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Abstract On this paper we present a solution to detect and know if a point M is inside a polygon (Ak)k∈{1,...,n} or
outside. In the case where the point M is at outside the polygon, a simple optimization method will be applied to determine
the distance between the point M and the polygon A1, ..., An, that is to say between the point M and the point P of the border
of the polygon closest to M : The Neighboring Point. The introduction of complex numbers in algebra and geometry is very
useful. We therefore proceed with our purely geometric methods as well as with complex numbers, using the triangulation
of a convex polygon and a very specific complex application that we have just constructed. So our contributions are: A
very simple and fast tracking algorithm, and therefore an extremely low cost per iteration (An Algorithm for Judging Points
Inside or Outside a Polygon), The neighboring Point and The spacing in the case where the point M is at outside the
polygon, so without going through the quadratic optimization, we will give the simplest and fastest way to calculate the
distance d between the point M and the polygon (Am)m∈{1,...,n} and determine the point P of the boundary of the closest
(neighboring) polygon to M . Above all it is an article full of examples for all the cases and methods and which are ready to
be programmed and applied.
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1. Introduction

The question of whether a point lies inside a polygon is a fundamental problem in computational geometry and has
applications in various fields, including computer graphics, geographic information systems (GIS), and robotics.
Here are some relevant works and algorithms related to this topic:

Ray Casting Algorithm: The Ray Crossing (ray intersection) Casting algorithm is One of the primary methods
to solve the PIP problem (the Point-in-Polygon Problem) and a widely used method to determine whether a point
is inside a polygon. This involves casting a ray from the test point and counting the number of times it intersects
the edges of the polygon. If the count is odd, the point is inside the polygon; if it is even, the point is outside.
The point of the ray that hits the polygon is called the “witness point”, it was derived by Nordbeck and Rystedt
in 1967 [9], [10], [12]. There are many works that have designed algorithms for the point in a polygon problem
based on the ray casting algorithm like in [8], [11] using equations from vector geometry or other modifications
and approximations.
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There is also a method to test if a point is inside a polygon by summing the oriented angles relative to that point.
If it’s zero, we’re outside the polygon. When a point is inside a polygon, the sum of the angles between this point
and the points constituting the polygon is equal to 360◦.

The introduction of complex numbers in algebra and geometry is very useful see [1], [2], [3], [5].... That is, if a
polygon has for summit (Ak)k∈{1,...,n} of affixes (zk)k∈{1,...,n} and the point concerned is M with affix z then,

M is inside the polygon ⇐⇒
n∑

k=1

∣∣∣∣arg(zk+1 − z

zk − z

)∣∣∣∣ = 2π

with zn+1 = z1.

Another similar method using the areas (or surfaces) of the triangles formed by this point and two successive
extremities ordered in either a clockwise direction or viceversa, and then we compare the signs of the areas or just
compare the sum of the surfaces (absolute values of the areas) with the total surface of the polygon.

Also, we can do a complex analysis:
Let z0 be the affix of the point to be tested. We integrate 1

2πi(z−z0)
along the curve crossing the polygon. If the

point is inside, the integral is 1 or -1 (depending on the chosen orientation), otherwise it is 0.

To see an overview of previous algorithms we just have to see the [7] paper
In reality, the problem is a bit more complicated.

The reason is that all computer calculations are performed with a finite number of significant digits. In this field,
we cannot test the equality of two real numbers, because a real number does not exist in computer science. We can
only test the equality between two floating points, or at least compare the difference of two floating points to a
given small epsilon... Without forgetting the fact that it is necessary to avoid the cases where the intersections are
vertices of the polygons which one cannot control.

In all cases, calculations of intersections, sum of areas or angles (arguments), and complex integrals (along the
curve crossing the polygon) must be stopped at all costs.

We, in this paper, we will proceed by our purely geometric method, using the triangulation of a convex polygon
and a very specific application that we have just constructed.

The most appropriate method would be that of traingulization followed by a search for the point on all the
triangles (one by one) until falling on the triangle which contains the said point otherwise it is outside the polygon.
Except for us, we are going to use (and this is our first contribution) another original method which requires less
calculation to be carried out.

And we will finish at the end with another contribution that of finding the Closest Point on a Polygon using a
simple optimization method

The triangulation of a convex polygon is trivial and is calculated in linear time, for example starting from a
vertex and adding edges to all the other vertices. In 1991, Bernard Chazelle [6] showed that any simple polygon
can be triangulated in linear time. The proposed algorithm is however very complex, and simpler algorithms are
still being researched.

For this we will need a convex polygon (convex polyhedron) of vertices (Ak)k∈{1,...,n} ordered monotonically
(increasing or decreasing) clockwise.

Before going any further, we will continue in our introduction indicating the classic and intuitive methods and
calculations to solve the Point-in-Polygon Problem (P.I.P.): The Order of points in a polygon, Spotting & Tracking
a point, The Closest Point on a Polygon and The Quadratic optimization.
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1.1. Order of points in a polygon: The scheduling

Let (Am)1≤m≤n be a polygon with affix (zm)1≤m≤n.

Problem 1. How we can order the points {Am, 1 ≤ m ≤ n} in
{
A(m), 1 ≤ m ≤ n

}
or simply in {Bm, 1 ≤ m ≤ n}

of a monotonously (increasing or decreasing) clockwise?

Let be zm = xm + iym with (xm, ym) ∈ IR2.

We therefore build {Bm, 1 ≤ m ≤ n} from the following algorithm:
k=1:z(1) = zj (& B1 = Aj) such that xj = Min {xm/1 ≤ m ≤ n};
k=2:z(2) = zj such that∣∣z(1) − zj

∣∣ = Min
{∣∣z(1) − zm

∣∣ ̸= 0 / 1 ≤ m ≤ n & ym ≤ y(1)
}

& B2 = Aj such that
d (B1, Aj) = Min

{
d (B1, Am) ̸= 0 / 1 ≤ m ≤ n & ym ≤ y(1)

}
;

.

