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Abstract Multimodal and asymmetric circular data manifest in diverse disciplines, underscoring the significance of
fitting suitable distributions for the analysis of such data. This study undertakes a comprehensive comparative assessment,
encompassing diverse extensions of the von Mises distribution and the associated statistical methodologies, spanning from
Richard von Mises’ seminal work in 1918 to contemporary applications, with a particular focus on the field of wind
energy. The primary objective is to discern the strengths and limitations inherent in each method. To illustrate the practical
implications, three authentic datasets and a simulation study are incorporated to showcase the performance of the proposed
models. Furthermore, this paper provides an exhaustive list of references related to von Mises distribution models.
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1. Introduction

In various scientific fields, we find data measured in angles, relating to the orientation or direction of
certain phenomena. Modeling angular variables is crucial in various fields such as biology [1, 2], astronomy[3],
meteorology [4], earth sciences, and others [5]. For example, oceanographers may be interested in the direction
of ocean currents; meteorologists to that of the winds and geologists to the orientation of the crystals of igneous
rocks [6]. Biologists can consider the axis on which the bee deploys its dance according to light stimuli, or the
deviation of the path of carrier pigeons from their destination [7]. However, direction measurements are not the
only circular data: periods of cyclical phenomena can be represented as 360 degree circles. For example, one could
determine that for a biological rhythm with a period of 24 hours and phase 0 h (or 24 h), an event X occurring
at 3h corresponds to 45◦. Similarly, a circular representation can be used to express the frequency of earthquakes
as a function of the month, over a period of one year. Psychological research also uses circular data, most often
calculated from the geographic system.

The von Mises distribution (vM) and its mixed variants are primarily utilized as the parametric distribution for
modeling the Wind Direction Probability Distribution (WDPD). For instance, Boente et al. [8] (2014) employed the
von Mises distribution to estimate WDPDs for two Spanish locations, demonstrating moderate fitting performance.
Another significant contribution is the introduction of a hierarchical von Mises distribution (HMvM) by Benlakhdar
et al. [9] (2022), showcasing its accuracy in characterizing the probabilistic nature of wind direction. The mixture
von Mises distributions (MvM) have gained popularity due to their adaptive adjustment of component numbers,
providing a reasonable fit to WDPD. Carta et al. [10] (2008) illustrated this by enhancing goodness-of-fit through
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an increased number of mixture components. Ovgor et al. [11] (2012) employed MvM to fit the WDPD of a
Korean site, reporting a high coefficient of determination. Furthermore, Masseran et al. [12] (2013) utilized MvM
to fit WDPDs across nine Malaysian locations, observing a small mean absolute percentage error. Soukissian et al
[13](2017) extended the application to six sites, finding that a MvM with three to six components demonstrated a
satisfactory goodness-of-fit. These diverse applications underscore the adaptability and efficacy of these models in
capturing wind direction variability across different geographical locations.

The origins of the vM can betraced back to the 1918s, and it remains a popular tool in many fields today.
The scientist and mathematician Richard Edler von Mises introduced this distribution, using it initially The
exploration of discrepancies in atomic weights from integer values initiated a significant scientific inquiry.
Subsequently, numerous researchers have drawn inspiration from von Mises’ pioneering investigations to delve
into and harness this phenomenon, laying the groundwork for circular distributions. The von Mises distribution
stands out as the most extensive among univariate circular distributions, with its probability density function
expressed as f(ω|µ, k) = 1

2πI0(k)
exp k cos(ω − µ), where Ir(z) = (2π)−1

∫ 2π

0
cos rω × exp{z cosω}dω , z ∈ C.

For µ ∈ [0, 2π] and k ≥ 0, denotes the concentration parameter µ , represents the mean angle, and Ir(z) stands
for the modified Bessel function of order r. It is possible to obtain a circular distribution that is flexible by
using a finite mixture of simple distributions, such as a MvM. Nevertheless, this flexibility has some drawbacks.
Mixture models require more intricate calculations and involve greater inference complexity because they lack
sufficiency, invariance, and other factors.They often lead to irregular maximum likelihood problems. Furthermore,
MvM lacks the essential theoretical properties inherent in the generalized von Mises distribution (GvMK), which
demonstrates more flexibility compared to the standard von Mises distribution. Another significant category of
continuous distributions for circular data is the envelope stable α (WαS) class, derived from the characteristic
function of α-stable distributions in the real line. The density WαS can be represented as a Fourier series;
g(θ) = 1

2π + 1
π

∑∞
j=1 exp{−ταjα}cos{j(θ − µ)− ταjαβ tan απ

2 }, for θ ∈ [0, 2π), τ > 0 and the unimodality, tail
behavior, and circular symmetry of WαS densities depend on the value of α and β. Interested readers can find
more information on WαS distributions and inference in Gatto (2008). However, unlike GvM densities, WαS
densities cannot exhibit bimodality and do not possess the theoretical characteristics outlined in Sections 2 to 4. As
previously noted, GvM densities can display symmetry, asymmetry, unimodality, or bimodality.

In 2022, Benlakhdar et al [9](2022) introduced a novel hierarchical model of the von Mises distribution. The
model was utilized to explore computational efficiency and generalization in directional problems at a large
scale. Its main aim is to tackle the inflexibility issues of single models by exploiting the overall flexibility of
the hierarchical structure and optimizing the model for maximum effectiveness.

This research offers a comparative study of the different alternatives to the von Mises distribution, examining
the conditions, potential applications in analysis, and the limitations. The review further investigates how this
knowledge has been applied to directional data problems, including classification. Additionally, the article
emphasizes the potential for further improvements in developing more user-friendly models. To conduct this
comparison, we have conducted bibliographic research using various scientific databases, such as Springer,
Elsevier, Taylor and Francis, and Wiley, to compile a comprehensive list of cognitive explanatory models based on
the von Mises distribution discussed in scientific literature. The forthcoming sections of this paper are structured as
follows: Section 2 provides an extensive overview of the current literature. In Section 3, we introduce and delineate
various models rooted in the von Mises distribution. Section 4 delineates the experimental methodology, as well as
the presentation and discussion of the findings. Lastly, Section 5 serves to draw conclusions from the study.

