Figure 12. Performance profile of Hypervolume of ALBϵ,
BoostDMS and NSGA-II

On these four metrics, we notice that the ALBϵ method obtains better values on the purity and the Γ-Spread
metrics. For the ∆-Spread metric, ALBϵ wins over BoostDMS.

Table 3. Statistical study of performance values on Purity

Methods average Minimum Maximum
ALBϵ 0.9851 0.5600 1.0000
NSGA− II 0.5286 0.0000 1.0000
BoostDMS 0.7244 0.0000 1.0000

Table 4. Statistical study of performance values on Γ− Spread

Methods average Minimum Maximum
ALBϵ 8.2902 0.0104 50.4685
NSGA− II 16.7456 0.0323 100.0021
BoostDMS 11.2006 0.0036 83.6838

Table 5. Statistical study of performance values on ∆-Spread

Methods average Minimum Maximum
ALBϵ 1.0153 0.5683 7.1249
NSGA− II 0.9477 0.7312 4.4815
BoostDMS 1.0834 0.7435 4.9618

4.2. Study of problems with an analytical front

It about the problems SCH , COSH , MIN − Ex, ZDT1 ( with 30 variables) and KD1. We use these problems
for a comparison of the four metrics against the true front. For the KD1 problem the global minimum is obtained
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Table 6. Statistical study of performance values on Hypervolume

Methods average Minimum Maximum
ALBϵ 0.7012 0.3832 0.8987
NSGA− II 0.7066 0.3858 0.8985
BoostDMS 0.7166 0.3883 0.8985

for x2 ≈ 0.2 and the local minimum for x2 ≈ 0.6 with g(0.2) = 0.7057 and g(0.6) = 1.2 [14]. In this work, we
use the case x2 ≈ 0.2. The same number of solutions for the three methods are imposed. The values obtained for
these test problems are recorded in the Tables 7, 8, 9, 10. The Figures 13,14,15,16,17 represent the Pareto fronts
obtained. We see that except for the bimodal problem KD1, the ALBϵ method wins over the two methods on the
purity metric. For the Γ-Spread metric, the ALBϵ method is better on the Min-Ex, Cosh, KD1, and ZDT1. For the
∆-Spread metric, only the ZDT1 problem is won by the ALBϵ method. For hypervolume, ALBϵ is competitive on
both Algorithm.

Figure 13. Pareto front SCH Figure 14. Pareto front of COSH

Figure 15. Pareto front Min-Ex Figure 16. Pareto front of ZDT1
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Figure 17. Pareto front of KD1

Table 7. Value on performance measures of Purity

Problems Min-Ex COSH KD1 SCH ZDT1

ALBϵ 1.0000 1.0000 0.8424 0.9993 1.0000
NSGA− II 1.0000 1.0000 0.9799 0.9993 0.9159
BoostDMS 0.8788 1.0000 0.7908 0.9993 1.0000

Table 8. Value on performance measures of Γ− Spread

Problems Min-Ex Cosh KD1 SCH ZDT1

ALBϵ 0.0104 0.7901 0.0378 0.2134 0.0029
NSGA− II 0.0667 0.7901 4.2170 0.0234 1.0797
BoostDMS 0.1618 0.7901 0.2023 0.0091 0.0442

Table 9. Value on performance measures of ∆-Spread

Problems Min-Ex Cosh KD1 SCH ZDT1

ALBϵ 1.0175 1.1477 1.0647 1.0000 0.7500
NSGA− II 0.8451 0.9880 0.9951 0.8343 1.0978
BoostDMS 0.9714 1.1145 1.0423 0.7638 0.7579

Table 10. Value on performance measures of Hyper-volume

Problems Min-Ex Cosh KD1 SCH ZDT1

ALBϵ 0.8263 0.8985 0.8246 0.8330 0.6659
NSGA− II 0.8263 0.8985 0.8987 0.8330 0.8570
BoostDMS 0.8262 0.8984 0.8304 0.8331 0.6658

Stat., Optim. Inf. Comput. Vol. 12, September 2024



A. TOUGMA AND K. SOMÉ 1379

4.3. Comment

From the theoretical and numerical results of the ALBϵ method, we can say that it is competitive in solving
multiobjective optimization problems since it gives better results on the generation of non-dominated solutions.
For the maximum spacing, we can say that it is due to the ϵ-constraint approach. Since we choose a priority
function, this can affect the maximum spacing of solutions. For the diversity of solutions and the hypervolume
metric, we observe that the ALBϵ method remains competitive.

5. Conclusion

In this work, an augmented Lagrangian function was combined with an ϵ-constraint approach to solve constrained
multiobjective optimization problems. It consists of transforming constrained multiobjective optimization problems
into unconstrained single objective optimization problems. The proposed algorithm is deterministic, and the Pareto
optimality of the provided solutions has been justified. First, we present the algorithm of the method and some
theoretical convergence results through some propositions. Then, we showed the numerical results of fifty test
problems from the literature that we solved with our method, NSGA-II and BoostDMS, which are well-known
and used methods. Finally, we compared the numerical performance of these three methods. This study has been
focused on convergence and distribution parameters using obtained solutions. According to this study, it appears
that ALBϵ is the best choice for the resolution of multiobjective optimization problems when the admissible
solutions set is bounded and convex, and the objective space is compact.

The next phase of our research will focus on the extension of the algorithm to tackle non-convex objective
functions, on the one hand, and on the other, tackle non-differentiable cases. Furthermore, we are interested in the
use of this method to solve real-life problems.
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