.
k:(3 ≤ k ≤ n) z(k) = zj (& Bk = Aj) such that γk = β(k) = βj = arg

(
zj−z(1)
z(2)−z(1)

)
.

.

.
n: ...
βm = ̂B2B1Am = arg

(
zm−z(1)
z(2)−z(1)

)
and γm = β(m) (by ordering the βm {Ai, 1 ≤ i ≤ n} according to the trigonometric-sense).

Remark 1. z(1) (so and B1(z(1))) is arbitrary. We can take any z(1).

Bm is the point with affix z(m).

1.2. Spotting & Tracking a point:

Problem 2. How to know if the point M(z) is inside or is outside the polygon (Am)1≤m≤n with affix (zm)1≤m≤n?

we will study case by case to finally be able to see the robustness of the algorithm deduced by too many
calculations and formulas, especially when n is very large.

1.2.1. Case for n=3

Let be z = x+ iy , zm = xm + iym ∀m ∈ {1, 2, 3} and (A1, A2, A3) a triangle such Am(zm) ∀m ∈ {1, 2, 3} and
M(z).

We know that:
M is inside the triangle (A1, A2, A3) if and only if
∃ (α1, α2, α3) ∈ [0, 1]

3 such that α1 + α2 + α3 = 1 & α1
−−→
MA1 + α2

−−→
MA2 + α3

−−→
MA3 =

−→
0 .

⇔ α1 (z1 − z) + α2 (z2 − z) + α3 (z3 − z) = 0
⇔

z = α1z1 + α2z2 + α3z3

& (α1, α2, α3) ∈ [0, 1]
3 / α1 + α2 + α3 = 1
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⇔ z = α1z1 + α2z2 + (1− α1 − α2) z3 & (α1, α2, ) ∈ [0, 1]
2

⇔

z − z3 = α1 (z1 − z3) + α2 (z2 − z3)

& (α1, α2, ) ∈ [0, 1]
2

• Let be

 Z1 = z1 − z3 = |Z1| eiθ1 = X1 + iY1

Z2 = z2 − z3 = |Z2| eiθ2 = X2 + iY2

Z = z − z3 = |Z| eiθ = X + iY

=⇒ Z = α1Z1 + α2Z2

=⇒
{

X = α1X1 + α2X2

Y = α1Y1 + α2Y2

=⇒
(

X
Y

)
=

(
X1 X2

Y1 Y2

)(
α1

α2

)
=⇒

(
α1

α2

)
= 1

X1Y2−X2Y1

(
Y2 −X2

−Y1 X1

)(
X
Y

)
=⇒

{
α1 = XY2−X2Y

X1Y2−X2Y1

α2 = X1Y−XY1

X1Y2−X2Y1

=⇒

{
α1 = |Z| sin(θ2−θ)

|Z1| sin(θ2−θ1)

α2 = |Z| sin(θ−θ1)
|Z2| sin(θ2−θ1)

since
XY2 −X2Y = |Z| cos θ |Z2| sin θ2 − |Z2| cos θ2 |Z| sin θ
XY2 −X2Y = |Z| |Z2| sin (θ2 − θ)
X1Y −XY1 = |Z| |Z1| sin (θ − θ1)
X1Y2 −X2Y1 = |Z1| |Z2| sin (θ2 − θ1)

(α1, α2) ∈ [0, 1]
2 ⇐⇒

{
0 ≤ sin(θ2−θ)

sin(θ2−θ1)
≤ |Z1|

|Z|
0 ≤ sin(θ1−θ)

sin(θ1−θ2)
≤ |Z2|

|Z|
with
θ2 − θ = arg

[
z2−z3
z−z3

]
θ1 − θ = arg

[
z1−z3
z−z3

]
θ2 − θ1 = arg

[
z2−z3
z1−z3

]
|Z1| = |z1 − z3|
|Z2| = |z2 − z3|
|Z| = |z − z3|

• Or in another way

⇔ ∃ (α1, α2, α3) ∈ [0, 1]
3
/ α1 (x− x1) + α2 (x− x2) + α3 (x− x3) = 0

α1 (y − y1) + α2 (y − y2) + α3 (y − y3) = 0
α1 + α2 + α3 = 1

⇔ ∃ (α1, α2, α3) ∈ [0, 1]
3
/

 (α1 + α2 + α3)x− (α1x1 + α2x2 + α3x3) = 0
(α1 + α2 + α3) y − (α1y1 + α2y2 + α3y3) = 0
α1 + α2 + α3 = 1

⇔ ∃ (α1, α2, α3) ∈ [0, 1]
3
/

 α1x1 + α2x2 + α3x3 = x
α1y1 + α2y2 + α3y3 = y
α1 + α2 + α3 = 1
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⇔ ∃α ∈ [0, 1]
3
/ Φ.α = b

with α = (α1, α2, α3)
′
b = (x, y, 1)

′ and Φ =

 x1 x2 x3

y1 y2 y3
1 1 1


det (Φ) =

∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3
1 1 1

∣∣∣∣∣∣
⇒ det (Φ) = (x1y2 + x2y3 + x3y1)− (x1y3 + x2y1 + x3y2)
⇒ det (Φ) = (x1 − x2) (y2 − y3)− (x2 − x3) (y1 − y2)