2. Literature review

Circular data can be modeled using various circular distributions such as the wrapped Cauchy distribution,
uniform circular distribution, Cardioid Distribution, Bingham Distribution and von Mises distribution models.
Among these distributions, the wrapped Cauchy distribution stands out as a widely employed univariate symmetric
circular distribution.Initially introduced by Lévy [18] and further explored by Wintner [19], the wrapped Cauchy
distribution was developed by mapping Cauchy distribution onto the circle [20]. Building upon this groundwork,
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Kato and Pewsey [21] introduced a five-parameter bivariate wrapped Cauchy distribution tailored for toroidal data,
ensuring consistency with univariate wrapped Cauchy distributions in both marginals and conditionals. This family
of distributions maintains closure under conditioning and marginalization [31]. Additionally, Leguey et al. [31]
proposed a tree-structured Bayesian network model for circular data based on the wrapped Cauchy distribution.
Another distribution widely used in directional statistics is the Bingham distribution, introduced by Bingham in
1974 [22], is a versatile probability distribution applicable to data distributed across any-dimensional sphere[24].
It finds widespread use across diverse fields such as directional statistics [23] , computer graphics[25] , and
neuroscience[26], to model the uncertainty in a parametric form[27] .Parameters of the Bingham distribution
include the mean direction, specifying the distribution’s central direction, and concentration parameters, regulating
the distribution’s dispersion around the mean direction and orthogonal directions. Its flexibility allows modeling
of both unimodal and multimodal distributions, offering rotational symmetry around the mean direction. This
distribution is instrumental in tasks like simulating surface normal distributions in computer graphics and studying
neuronal process orientations in neuroscience. Additionally, the Bingham distribution can be extended to higher
dimensions to model data on higher-dimensional spheres or hyperspheres.

The Cardioid (C) distribution [28] stands out as a significant model in circular data modeling. Although some of
its structural attributes are defined, this distribution might not fully capture asymmetry and multimodal behaviors on
the circle, thus requiring additional enhancements. Numerous general approaches are available for creating circular
distributions, such as expansions of the C distribution using beta, Kumaraswamy, gamma, and Marshall–Olkin
generators [29, 30].

The von Mises distribution, functioning as the circular analog of the univariate Gaussian distribution, stands
out as a leading model in circular statistics. Mardia introduced the bivariate von Mises distribution [32] and later
expanded it to the multivariate realm [74], revealing that the conditional distributions also adhere to von Mises
distributions. However, the marginal distributions might exhibit either unimodal or bimodal characteristics. It’s
worth noting that the unimodal scenario approximates a von Mises distribution effectively only under conditions
of a large concentration parameter. Moreover, contributions by Gatoo and Jammalamadaka [34](2007) are also
discussed, providing insights into the theory and advanced topics in directional statistics. An extension of the von
Mises distribution encompasses both unimodal and multimodal patterns, and it accommodates both symmetric
and asymmetric characteristics within circular datasets. This generalization offers a versatile framework capable of
capturing the diverse nature of circular data, whether it exhibits single or multiple peaks, and whether its distribution
is symmetric or asymmetric.

3. Von Mises Distribution Models: Four Core Families

We classify techniques relying on the von Mises distribution into four main categories: the von Mises distribution
model, the mixture of von Mises distributions model, the generalization of von Mises distributions model, and
hierarchical von Mises mixture distributions model (refer to Table 1).

Table 1. List of references for alternative von Mises models

References The model used Application fields
(Swanson et al., 2023) [15] Mixture von Mises distributions

model
Molecules and Conformational
Variability

(Campos-Aranda, 2023)[17] von Mises distribution model The administration of water
resources in a river and the
development of non-structural
strategies for mitigating flood
damage.

(Salvador & Gatto, 2022)[35] Generalized von Mises distribu-
tion model

Bayesian inference
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References The model used Application fields
(Benlakhdar et al., 2022)[9] Hierarchical von Mises mixture

distributions model
Wind energy

(Johnson, 2022)[36] von Mises distribution model Transformation of Directional
Data to Approximate von Mises
Distribution

(Thien et al., 2022)[37] Mixture von Mises distributions
model

Sign Indetermination in Phase
Reconstruction: A DNN Approach
with von Mises Mixture Model

(Marrelec & Giron, 2021)[38] von Mises distribution model The analysis of circular data
(Rønning et al., 2021)[39] von Mises distributions model Implementation of the Skewed

Sine von Mises Distribution in
Pyro and NumPyro for Protein
Bioinformatics

(Mokhtar et al., 2021)[40] von Mises distribution model Modeling Wind Direction Rela-
tionships during the Southwest
Monsoon in Langkawi Island

(Beh, 2021)[41] Mixture von Mises distributions
model

Classification of sound sources in
the time-frequency

(Fan & Bouguila, 2020)[42] Mixture von Mises distributions
model

Non parametric Bayesian frame-
work

(Mulder et al., 2020)[43] Mixture von Mises distribution Application to the music listening
data

(Ye et al., 2019)[44] von Mises distribution model Statistical analysis of the wind
speed and wind direction

(Takamichi et al., 2018)[45] von Mises distribution model Audio signal and speech process-
ing

(Margon & Virtanen, 2018) [46] Von Mises distribution model Statistical model applied in audio
signals

(Prokudin et al., 2018)[53] Mixture von Mises distributions
model

Image processing

(Karavasilis et al., 2017)[47] Mixture von Mises distributions
model

Modeling Circular Data in Visual
Object Tracking

(Chinellato et al., 2017)[50] Mixture von Mises distributions
model

Modeling the Time of Occurrence
of Events in Data Streams with
Circular von Mises Distributions

(Qin et al., 2013)[55] Generalized von Mises distribu-
tion model

Wind study

(Kim & SenGupta, 2013)[57] Generalized von Mises distribu-
tion (k=3) model

A real environmental data

(Gabarda & Cristóbal, 2012)[58] von Mises distribution model Calculating the von Mises distri-
bution of image entropy

(Marković & Petrović, 2012)[60] Mixture von Mises distributions
model

Bayesian Tracking of Bearings
in Directional Scenarios using
Mixture von Mises Distributions:
Modeling, Inference, and Assess-
ment.