⇒ det (Φ) =

∣∣∣∣ x1 − x2 x2 − x3

y1 − y2 y2 − y3

∣∣∣∣
det (Φ) = 0 ⇐⇒ (A2A1) q (A3A2) ⇐⇒ (A1, A2, A3) are aligned

(A1, A2, A3) a regular triangle ⇒ det (Φ) ̸= 0
⇒ Φ is invertible
=⇒

α = Φ−1.b

with Φ−1 = 1
det(Φ) [Adj (Φ)]

t

Adj (Φ) =



∣∣∣∣ y2 y3
1 1

∣∣∣∣ −
∣∣∣∣ y1 y3
1 1

∣∣∣∣ ∣∣∣∣ y1 y2
1 1

∣∣∣∣
−
∣∣∣∣ x2 x3

1 1

∣∣∣∣ ∣∣∣∣ x1 x3

1 1

∣∣∣∣ −
∣∣∣∣ x1 x2

1 1

∣∣∣∣∣∣∣∣ x2 x3

y2 y3

∣∣∣∣ −
∣∣∣∣ x1 x3

y1 y3

∣∣∣∣ ∣∣∣∣ x1 x2

y1 y2

∣∣∣∣


⇒

Φ−1 =
1

|Φ|

 y2 − y3 x3 − x2 x2y3 − x3y2
y3 − y1 x1 − x3 x3y1 − x1y3
y1 − y2 x2 − x1 x1y2 − x2y1


|Φ| = (x1 − x2) (y2 − y3)− (x2 − x3) (y1 − y2)

Conclusion: x1 x2 x3

y1 y2 y3
1 1 1

−1  x
y
1

 ∈ [0, 1]
3 ⇔ M is inside the triangle (A1, A2, A3)

⇕

1

|Φ|

 y2 − y3 x3 − x2 x2y3 − x3y2
y3 − y1 x1 − x3 x3y1 − x1y3
y1 − y2 x2 − x1 x1y2 − x2y1

 x
y
1

 ∈ [0, 1]
3

with |Φ| = (x1 − x2) (y2 − y3)− (x2 − x3) (y1 − y2)
⇕ 

0 ≤ x(y2−y3)+y(x3−x2)+(x2y3−x3y2)
(x1−x2)(y2−y3)−(x2−x3)(y1−y2)

≤ 1

0 ≤ x(y3−y1)+y(x1−x3)+(x3y1−x1y3)
(x1−x2)(y2−y3)−(x2−x3)(y1−y2)

≤ 1

0 ≤ x(y1−y2)+y(x2−x1)+(x1y2−x2y1)
(x1−x2)(y2−y3)−(x2−x3)(y1−y2)

≤ 1
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1.2.2. Example: Case of the triangle (OIJ):
Let (A1A2A3) be the triangle such that A1 = O (0), A2 = I (1) & A3 = J (i)
so
x1 = 0
y1 = 0
x2 = 1
y2 = 0
x3 = 0
y3 = 1
M (x+ iy) is inside (A1A2A3) if and only if

0 ≤ x(y2−y3)+y(x3−x2)+(x2y3−x3y2)
(x1−x2)(y2−y3)−(x2−x3)(y1−y2)

≤ 1

0 ≤ x(y3−y1)+y(x1−x3)+(x3y1−x1y3)
(x1−x2)(y2−y3)−(x2−x3)(y1−y2)

≤ 1

0 ≤ x(y1−y2)+y(x2−x1)+(x1y2−x2y1)
(x1−x2)(y2−y3)−(x2−x3)(y1−y2)

≤ 1

⇕ 0 ≤ −x− y + 1 ≤ 1
0 ≤ x ≤ 1
0 ≤ y ≤ 1

⇐⇒  0 ≤ x+ y ≤ 1
0 ≤ x ≤ 1
0 ≤ y ≤ 1

So, M (x+ iy) is inside the triangle (OIJ) if and only if x+ y ≤ 1
0 ≤ x
0 ≤ y

indeed it is the interior of the triangle (OIJ)

1.2.3. The general case (n ≥ 4)
Let be M = (x, y) and (Ak)1≤k≤n a polygon such that {Ak, 1 ≤ k ≤ n} is monotonically ordered according to

the trigonometric-sense.
The known method consists of partitioning the polygon {Ak, 1 ≤ k ≤ n} into a union of disjoint triangles ∆k

such that
∆k = (A1AkAk+1) ∀k ∈ {2, 3, ..., n− 1}, what it means
M is inside the polygon {Ak, 1 ≤ k ≤ n} ⇐⇒

∃k ∈ {2, 3, ..., n− 1} such that

 x1 xk xk+1

y1 yk yk+1

1 1 1

−1  x
y
1

 ∈ [0, 1]
3

⇕
∃k ∈ {2, 3, ..., n− 1} such that

0 ≤ x(yk−yk+1)+y(xk+1−xk)+(xkyk+1−xk+1yk)
(x1−xk)(yk−yk+1)−(xk−xk+1)(y1−yk)

≤ 1

0 ≤ x(yk+1−y1)+y(x1−xk+1)+(xk+1y1−x1yk+1)
(x1−xk)(yk−yk+1)−(xk−xk+1)(y1−yk)

≤ 1

0 ≤ x(y1−yk)+y(xk−x1)+(x1yk−xky1)
(x1−xk)(yk−yk+1)−(xk−xk+1)(y1−yk)

≤ 1

which is the intersection of three strips (Ribbons).
If not M is outside of the polygon (Ai)1≤i≤n.
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1.2.4. Case for n=4

Let A1, A2, A3, A4 be a quadruplet and M

(
x
y

)
.

problem status :
How to know if M is inside the quadruplet A1, A2, A3, A4?

The solution:
Order the points A1, A2, A3, A4 according to the method cited in the second section;
We divide the quadruplet A(1), A(2), A(3), A(4) into two triangles

(
A(1)A(2)A(3)

)
and

(
A(1)A(3)A(4)

)
, and

We apply the method for n = 3 to these two triangles or the last section The general case for n = 3.