(Calderara et al., 2011)[61] Mixture von Mises distributions
model

Classifying people trajectories in
video surveillance
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References The model used Application fields
(Ueaoki et al., 2011)[62] von Mises distribution model Scale-Invariant Shape Descriptors

Using von Mises Distributions
for Unordered Shapes in Image
Matching and Retrieval

(Razavian et al., 2012)[63] von Mises distribution model Protein structures study
(Marković & Petrović, 2010)[60] von Mises distribution model Evaluation and Comparison of an

Algorithm for Speaker Tracking:
A Test on Synthetic Data Set and
Real-world Recordings Against
Particle Filter Representation

(Chen et al., 2008) [67] Mixture von Mises distributions
model

Data on movements of turtles are
used as an illustration

(Vo & Oraintara, 2011)[68] von Mises distribution model Modeling the nature images in the
transform domain

(Fu & Li, 2008)[69] Mixture von Mises distributions
model

Mixture Models with Application
to Circadian Gene Expression

(Carta et al., 2008)[10] Mixture von Mises distributions
model

Representation the distribution of
directional wind speed

(Gatto, 2008) [14] Generalized von Mises distribu-
tion model

Model Comparison in Meteoro-
logical Data: GvM2, vM, and vM2
Models Applied to Arctic Wind
Directions

(Muralidha & Parikh, 2007) [73] von Mises distribution model Analyzing Sea Star Movement:
Bayesian Inference of Directional
Data with Exponential Priors

(Gao et al., 2006) [75] von Mises distributions model Analyzing Disease Onset Patterns
(Mooney et al., 2003)[76] Mixture von Mises distributions

model
Sudden infant death syndrome

(Kent, 1983)[78] Mixture von Mises distribution
model

Directional data

(Stephens, 1982)[79] von Mises distribution model The one-way analysis-of-variance
technique

(Damien & Walker, 1999)[80] von Mises distribution model Bayesian analysis of circular data

3.1. Von Mises Distribution

• Description and Purpose

The distribution function of a vM random variable X on the circle as described in [81], with mean direction µ0

and a concentration parameter k ≥ 0 is formulated as follows

G(θ;µ0, k) = P (0 < X ≤ θ) =

∫ θ

0

1

2π0(k)
exp{k cos(X − µ0)} dX (1)

The procedure evaluates this function when µ0 = 0, the domain of definition of G is extended to the whole real
line by integrating of the function G(θ + 2π)−G(θ) = 1, −∞ < θ <∞. When µ0 ̸= 0, the vM function can be
obtained from knowledge of the function by meansG(θ, 0, k) of the equation

G(θ;µ0, k) = G(θ − µ0; 0, k)−G(−µ0, 0, k) (2)
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(a) Linear presentation (b) Circular presentation

Figure 1. Presentations of the von Mises distribution

Similary, the von Mises integral over any interval on the circle (θ1, θ2), 0 ⩽ θ1 ⩽ θ2 ⩽ 2π is given by

(θ1 < X ⩽ θ2) = G(θ2 − µ0; 0, k)−G(θ1 − µ0; 0, k) (3)

The vM was first introduced by von Mises in 1918 and further details on its theory and applications can be found
in Mardia’s (1972) work [82]. Kendall’s (1974) publication [83] includes various useful charts that illustrate the
behavior of the distribution.In 1967, Maksimov clarified several absolutely continuous circular distributions, each
characterized by continous densities as described in the following expression

g(θ)α exp{
k∑

j=1

aj cos jθ + bj sin jθ} (4)

For θ ∈ [0, 2π) and for certain constants a1, a2, . . . , b1, b2, . . . ∈ R. the renowned von Mises probability density
function (pdf) is derived by specifically considering the sum in the exponent of Equation (4) for k = 1, yielding
the subsequent equation

f(θ|µ, k) = 1

2πI0(k)
exp{k cos(θ − µ)} (5)

for θ ∈ [0, 2π),µ ∈ [0, 2π), k > 0 and where Ir(z) = (2π)−1
∫ θ

0
cos rθ exp{z cos θ}dθ, z ∈ C, is the modified

Bessel function I of integer order r (e.g. Equation (4). If we use a unimodal vM for describing a set of n.i.i.d.
Samples of angular features θ = ⟨θ1, ..., θn⟩ , the parameters can be inferred using the maximum likelihood (ML),
with the following equations

θML
0 = tan−1

{∑n
i=1 sinθi∑n
i=1 cosθi

}
(6)

A(mML) =
I1(m

ML)

I0(ML)
=

1

n

n∑
i=1

cos(θi − θML
0 ) (7)

By inverting Equation (7) numerically, the solution for mML can be found. The von Mises distribution showed in
Figure 5 must be viewed as a reasonable assumption for the a priori distribution of X(G(θ − µ0; 0, k)) because
Equation (5) it wraps around a circle.

In this section, we offer a concise summary of specific distributional properties linked with the von Mises
distribution. To maintain generality, we assume that the parameter µ is zero in Equation (7). Consequently, we
refer to the random variable X as having a standard von Mises distribution, represented as X ∼ vM(θ, k), with its
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probability density function defined by

f(θ) =
ecos θ

2πI0(k)
,−π < θ < π, k ≥ 0 (8)

Where I0(k) is the modified Bessel function of the first kind and order 0 since

ek cos θ = (I0(k) + 2

∞∑
j=1

Ij(k) cos jθ) (9)

see Abramowitz and Stegun (1970), we can wite the pdf f(θ) and the cdf F (θ) as follows

f(θ) =
1

2π
(1 +

2

I0(k)
+

∞∑
j=1

Ij(k) cos jθ),−π < θ < π, k ≥ 0 (10)

and

f(θ) =
1

2π
((θ + π) +

2

I0(k)
+

∞∑
j=1

Ij(k)

j
+ sin jθ),−π < θ < π, k ≥ 0 (11)

Where Ij(k) is the modified Bessel function of the first kind and order j given by

Ij = (
k

2
)j

∞∑
i=0

(
k

2
)2j

1

i!Γ(j + i+ 1)
(12)

In what follows, we will consider several distributional properties of X ∼ vM(θ, k) Based on these distributional
properties, some characterizations of X ∼ vM(θ, k) will be given. The standard vM distribution X ∼ vM(θ, k)
with the pdf as given in Equation(1) has the following properties.
I. It is symmetric around
II. For k = 0 in Equation (9), X has the uniform distribution on (−π, π).
III. If k −→∞ in Equation (9), then X has the normal distribution on (−∞,∞) , with the pdf given by
f(θ) = 1

σ
√
2π

−θ2

2σ2 ,σ2 = 1
k

IV. The mode is at θ = 0,and it is ek

2πI0(k)

V. k = ln( f(0)
f(π

2 ) )

• Characterization by Truncated First Moment

This section introduces characterizations of the von Mises distribution through truncated first moments, detailed
in Theorem 1 below. Without loss of generality, we will focus on the standard vM distribution, X ∼ vM(θ, k)
denoted as f(θ), expressed as a series of modified Bessel functions.

f(θ) =
ek cos θ

2πI0(k)
=

1

2π
(1 +

2

I0(k)

∞∑
j=1

Ij(k) cos jθ),−π < θ <, k ≥ 0 (13)

as provided in Equations(8) and (9) above.

Theorem 1
Suppose that X is absolutely continuous bounded random variable with cdf F(x) such that F (−π) = 0 and F (π) = 1

then E(X|X < θ) = g(θ)τ(θ), where τ(θ) = f(θ)
F (θ) and g(θ) is a continuous differentiable function of θ given by

g(θ) = e−k cos(
θ2 − π2

2
I0(k) + 2

∞∑
j=1

Ij(k)

j2
(jθ sin jθ + cos jθ + cos jθ − cos jπ)) (14)

if and only if f(θ) = 1
2πI0(k)

ek cos θ,−π < θ < π, k ≥ 0.
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Proof
If f(θ) = 1

2πI0(k)
ek cos θ,−π < θ < π, k ≥ 0 , Subsequently, when expressed as a series of modified Bessel

functions, it becomes evident that, after integration and simplification,

g(θ) =

∫ θ

−u
uf(u)du

f(θ)
=

∫ θ

−u
u(I0(k) + 2

∑∞
j=1 Ij(k) cos ju)du

ek cos θ
(15)

= e−k cos θ[{(θ2 − π2)I0(k) + 2

∞∑
j=1

Ij(k)

j
θ sin jθ} − { (θ

2 − π2)

2
I0(k)− 2

∞∑
j=1

Ij(k)

j2
(cos jθ − cos jπ)}] (16)

= e−k cos θθ(
(θ2 − π2)

2
I0(k) + 2

∞∑
j=1

Ij(k)

j2
(jθ sin jθ + cos jθ − cos jπ)) (17)

Suppose that

g(θ) = e−k cos(
(θ2 − π2)

2
I0(k) + 2

∞∑
j=1

Ij(k)

j2
(jθ sin jθ + cos jθ − cos jπ)) (18)

Thus θ−g
′
(θ)

g(θ) = −k sin θ
from which, on using Lemma 1, we have
f
′
(θ)

f(θ) = θ−g′(θ)
g(θ) = −k sin θ

On integrating the above equation with respect to θ , we obtain f(θ) = cek cos θ, where c is a constant to be
determined.
Using the condition

∫ π

−π
f(u) = 1, and recalling the integral representation of the modified Bessel function of the

first kind and order 0, we easily obtain c = 1
2πI0(k)

and thus = 1
2π0(k)

ek cos θ,−π < θ < π, k ≥ 0, which is the pdf
of the standard von Mises distribution.

3.2. Mixture of von Mises distribution

The mixture of von Mises distribution (MvM) is a statistical model that combines multiple von Mises
distributions to represent complex directional data. In this model, each component distribution represents a distinct
mode or cluster within the data, characterized by its own mean direction and concentration parameter.

The probability density function of MvM is a weighted sum of the individual von Mises density functions.
Determining the weights and parameters of each component distribution within the model necessitates estimating
them using methods like maximum likelihood estimation or Bayesian inference [84]. Moreover, the MvM is widely
used in various applications, including modeling biological rhythms, analyzing directional data in environmental
sciences, and clustering circular data in machine learning [85, 86, 43, 78]. By capturing the underlying patterns and
structure in directional datasets, the MvM provides a flexible and powerful tool for understanding and modeling
complex directional phenomena.