Conclusions: Assuming that A1, A2, A3, A4 are ordered according to The scheduling method seen previously,
then x1 x2 x3

y1 y2 y3
1 1 1

−1  x
y
1

 ∈ [0, 1]
3

or

 x1 x2 x4

y1 y2 y4
1 1 1

−1  x
y
1

 ∈ [0, 1]
3

then M is inside the quadruplet A1, A2, A3, A4

⇕ 
0 ≤ x(y2−y3)+y(x3−x2)+(x2y3−x3y2)

(x1−x2)(y2−y3)−(x2−x3)(y1−y2)
≤ 1

0 ≤ x(y3−y1)+y(x1−x3)+(x3y1−x1y3)
(x1−x2)(y2−y3)−(x2−x3)(y1−y2)

≤ 1

0 ≤ x(y1−y2)+y(x2−x1)+(x1y2−x2y1)
(x1−x2)(y2−y3)−(x2−x3)(y1−y2)

≤ 1

or 
0 ≤ x(y2−y4)+y(x4−x2)+(x2y4−x4y2)

(x1−x2)(y2−y4)−(x2−x4)(y1−y2)
≤ 1

0 ≤ x(y4−y1)+y(x1−x4)+(x4y1−x1y4)
(x1−x2)(y2−y4)−(x2−x4)(y1−y2)

≤ 1

0 ≤ x(y1−y2)+y(x2−x1)+(x1y2−x2y1)
(x1−x2)(y2−y4)−(x2−x4)(y1−y2)

≤ 1

And, if

 x1 x2 x3

y1 y2 y3
1 1 1

−1  x
y
1

 /∈ [0, 1]
3

and x1 x2 x4

y1 y2 y4
1 1 1

−1  x
y
1

 /∈ [0, 1]
3

then M is outside the quadruplet A1, A2, A3, A4.

Example n = 4:

A1 =

(
0
0

)
, A2 =

(
0
1

)
, A3 =

(
1
1

)
, A4 =

(
1
0

)
and M =

(
x
y

)
How to know if M is inside the quadruplet A1, A2, A3, A4?
We divide the quadruplet A(1), A(2), A(3), A(4) into two triangles

(
A(1)A(2)A(3)

)
and

(
A(1)A(3)A(4)

)
, and

We apply the method for n = 3 to these two triangles.
A1, A2, A3, A4 are ordered according to The scheduling method, then ( using the part “Case for n = 4”)
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we have
x1 = 0, x2 = 0, x3 = 1, x4 = 1, y1 = 0, y2 = 1, y3 = 1, y4 = 0
and,

0 ≤ x(y2−y3)+y(x3−x2)+(x2y3−x3y2)
(x1−x2)(y2−y3)−(x2−x3)(y1−y2)

≤ 1

0 ≤ x(y3−y1)+y(x1−x3)+(x3y1−x1y3)
(x1−x2)(y2−y3)−(x2−x3)(y1−y2)

≤ 1

0 ≤ x(y1−y2)+y(x2−x1)+(x1y2−x2y1)
(x1−x2)(y2−y3)−(x2−x3)(y1−y2)

≤ 1

or


0 ≤ x(y3−y4)+y(x4−x3)+(x3y4−x4y3)

(x1−x3)(y3−y4)−(x3−x4)(y1−y3)
≤ 1

0 ≤ x(y4−y1)+y(x1−x4)+(x4y1−x1y4)
(x1−x3)(y3−y4)−(x3−x4)(y1−y3)

≤ 1

0 ≤ x(y1−y3)+y(x3−x1)+(x1y3−x3y1)
(x1−x3)(y3−y4)−(x3−x4)(y1−y3)

≤ 1

⇕
0 ≤ −y

−1 ≤ 1

0 ≤ x−y
−1 ≤ 1

0 ≤ −x
−1 ≤ 1

or


0 ≤ x−1

−1 ≤ 1

0 ≤ −y
−1 ≤ 1

0 ≤ −x+y
−1 ≤ 1

⇕ 0 ≤ y ≤ 1
0 ≤ y − x ≤ 1
0 ≤ x ≤ 1

or

 0 ≤ x− y ≤ 1
0 ≤ y ≤ 1
0 ≤ x ≤ 1

⇕{
0 ≤ x ≤ 1 & 0 ≤ y ≤ 1
x− 1 ≤ y ≤ x or x ≤ y ≤ 1 + x

⇕{
0 ≤ x ≤ 1 & 0 ≤ y ≤ 1
x− 1 ≤ y ≤ 1 + x

⇕ {
0 ≤ x ≤ 1 & 0 ≤ y ≤ 1
|y − x| ≤ 1

⇕ {
0 ≤ x ≤ 1
0 ≤ y ≤ 1

(obviously)

⇐⇒ M

(
x
y

)
is inside the quadruplet A1

(
0
0

)
, A2

(
0
1

)
, A3

(
1
1

)
, A4

(
1
0

)
1.3. Closest Point on a Polygon:

In the case where the point M is outside a polygon, the closest point of this polygon is the point on the perimeter
(within the boundaries of the polygon) that is closest to a given reference point (often called a target point or query
point). This concept is often used in computational geometry and computer graphics for various purposes, such as
collision detection, path finding, or spatial analysis.

Problem 3. In the case where the point M0

(
x0

y0

)
is outside the polygon A1, ..., An, it would be interesting to

know how far the point M0 moves away from the polygon A1, ..., An and to know where is the closest point in the
polygon?

1.3.1. Quadratic optimization:
Each polygon (Am)1≤m≤n is a convex polyhedron of the form
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Φ ·
(

x
y

)
≤ c ∈ IRp

with Φ a matrix of dimension p× 2.
The distance between the point M0 and the polyhedron is the minimum of

d

(
M0

(
x0

y0

)
,M

(
x
y

))
with M

(
x
y

)
is a point of the polygon (polyhedron), who means such Φ ·

(
x
y

)
≤ c.

But d
(
M0

(
x0

y0

)
,M

(
x
y

))
=

√
(x− x0)

2
+ (y − y0)

2

it is therefore necessary to minimize

d (M0,M) = (x− x0)
2
+ (y − y0)

2

= x2 + y2 − 2x0x− 2y0y + x2
0 + y20

Hence, we must minimize the quadratic function (since x2
0 + y20 no depend on x and y)

f (x, y) = 1
2X

tBX − btX = x2 + y2 − 2x0x− 2y0y

under the constraints Φ.
(

x
y

)
≤ c

with B =

(
2 0
0 2

)
= 2I2 and b =

(
2x0

2y0

)
Problem:

Min

(
1

2
XtBX − btX

)
Φ.X ≤ c

which is a known problem under The quadratic optimization.

1.3.2. Example n = 4:

In the case where the point M0

(
x0

y0

)
is outside the polygon A1, A2, A3, A4 with

A1 =

(
0
0

)
, A2 =

(
0
1

)
, A3 =

(
1
1

)
, A4 =

(
1
0

)
and M =

(
x0

y0

)

Min

(
1

2
XtBX − btX

)
{

0 ≤ x ≤ 1
0 ≤ y ≤ 1

with B =

(
2 0
0 2

)
= 2I2 and b =

(
2x0

2y0

)
1
2X

tBX − btX = x2 + y2 − 2x0x− 2y0y (X =

(
x
y

)
)

The problem:
min(x2 + y2 − 2x0x− 2y0y) on
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{
0 ≤ x ≤ 1
0 ≤ y ≤ 1

once (x, y) = (x1, y1) found, the distance between point M0 and polygon A1, A2, A3, A4 will be

d = x2
1 + y21 − 2x0x1 − 2y0y1 + x2

0 + y20

1.3.3. Remark:

1. The problem can be solved by the following methods:

- Activation algorithm
- Conjugate gradient algorithm (from extensions)
- Projected gradient algorithm
- Augmented Lagrangian algorithm
- Interior points algorithm
- Nelder-Mead method.

2. All these alternative methods are robust and lead to long, complex

and expensive algorithms.

3. It therefore remains, how to find this point (x, y)? hence our contribution see the last section.

2. Contributions

As we said, the introduction of complex numbers in algebra and geometry is very useful see [1], [2], [3], [5]....
We therefore proceed with our purely geometric methods as well as complex numbers, using the triangulation of a
convex polygon and a very specific application that we have just built.

In this paper, we will share some of our last original contribution:

- A very simple and fast tracking algorithm, and therefore an extremely low cost per iteration: An Algorithm
for Judging Points Inside or Outside a Polygon (We use the basic notions of algorithmic see [4]).

- The neighboring Point and the spacing in the case where the point M is outside the polygon, without going
through the quadratic optimization, we will give the simplest and fastest way to calculate the distance d
between the point M and the polygon (Am){1≤m≤n} and determine the point P of the boundary of the
closest (neighboring) polygon to M .

- Above all it is an article full of examples for all the cases and methods and which are ready to be programmed
and applied.

This work will be devoted to the study of the following outlines:

• A very specific application,
• Tracking algorithm,
• The neighboring Point and the spacing “the remoteness”.
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2.1. THE application

We define the geometric application in the Euclidean plane P with an orthonormal frame R (O, I, J) with I of
affix 1 and J of affix i

F : R2 −→ R2

: M 7−→ M ′

such as
z′ = az + bz

z is the affix of M and z′ is that of M ′.
So we will associate to F the linear map f

f : C −→ C
: z 7−→ az + bz

with (a, b) ∈ C2

Our map F can transform any triangle (OAB) into any other triangle (OCD) with specific a and b. Since it
transforms any segment [M,N ] into another segment [M ′, N ′].

So it suffices to find a and b such that

{
F (A) = C
F (B) = D

Proposition 1.
P ∈ [M,N ] =⇒ F (P ) ∈ [F (M) , F (N)]

Proof
Let be M (z1) , N (z2) , F (M) = M ′ (f (z1)) , F (N) = N ′ (f (z2)), P (z) ∈ [M,N ] et P ′ (z′) = F (P )

We know that
P (z) ∈ [MN ] =⇒ ∃ (α, β) ∈ R2

+/α+ β = 1 and z = αz1 + βz2
F (M) = M ′ (f (z1)) =⇒ f (z1) = az1 + bz1,
F (N) = N ′ (f (z2)) =⇒ f (z2) = az2 + bz2
P ′ (z′) = F (P ) =⇒ z′ = f (z) = az + bz
=⇒ z′ = f (z) = a (αz1 + βz2) + b (αz1 + βz2) (because (α, β) ∈ R2

+)
=⇒ z′ = f (z) = α (az1 + bz1) + β (az2 + bz2)
=⇒ z′ = f (z) = αf (z1) + βf (z2)
=⇒ P ′ ∈ [M ′N ′]
hence the transformation of any segment [MN ] is another segment [M ′N ′].

Proposition 2. (OAB) is a triangle =⇒ (O,F (A) , F (B)) is a triangle.

And M ∈
︷ ︸︸ ︷
(OAB) =⇒ F (M) ∈

︷ ︸︸ ︷
(O,F (A) , F (B)) .

with
︷ ︸︸ ︷
(OAB): all inside the triangle.
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Proof

Let be M ∈
︷ ︸︸ ︷
(OAB).

If M, A and B have the affix z, z1 and z2 respectively,
so F (M), F (A) and F (B) are respectively of affix f(z), f (z1) and f (z2),
with f (z) = az + bz, f (z1) = az1 + bz1 and f (z2) = az2 + bz2

M ∈
︷ ︸︸ ︷
(OAB) & O have the affix 0 =⇒ ∃ (α, β, γ) ∈ R3

+ / α+ β + γ = 1 and z = αz1 + βz2 + γ0
=⇒ z = αz1 + βz2 =⇒ z = αz1 + βz2 (as (α, β) ∈ R2)
=⇒ az + bz = a (αz1 + βz2) + b (αz1 + βz2)
=⇒ f (z) = αf (z1) + βf (z2) + γf (0) (since f (0) = 0)

=⇒ F (M) ∈
︷ ︸︸ ︷
(O,F (A) , F (B)) .