The attention given to finite mixture models over the years testifies to their usefulness as an extremely flexible
modeling method, and their importance both theoretically and practically [89, 90, 91]. Often, we propose a MvM
to describe a set of angles distribution because a unimodal von Mises model is not significant enough to represent
dataset. It can be defined as

MvM(θ|θ0,m) =

K∑
k=1

f(θ|θ0,k,mk) (19)

Where πk is the weight of the kth component (with k the number of mixture’s components).

f(x, θ) =

k∑
i=1

πi

2πI0(ki)
exp {ki cos(x− µi)}, 0 < x ⩽ 2π (20)
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For 0 < x ⩽ 2π,−∞ < µi <∞ are measures of locations, ki > 0 are measures of concentrations and πi are non-
negative and sum to 1, where Iν(.) denote the modified Bessel function of the first kind of order ν defined by

Iν(x) =

∞∑
k=0

1

Γ(k + v + 1)k!
(
x

2
)2k+ν (21)

The nth raw moment corresponding to MvM distribution is

mn =

k∑
i=1

αi

I|n|(ki)

I0(ki)
exp(inµi) (22)

Where i =
√
−1. Hence, the corresponding mean angle, mean resultant, circular variance, circular skewness and

circular kurtosis are

µ = arcsin

∑k
i=1 αi

I1(ki)
I0(ki)

sin(µi)√
[
∑k

i=1 αi
I1(ki)
I0(ki)

cos(µi)]2 + [
∑k

i=1 αi
I1(ki)
I0(ki)

sin(µi)]2
(23)

ρ =

√√√√[

k∑
i=1

αi
I1(ki)

I0(ki)
cos(µi)]2 + [

k∑
i=1

αi
I1(ki)

I0(ki)
sin(µi)]

2 (24)

v = 1−

√√√√[

k∑
i=1

αi
I1(ki)

I0(ki)
cos(µi)]2 + [

k∑
i=1

αi
I1(ki
I0(ki)

sin(µi)]2 (25)

γ1 =
exp(−2µ)

v
3
2

[

k∑
i=1

αi
I1(ki)

I0(ki)
sin(2µi)] (26)

and

γ2 =
exp(−2µ)
1− ρ2

[

k∑
i=1

αi
I1(ki)

I0(ki)
cos(2µi)]−

ρ4

1− ρ2
(27)

The EM algorithm is a flexible method used to compute maximum likelihood estimates of mixture parameters.
In mixture models, latent variables that are not directly observed define the ”responsibilities” of individual samples
with respect to specific components within the mixture. The assumption is that all variables are independent, and
the data stem from k joint distributions. However, the maximum likelihood framework described in Equation (8) is
unsuitable for mixture distributions because it cannot handle singularities.

• Simulation scenarios

To assess the effectiveness of diverse methods across various scenarios, we employed four distinct data generation
processes. These scenarios are illustrated in Figure 2 and include: Situation 1; two von Mises components
whereµ1 = 0, µ2 = π and k1 = k2 = 10, Situation 2; two von Mises components where µ1 = −π

6 , µ2 = π
6 and

k1 = k2 = 10 , Situation (3); two von Mises components where µ1 = −π
6 µ2 = 0 and k1 = k2 = k3 = 10 and

Situation 4; a uniform von Mises component where µ1 = −π
6 , µ2 = π

6 and k1 = k2 = 0. Each scenario is simulated
with 100 observations.
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Figure 2. Visualization of simulation scenarios used for investigating sampler performance

3.3. The generalization of von Mises distribution

The GvMk of order k is a generalization of von Mises distribution that is able to model both unimodal and
multimodal data, as well as symmetric and asymmetric data [92, 93, 94].The GvMk distribution offers greater
flexibility than the von Mises distribution, which maintains circular symmetry and unimodality, featuring density
that exponentially decreases on both sides of its center. Unlike the von Mises distribution, the GvMk distribution
can effectively represent bimodality.

• Model selection based on EMD

The density function of the GvMk distribution is defined as

f(θ, µ1, ..., µk, k1, ..., kk) =
1

2πG
(k)
0 (δ1, ..., δk−1, k1, ..., kk)

exp{
k∑

j=1

kj cos j(θ − µj)} (28)

Where,
k1, ..., kk > 0, θ ∈ [0, 2π), µ2 ∈ [0, π), µk ∈ [0, 2π/k), δ1 = (µ1 − µ2) mod π and δk−1 = (µ1 − µk)

mod (2π/k). The normalizing constant G(k)
0 is given by

G
(k)
0 (δ1, ..., δk−1, ..., kk) =

1

2π

∫ 2π

0

exp{k1 cos θ + k2 cos 2(θ + δ1) + ...+ kk cos k(θ + δk−1)}dθ (29)

=

k∑
j=1

kj cos j(θ − µj)− log[2πG
(k)
0 (δ1, ..., δk−1, k1, ..., kk] (30)

Stat., Optim. Inf. Comput. Vol. 12, July 2024



1220 IN-DEPTH ANALYSIS OF VON MISES DISTRIBUTION MODELS

In Equation (28), log f(θ;µ1, ..., µk, k1, ..., kk) can be perceived as the summation of a constant − log[2πG0(k)]
and multiple cosine functions of distinct frequencies j. The expression on the right side of Equation (28) bears
resemblance to the outcome of empirical mode decomposition (EMD) [95]. In this paper, we will examine this
category with a specific focus on the scenario where k = 2, which offers a significant expansion of vM and can be
restated as

f(θ|µ1, µ2, k1, k2) =
1

2π

∫ 2π

0

exp{k1 cos(θ − µ1) + k2 cos 2(θ − µ2)} (31)

for θ ∈ [0, 2π], µ1 ∈ [0, 2π), µ2 ∈ [0, π), δ = (µ1 − µ2) mod π, k1, k2 > 0 and where the normalizing constant is
given by

G0(δ, k1, k2) =
1

2π

∫ 2π

0

exp{k1 cos θ + k2 cos 2(θ + δ)}dθ (32)

The density outlined in Equation (12) will be termed the GvM density, and any circular random variable
characterized by this density will be denoted as θ ∼ GvM(µ1, µ2, k1, k2). Apart from Maksimov [96](1967),
brief references to this distribution have been made in Yfantis and Borgman [97] (1982), particularly focusing
on numerical considerations [98].