Proposition 3. F (M) /∈
︷ ︸︸ ︷
(O,F (A) , F (B)) =⇒ M /∈

︷ ︸︸ ︷
(OAB) .

Proof
The contrapositive of the previous proposition.

Remark 2. F-Type maps preserve only the shape of polygons (not for circles) and don’t necessarily preserve
distances and angles. But they remain interesting and useful in our case, which we will see below.

2.2. Transformation of any triangle

Let a point M and a any triangle (EFG) such that M , E,F and G have the affix z, zE , zF and zG respectively.
Firstly we transforme (EFG) in (OAB) using a esay translation, and secondly the map F transforming (OAB)

into (OIJ).

T F
E → O → O
F → A → I
G → B → J
M → M1 → M2

T is the translantion such T (E) = O, T (F ) = A and T (G) = B so
A (zA) = F − E
B (zB) = G− E
M1 (z1) = M − E
and

zA = zF − zE

zB = zG − zE

z1 = z − zE

Let the map F which transforms the triangle (OAB) into a triangle (OIJ) with I and J have for affix respectively
1 and i. So it suffices to find the complex numbers a and b such that
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{
F (A) = I
F (B) = J

since F (O) = O.
Hence, if A and B have the affix zA and zB respectively, then{

F (A) = I
F (B) = J

⇔
{

f (zA) = 1
f (zB) = i

⇔
{

azA + bzA = 1
azB + bzB = i

⇔ (
zA zA
zB zB

)(
a
b

)
=

(
1
i

)
(

zA zA
zB zB

)
is an invertible matrix because

(OAB) is a triangle =⇒ O,A,B are not aligned =⇒ zAzB /∈ R

⇒ zAzB ̸= zAzB =⇒
∣∣∣∣ zA zA
zB zB

∣∣∣∣ = zAzB − zAzB ̸= 0

=⇒ (
a
b

)
=

1

zAzB − zAzB

(
zB −zA
−zB zA

)(
1
i

)
⇕ {

a = zB−izA
zAzB−zAzB

b = −zB+izA
zAzB−zAzB

(1)

So, if M2 = F (M1), so

z2 = az1 + bz1

z2 =
zB − izA

zAzB − zAzB
z1 +

−zB + izA
zAzB − zAzB

z1

z2 =
(zB − izA) z1 − (zB − izA) z1

zAzB − zAzB

We have:
1- M is inside the triangle (EFG) ⇔ M1 is inside the triangle (OAB) ⇔ M2 is inside the triangle (OIJ)
and
2- M2 (x+ iy) is inside the triangle (OIJ) if and only if x+ y ≤ 1

0 ≤ x
0 ≤ y

x+ iy = z2 =⇒ x = z2+z2
2 and y = z2−z2

2i = i (x− z2)

with z2 = (zB−izA)z1−(zB−izA)z1
zAzB−zAzB
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=⇒

x =

(zB−izA)z1−(zB−izA)z1
zAzB−zAzB

+
(

(zB−izA)z1−(zB−izA)z1
zAzB−zAzB

)
2

x =

(zB−izA)z1−(zB−izA)z1
zAzB−zAzB

+
(

(zB+izA)z1−(zB+izA)z1
zAzB−zAzB

)
2

x =

(zB−izA)z1−(zB−izA)z1
zAzB−zAzB

− (zB+izA)z1−(zB+izA)z1
zAzB−zAzB

2

x =
z1zB − z1zB
zAzB − zAzB

and

y = i (x− z2)

y = i

(
z1zB − z1zB
zAzB − zAzB

− (zB − izA) z1 − (zB − izA) z1
zAzB − zAzB

)
y = i

iz1zA − iz1zA
zAzB − zAzB

y =
z1zA − z1zA
zAzB − zAzB

So,

M is inside (EFG) ⇐⇒

 x+ y ≤ 1
0 ≤ x
0 ≤ y

⇐⇒


z1zB+z1zA−z1zB−z1zA

zAzB−zAzB
≤ 1

0 ≤ z1zB−z1zB
zAzB−zAzB

0 ≤ z1zA−z1zA
zAzB−zAzB

(2)

such

 zA = zF − zE
zB = zG − zE
z1 = z − zE

, E (zE), F (zF ), G (zG) and M (z)

2.3. Tracking algorithm

Claim 1. Our method consists of transforming each triangle ∆k = (A1AkAk+1) obtained by the triangulation of
the polygon into the triangle (OIJ), which (this last triangle) gives us easy and fast calculations to detect whether
a point is inside or outside a polygon.

So
1- We transforme A1 in O : By translation of landmark (change of coordinates)
2- (A1AkAk+1) −→ (OCkCk+1) and M (z) −→ M1 (z − z1) such that A1 (z1) Ck (zk − z1), Ck+1 (zk+1 − z1)
3- (OCkCk+1) −→ (OIJ) by Fk and fk such fk (z) = az + bz and M1 (z − z1) −→ Mk (tk), with

tk = fk (z − z1) = a (z − z1) + b (z − z1)
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{
a = zB−izA

zAzB−zAzB

b = −zB+izA
zAzB−zAzB

A = Ck, B = Ck+1, zA = zk − z1 , zB = zk+1 − z1
so  a =

(zk+1−z1)−i(zk−z1)

(zk−z1)(zk+1−z1)−(zk−z1)(zk+1−z1)

b =
−(zk+1−z1)+i(zk−z1)

(zk−z1)(zk+1−z1)−(zk−z1)(zk+1−z1)

tk = fk (z − z1) =

[
(zk+1 − z1)− i(zk − z1)

]
(z − z1)− [(zk+1 − z1)− i (zk − z1)] (z − z1)

(zk − z1) (zk+1 − z1)− (zk − z1) (zk+1 − z1)

Then using The Example: Case of the triangle (OIJ)
So, M (x+ iy) is inside the triangle (OIJ) if and only if x+ y ≤ 1