As mentioned earlier, GvM densities exhibit various shapes including symmetric, asymmetric, unimodal, or
bimodal distributions. In this context, we present fundamental findings regarding the potential forms of these
densities. Initially, we consider the hypothesis H0: µ2 = µ1 mod π, or equivalently, H0 : δ = 0, assuming k1
and k2 are both positive. Under this assumption, the density exhibits circular symmetry around µ1, which, without
loss of generality, can be set to 0. Through the process of differentiation, we ascertain that the critical points of the
density satisfy the equation

k1
4k2

sin(θ) + sin(θ) cos(θ) = 0 (33)

Table 2. Critical points of the GvM density under H0 : µ2 = µ1 mod π and for k1 < 4k2

Argument values Type Density values
π1 − π Maximum {2πG0(0, k1, k2)}−1 exp{−k1 + k2}
µ1 − arccos(− k1

4k2
) Minimum {2πG0(0,K1, k2)}−1

exp{−k2 − k2
1

8k2
}

µ1 Maximum {2πG0(0, k1, k2)}−1 exp{k1 + k2}
µ1 + arccos(− k1

4k2
) Minimum {2πG0(0, k1, k2)}−1

exp{−k2 − k2
1

8k2
}

When k1 < 4k2, the interval [−π, π) encompasses two trivial and two non-trivial critical points. Table 2 presents
these critical points for a general µ1, along with their characteristics and the corresponding values of the GvM
density.

• Member of the exponential family

It’s worth mentioning that the GvMk distribution can be expressed in the form of the canonical exponential
family. We investigate a re-parametrization method for the GvMk density, where λ1 = k1 cosµ1, λ2 = k1 sinµ1,
λ3 = λ2 sin 2µ2, . . . , λ2K−1 = kk cos kµk. This involves expanding the cosines in Equation 28 and defining
λ = (λ1, . . . , λ2K)T ∈ R2k and T (θ) = (cos θ, sin(θ), cos(2θ), sin(2θ), . . . , cos kθ, sin kθ)T , we can represent

the GvMk density as

f∗(θ|λ) = expλTT (θ)− k(λ) (34)
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This transformation of the GvMk density conforms to the canonical exponential family with 2k parameters. The
statistic T (θ) functions as a sufficient and complete statistic for λ, while the normalization constant is expressed as

K(λ) = log(2π) + logG
(k)
0 (δ1, . . . , δk−1, ∥λ(1)∥, . . . , ∥λ(k)∥), (35)

where ∥.∥ Euclidean norm is denoted by, λ(1) = (λ1, λ2)
T , λ(2) = (λ3, λ4)

T , . . . , λ(k) = (λ2k−1, λ2k)
T , and δ1 =

(arg λ(1) − argλ(2)/2) mod π, δ2 = (arg λ(1) − argλ(3)/3) mod (2π/3), . . . , λk−1 = arg λ(1) − argλ(k)/k)
mod (2π/k). In the case of k = 2, this constant can be evaluated using the following equation:
G0(δ, k1, k2) = I0(k1)I0(k2) + 2

∑∞
j=1 I2j(k1)Ij(k2) cos(2jδ). Furthermore, a referee has observed that the

original Maksimov distribution with k summands is part of the 2k-parameter canonical exponential family,
represented by

λ = (λ1, . . . , λk, λk+1, . . . , λ2k) = (a1, . . . , ak, b1, . . . , bk) (36)

and
T (θ) = (cos(θ), . . . , cos(kθ), sin(θ), . . . , sin(kθ)). (37)

However, it’s essential to note that the canonical re-parameterization lacks the intuitive clarity of the GvM form. For
instance, the hypothesis H0 : δ = 0 is more straightforwardly apparent in the GvM parameterization, illustrating
circular symmetry in both the first and second frequency components.

Figure 3. Some asymmetric GvM densities

3.4. Hierarchical Von Mises Mixture Distributions

Benlakhdar et al [9](2022) introduced the hierarchical von Mises mixture distribution model (HMvM-pdf) as
a powerful tool for modeling complex, asymmetric, and multimodal datasets. The model is particularly suitable
for addressing high-dimensional challenges, demonstrating enhanced performance concerning computational
complexity, efficiency, and generalization.

Stat., Optim. Inf. Comput. Vol. 12, July 2024



1222 IN-DEPTH ANALYSIS OF VON MISES DISTRIBUTION MODELS

In comparison to the von Mises mixture model, the HMvM exhibits various advantages. Its fundamental
concept revolves around harnessing the comprehensive flexibility inherent in the complete hierarchy to offset the
constrained flexibility observed in individual and mixture models. By using a simple hierarchy, the model enables
straightforward interpretation of complex directional data and provides analytical and computational simplification
benefits.

f(x, θ) =

M∑
m+1

L∑
i=l

πm,lfm,l(x, θm,l) (38)

f(x, θ) =

M∑
m+1

L∑
i=l

πm,l
1

2πI0(km,l)
exp[km,l cos(x− µm,l)] (39)

Where,
θ = {µ1,1, π1,2, ..., πm,l, θ1,1, ..., θm,l, θm,l = {(µ1,1, k1,1), ..., (µM,L, kM,L)} and

∑M
m=1

∑L
l=1 πm,l = 1

The field of mixture model optimization has made significant progress over the past 45 years, largely due to the
success of the maximum likelihood method. However, in the unsupervised case, maximizing the log-likelihood
often results in equations without analytical solutions. To address this issue, one of the most commonly used
methods is the Expectation-Maximization (EM) algorithm, proposed by Dumpsters et al [99] (1977). The EM
algorithm stands as a widely recognized method for parameter estimation of mixture distributions, achieved by
maximizing the log-likelihood of the completed data L(x, y; θ). A key advantage of the EM algorithm is that it
always increases the observed likelihood, which is an important property (See Theorem 2).