0 ≤ x
0 ≤ y

x+ iy = tk =

[
(zk+1 − z1)− i(zk − z1)

]
(z − z1)− [(zk+1 − z1)− i (zk − z1)] (z − z1)

(zk − z1) (zk+1 − z1)− (zk − z1) (zk+1 − z1)

and
[
(zk+1 − z1)− i(zk − z1)

]
(z − z1)− [(zk+1 − z1)− i (zk − z1)] (z − z1) =

=
[
(zk+1 − z1) (z − z1)− (zk+1 − z1) (z − z1)

]
+ i

[
(zk − z1) (z − z1)− (zk − z1) (z − z1)

]
we have
(zk − z1) (zk+1 − z1)− (zk − z1) (zk+1 − z1) ∈ iIR
(zk+1 − z1) (z − z1)− (zk+1 − z1) (z − z1) ∈ iIR
(zk − z1) (z − z1)− (zk − z1) (z − z1) ∈ iIR
so

x =
(zk+1 − z1) (z − z1)− (zk+1 − z1) (z − z1)

(zk − z1) (zk+1 − z1)− (zk − z1) (zk+1 − z1)

y =
(zk − z1) (z − z1)− (zk − z1) (z − z1)

(zk − z1) (zk+1 − z1)− (zk − z1) (zk+1 − z1)

 x+ y ≤ 1
0 ≤ x
0 ≤ y

⇐⇒


(zk+1−z1)(z−z1)−(zk+1−z1)(z−z1)+(zk−z1)(z−z1)−(zk−z1)(z−z1)

(zk−z1)(zk+1−z1)−(zk−z1)(zk+1−z1)
≤ 1

0 ≤ (zk+1−z1)(z−z1)−(zk+1−z1)(z−z1)
(zk−z1)(zk+1−z1)−(zk−z1)(zk+1−z1)

0 ≤ (zk−z1)(z−z1)−(zk−z1)(z−z1)

(zk−z1)(zk+1−z1)−(zk−z1)(zk+1−z1)

⇐⇒


(zk+1−zk)(z−z1)−(zk+1−zk)(z−z1)
(zk−z1)(zk+1−z1)−(zk−z1)(zk+1−z1)

≤ 1

0 ≤ (zk+1−z1)(z−z1)−(zk+1−z1)(z−z1)
(zk−z1)(zk+1−z1)−(zk−z1)(zk+1−z1)

0 ≤ (zk−z1)(z−z1)−(zk−z1)(z−z1)

(zk−z1)(zk+1−z1)−(zk−z1)(zk+1−z1)

Our contribution consists of introducing a simple and effective algorithm to detect if the position of a point is
inside or outside a convex polygon.
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Let (Am)1≤m≤n be a polygon with affixes (zm)1≤m≤n and M a point with affix z.

2.3.1. Method & Tracking algorithm:

1. Order the points of the polygon (Am)1≤m≤n (with affixes (zm)1≤m≤n) in (Bm)1≤m≤n (with affixes
(z′m)1≤m≤n): as explained in the 1st section Bm = A(m);

2. Change of frame by translation (−→u =
−−→
B1O) such that:

(Bm)1≤m≤n

−→u
−→ (Cm)1≤m≤n

(Cm)1≤m≤n with affixes (z′m − z′1)1≤m≤n and Mc with affix z − z′1
⇒ C1 = O (the new origin of the landmark)
Let z”m = z′m − z′1
⇒ Cm with affix z”m (and Mc with affix z − z′1);

3. Algorithm:

For k = 2 to n− 1
fk : C −→ C

z 7−→ akz + bkz
such that (C1CkCk+1) −→ (OIJ) with J the affix point i and I the affix point 1.

⇒
{

1 = fk (z”k) = akz”k + bkz”k
i = fk (z”k+1) = akz”k+1 + bkz”k+1

⇒

 ak =
z”k+1−iz”k

z”kz”k+1−z”kz”k+1

bk =
−z”k+1+iz”k

z”kz”k+1−z”kz”k+1

(according to our Transformation see (1))

Mk (tk) such that tk = fk (zc) = akzc + bkzc

⇒ tk = ak (z − z′1) + bk

(
z − z′1

)
= rk + isk{

rk =
(ak+bk)(z−z′

1)+(bk+ak)(z−z′
1)

2

sk =
(ak−bk)(z−z′

1)−(ak−bk)(z−z′
1)

2i

If Mk ∈ (IOJ) ( if rk + sk ≤ 1 & 0 ≤ rk & 0 ≤ sk see (2)
Then Fin: M is inside the polygon.

Else k −→ k + 1
M is outside the polygon. ( k = n)

2.4. The neighboring Point and the spacing: The remoteness

In the case where point M is outside the polygon, our contribution consists (without going through quadratic
optimization) of giving the simplest and fastest way to calculate the distance d between point M and the polygon
(Am)1≤m≤n and to determine the point P of the boundary of the closest (neighboring) polygon to M .

Our method consiste:
Let (Cm)1≤m≤n a Ordoned polygone such C1 = O (the origin of the frame of reference).
- First, we detect the nearest polygon vertex Cm0 to the point M .
So, the point of the polygon closest to M is in (Cm0−1,Cm0

] or [Cm0
, Cm0+1).

- Second, we determine the projectors points P− of M in (Cm0−1,Cm0
] and P+ of M in [Cm0,Cm0+1).

So our contribution here is to determine the projectors points of the point M in the straight (Cm0−1,Cm0
) & in

the straight (Cm0 , Cm0+1) using the complex numbers and the optimization.
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1. Let P the projector point of the point M in the straight ( the line ) (CD), so

d (P,M) = min
N∈(CD)

d (N,M)

d (P,M)
2

= min
N∈(CD)

d (N,M)
2

Then, if P (t∗), M (z), C (z1), D (z2) and N (t), so P (t∗) is such

|t∗ − z|2 = min
N(t)∈(CD)

[
|t− z|2

]
N (t) ∈ (CD) ⇐⇒ ∃α ∈ IR / t− z2 = α (z2 − z1)
=⇒ t = t (α) = z2 + α (z2 − z1)
=⇒ |t− z|2 = |z2 + α (z2 − z1)− z|2 = |(z2 − z) + α (z2 − z1)|2

⇒ f (α) = |t− z|2 = |z2 − z|2 + α2 |z2 − z1|2 + α (z2 − z) (z2 − z1) + α (z2 − z) (z2 − z1)
⇒ f ′ (α) = 2α |z2 − z1|2 + (z2 − z) (z2 − z1) + (z2 − z) (z2 − z1)

f ′ (α) = 0 ⇐⇒ α = − (z2 − z) (z2 − z1) + (z2 − z) (z2 − z1)

2 |z2 − z1|2

⇔ α =
(z2 − z) (z1 − z2) + (z2 − z) (z1 − z2)

2 |z1 − z2|2

⇒ t∗ = z2 +
(z2−z)(z1−z2)+(z2−z)(z1−z2)

2|z1−z2|2
(z2 − z1)

⇒

t∗ =
z + z2

2
+

(z1 − z2)
2

2 |z1 − z2|2
(z − z2)

2. Let the nearest polygon vertex Cm0 (z”m0) to the point M and the projectors points P−
(
t∗−

)
of M in the

straight (Cm0−1,Cm0
) and P+

(
t∗+
)

of M in the straight (Cm0,Cm0+1). So, the point P (p) of the boundary
of the closest (neighboring) polygon to M (z) is such

|z − p| = min
{
|z − z”m0

| ,
∣∣z − t∗+

∣∣ , ∣∣z − t∗−
∣∣}

t∗− =
z+z”m0

2 +
(z”m0−1−z”m0)

2

2|z”m0−1−z”m0 |2
(
z − z”m0

)
and
t∗+ =

z+z”m0+1

2 +
(z”m0

−z”m0+1)
2

2|z”m0
−z”m0+1|2

(
z − z”m0+1

)
The method:

1. Ordering the points of the polygon (Am)1≤m≤n into (Bm)1≤m≤n (as explained in the section: The
scheduling, Bm = A(m));

2. Changing of the frame of reference by translation (−→u )

(Bm)1≤m≤n

−→u
−→ (Cm)1≤m≤n

such that:
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(Bm)1≤m≤n of affixes (z′m)1≤m≤n and −→u (−z′1)
(Cm)1≤m≤n of affixes (z′m − z′1)1≤m≤n et Mc of affix z − z′1
⇒ C1 = O (the origin of the frame of reference)
Let z”m = z′m − z′1
⇒ Cm of affix z”m (& Mc of affix z − z′1);

3. Calculate d0 = min {d (Mc, Cm) /m ∈ {1, ..., n}};
4. Determine m0 & Cm0

such that d0 = d (Mc, Cm0
);

be

P+(t
∗
+) : The projection of Mc on the line (Cm0

, Cm0+1)
P−(t

∗
−) : The projection of Mc on the line (Cm0−1, Cm0

)
The point P (p) of the boundary of the closest (neighboring) polygon to Mc (z − z′1) is such

|z − z′1 − p| = min
{
|z − z′1 − z”m0

| ,
∣∣z − z′1 − t∗+

∣∣ , ∣∣z − z′1 − t∗−
∣∣}

The point of the boundary of the closest (neighboring) polygon to M (z) is Q such

−−→
OQ =

−−→
OP −−→u

since −→u (−z′1), so
Q (p+ z′1)

and

d = d (Mc, P ) = d (M,Q) = d
(
M, (Am)1≤m≤n

)
d (Mc, P ) = d (M,Q) because translations preserve distances.

The method diagram:
(Am)1≤m≤n The scheduling (Bm)1≤m≤n

−→u (−z′1) (Cm)1≤m≤n

A1 (z1) −→ B1 (z
′
1) = A(1) −→ C1 (z”1) = O

A2 (z2) −→ B2 (z
′
2) = A(2) −→ C2 (z”2)

...
...

...
Am (zm) −→ Bm (z′m) = A(m) −→ Cm (z”m) = Cm (z′m − z1)
...

...
...

An (zn) −→ Bn (z
′
n) = A(n) −→ Cn (z”n)

M (z) −→ Mc (z − z1)

↪→ min {d (Mc, Cm) /m ∈ {1, ..., n}} → m0 & Cm0

↪→

{
Proj(Cm0 ,Cm0+1) (Mc) = P+

(
t∗+
)

Proj(Cm0−1,Cm0)
(Mc) = P−

(
t∗−

)
↪→ P (p) such d (P,Mc) = min {d (Mc, Cm0

) , d (Mc, P+) , d (Mc, P−)}

↪→
{

The point of the boundary: Q (p+ z′1)
The remoteness: d = d (P,Mc)

3. Conclusion

In this work, we shared our original contribution which is based on the development of a new method and a simple
algorithm which will allow us to define whether a point is inside a polygon or not.
To sum up, we have seen:
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- A method of ordering the points of a polygon and the triangulization of a polygon;
- A very simple and fast tracking algorithm using the map F which transforms the triangle (OAB) into a

triangle (OIJ), therefore an extremely low cost per iteration, and we avoided all cases like calculations
of intersections, sum of areas or angles (arguments), and complex integrals (along the curve crossing the
polygon), which cause problems at the time to develop and execute a program or software;

- The neighboring Point and the spacing in the case where the point M is outside the polygon, without going
through the quadratic optimization, we gave the simplest and fastest way to calculate the distance d between
the point M and the polygon (Am){1≤m≤n} and determined the point P of the boundary of the closest
(neighboring) polygon to M .

- In our next work, we will translate these equations into application, based on daily life. Our next paper will
be dedicated solely to real case studies which we will reveal later.
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