Theorem 2
With each iteration of the EM algorithm, the observed likelihood L increases, namely

φ(θk+1) > φ(θ)k ∀k ≥ 1

The EM algorithm is a commonly employed iterative method for estimating parameters in density models that
treat observations as ”incomplete data”. It is particularly effective for mixture. In this framework, observations
constitute the incomplete-data set, while each element of the complete-data set consists of an observation and an
indicator specifying the mixture component. Unlike traditional methods, EM utilizes properties of the complete-
data density, often resulting in more tractable estimation problems and accurate parameter estimates, especially
with small sample sizes [99].
Benlakhdar et al [9]( 2022) developed an alternative to the EM algorithm which they named Specific EM to find
parameter estimates of their HMvM model. A pseudo language version of the algorithm is presented (Algorithm
1). For more details see [9, 100].

• The SEM algorithm in pseudo language

Drawing upon the foundational principles of the EM algorithm, we have devised an algorithm termed SEM, as
detailed in our aforementioned article ”Statistical modeling of directional data using a robust hierarchical von mises
distribution model: perspectives for wind energy” published in 2022 in the international journal of Computational
Statistics.

In the SEM framework, the E-step entails computing the conditional expectations of the complete data log-
likelihood conditioned on the observed data, while the M-step entails iteratively updating the parameter estimates
to maximize this expectation. The iterative process continues until convergence is achieved, with parameter
estimates refined at each iteration.
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Algorithm 1 Specific EM algorithm

Require: Set χ of data points
Ensure: Estimation of unknown parameters

1: θ = {µm,l, πm,l, km,l}ML
m,l=1

2: ℓ = 0
3: repeatStep E (Expectation) of the EM algorithm
4: for n = 1 to N do
5: for m = 1 to M do
6: for l = 1 to L do
7: Q(θ|Q(ℓ))←

∑N
n=1

∑k
k=1

∑L
l=1 ζ

(ℓ)
n (m, l) ln(πm,lfm,l(xn, θm,l))

8: end for
9: end for

10: end for
11: until Convergence
12: End of step E
13: Step M (Maximization) of the EM algorithm
14: for m = 1 to M do
15: for l = 1 to L do
16: θ(m+ℓ) ← argmaxθ Q(θ|θ(ℓ))
17: end for
18: end for
19: End of stage M
20: θ = {µm,l, πm,l, km,l}ML

m,l=1 ← arg{µ∗
m,l, π

∗
m,l, k

∗
m,l}ML

m,l=1

Based on the principles of the EM algorithm, maximizing results in the formulation of the following estimation
equations:

µℓ+1
m,l = arctan

(∑N
n=1 sin(xn)π

ℓ
m,lfm,l(xn, θ

ℓ
m,l)∑N

n=1 cos(xn)πℓ
m,lfm,l(xn, θℓm,l)

)
(40)

= arctan

(∑N
n=1 ζ

(ℓ)
n (m, l) sin(xn)∑N

n=1 ζ
(ℓ)
n (m, l) cos(xn)

)
(41)

Mixing ratio

π
(ℓ+1)
m,l =

1

N

N∑
n=1

ζ(ℓ)n (m, l)fm,l(xn, θ
(ℓ)
m,l) (42)

Concentration

A(K
(ℓ+1)
m,l ) =

∑N
i=1 πm,l(ℓ)fm,l(xn, θ

(ℓ)
m,l) cos(xn − µℓ+1

m,l )∑N
i=1 π

(ℓ)
m,lfm,l(xn, θ

(ℓ)
m,l)

(43)

K
(ℓ+1)
m,l = A−1

∑N
i=1 ζ

(ℓ)
n cos(xn − µ

(ℓ+1)
m,l )∑N

i=1 ζ
(ℓ)
n (m, l)

(44)

To overcome the difficulty of converging to a local maximum, the EM algorithm is repeatedly run with a range of
initial values. This approach increases the likelihood of identifying the global maximum. In Figure 4, the histogram
depicts a comparison between the MvM and HMvM models based on 1000 pseudo-random observations. The
contrast between the two outcomes is notably evident. Consequently, the accuracy of the Von Mises hierarchical
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Figure 4. Representing the linear fit og HMvM-pdf and MvM-pdf using both parametric (EM) and (LSCV-MLCV)

mixture distributions model, achieved through the modified EM algorithm, surpasses that of both the Von Mises
mixture model and Kernel estimation [101, 102, 103].

• Computational efficiency

As the sample size increases, the computational burden of fitting models and calculating densities for von
Mises distributions escalates, making efficient data structures and algorithms essential for handling large-scale
data. Estimating parameters such as the mean direction and concentration can be particularly resource-intensive,
with methods like Maximum Likelihood Estimation [104] commonly used for this purpose [105]. Optimization
algorithms, including the Newton-Raphson method and Expectation-Maximization (EM) for mixture models, play
a critical role in enhancing computational efficiency by reducing iterations and improving convergence rates [105].
A specialized algorithm for the hierarchical von Mises model, known as Specific EM (SEM)[106], is particularly
tailored for large datasets. This algorithm demonstrates high efficiency in fitting model parameters; however, it
is relatively time-consuming compared to the standard Expectation-Maximization (EM) algorithm. Employing
parallel computing techniques can significantly boost efficiency by distributing the computational workload across
multiple processors or cores [107], expediting tasks such as parameter estimation and density calculation. For
instance, in R, parallel computing frameworks like the parallel package can be utilized to implement these
techniques effectively, ensuring that large datasets are processed more rapidly and efficiently[108]. This integration
of parallel computing and optimization not only minimizes computation time but also enhances the scalability of
von Mises models fitting.

4. Results and Discussion

In the comparative scrutiny of models, it is imperative to recognize the challenges faced by the von Mises
distribution model in faithfully encapsulating the observed data. As depicted in Figure 5a, the von Mises model
contends with difficulties in accurately representing certain fluctuations or distinctive attributes of wind direction,
while neglecting the diverse modalities inherent in the data. Instead, its emphasis lies on conforming to the
most prominent mode within the dataset. This observation underscores the importance of exploring alternative

methodologies, exemplified by the MvM distribution model. Such an approach offers heightened flexibility and an
enhanced ability to capture the inherent intricacies within the dataset (refer to Figures 5b). This advanced model
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(a) Single von Mises distribution (b) Finite Mixture von Mises distribution

Figure 5. Single and Mixture von Mises distribution

affords the incorporation of distinct subpopulations, spatiotemporal variations, and inter-observation dynamics,
thereby facilitating a more precise and realistic modeling of wind direction.
The Figures 5a and 5b depict the optimal vM model and the MvM model, respectively, attained through the EM
method and the genetic algorithm (GA). It is noteworthy to mention that the EM method demonstrates superior
efficacy compared to the GA method in both the construction of the vM model and the MvM model.
Throughout the entirety of January to December 2021, wind directions were systematically logged on a daily basis
at four distinct Pan Arctic sites: the Pan Arctic, Greenland, Europe and North America basins. These datasets
were acquired from ArcticRIMS (A Regional, Integrated Hydrological Monitoring System for the Pan Arctic Land
Mass, http://rims.unh.edu), consist of n = 365 observations each. Employing statistical modeling, we applied the
GvM2 and MvM2 distributions to these datasets, estimating their respective Maximum Likelihood parameters.
Furthermore, We employed both the Akaike Information Criterion (AIC) and the Bayesian Information Criterion
(BIC) to evaluate the performance of these models.

Table 3. Evaluating AIC and BIC Values for GvM2 and MvM2 Distributions

Distribution tested Data Observation Number AIC EM
Plan Arctic 365 765.177 613.692

GvM2 Europe 365 1007.608 934.028
Greenland 365 1139.566 1023.140
North America 365 944.590 902.517
Plan Arctic 365 905.047 806.741

MvM2 Europe 365 1024.863 967.007
Greenland 365 1135.567 1019.698
North America 365 960.559 918.904

Table 3 exhibits the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) values
for both the GvM2 model and the MvM2 model. Across all basins, the GvM2 model demonstrates superior
performance in terms of AIC, with the exception of the Greenland Basin, where the MvM2 model displays a
marginal advantage. Similarly, with regard to BIC, the GvM2 model consistently exhibits stronger performance,
albeit with the narrowest discrepancy observed between GvM2 and MvM2 in the Greenland Basin.

However, accurately capturing certain nuances of the data proves challenging. As demonstrated in Table 4,
expanding the dataset size leads to a notable reduction in the Bayesian Information Criterion (BIC) values across
all models. Consequently, with an ample number of observations, both the GvMk and HMvM models exhibit
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enhanced capability in accurately modeling the data, capturing its intricate features more effectively. Our findings
underscore the superiority of the HMvM model over both the MvM (see Figure 6) and vM models.

Table 4. Evaluating AIC and BIC Values for vM, MvM, GvM and HMvM Distributions

Distribution tested Data Observation Number AIC BIC
Data 1 500 201.315 189.503

vM Data 2 5000 180.629 173.702
Data 3 50000 47.201 42.034
Data 1 500 179.382 166.642

MvM Data 2 5000 157.231 145.170
Data 3 50000 33.712 29.314
Data 1 500 179.039 154.130

GvM Data 2 5000 120.887 116.983
Data 3 50000 31.401 24.374
Data 1 500 178.041 152.672

HMvM Data 2 5000 121.230 117.103
Data 3 50000 30.0185 22.526

Figure 6. Concurrent Presentation of Models vM,MvM, GvM and HMvM Estimated by EM and SEM Algorithms

In conclusion, while the von Mises distribution model may offer a reasonable initial approximation of the wind
direction distribution, its capacity to precisely conform to observed data, particularly in the presence of complex
variations or specific characteristics, is constrained. In such contexts, opting for more advanced models such as
GvMk or the HMvM model is advisable, as they offer a more refined and suitable representation of wind direction
patterns.

5. Conclusion and future work

This paper provides an extensive examination of various substitutes for the von Mises distribution, coupled
with a thorough discussion on utilizing circular statistics for the modeling of directional data and its numerical
resolution. Through rigorous testing in challenging scenarios, we showcased the outstanding accuracy of the
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GvMk and HMvM models in classifying directional data.The distributions under consideration present notably
enhanced versatility in comparison to the presently utilized vM, MvM, and Circular Normal distributions. They
maintain essential characteristics, including membership in the exponential family, association with the normal
distribution, and maximized entropy. Our analysis has scrutinized various pivotal facets of these distributions,
unveiling significant properties and characterizations. Furthermore, HMvM proves to be more precise and suitable
for rapid implementations. This model can be broadly applied to represent directional patterns in regions with
multiple dominant directions. To improve the quality of these models in future studies, a promising approach
involves integrating the Ward algorithm with a mixture of Dirichlet processes. This concept is based on the
fact that the Ward algorithm has the ability to group observations into homogeneous clusters based on their
similarities. Subsequently, once the clusters are obtained, the Dirichlet process will be used to estimate the
proportions of the clusters. Moreover, a Mixture von Mises distribution model will be employed to estimate the
means and dispersions of the clusters. Finaly, proper management of overfitting heterogeneity, which occurs in
high-dimensional mixture models when component-specific parameters of different components are identical,
is essential. Frühwirth-Schnatter [109](2011)recommends the application of sparse priors for the component-
specific location parameters to effectively address this issue. This approach will offer flexibility, robustness, and
computational feasibility to capture the complex structure and variability of the data. Such refinements hold the
potential to advance the field by providing more nuanced and accurate insights into directional data modeling.This
model can be broadly applied to represent directional patterns in regions with multiple dominant directions.
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