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Abstract For k−ordered set W = {s1, s2, . . . , sk} of vertex set G, the representation of a vertex or edge a of G with
respect to W is r(a|W ) = (d(a, s1), d(a, s2), . . . , d(a, sk)) where a is vertex so that d(a, si) is a distance between the vertex
a and the vertices in W and a = uv is edge so that d(a, si) = min{d(u, si), d(v, si)}. The set W is a mixed resolving set
of G if r(a|W ) ̸= r(b|W ) for every pair a, b of distinct vertices or edge of G. The minimum mixed resolving set W is a
mixed basis of G. If G has a mixed basis, then its cardinality is called a mixed metric dimension, denoted by dimm(G). A
set W of vertices in G is a dominating set for G if every vertex of G that is not in W is adjacent to some vertex of W . The
minimum cardinality of the dominant set is the domination number, denoted by γ(G). A vertex set of some vertices in G that
is both mixed resolving and dominating set is a mixed resolving dominating set. The minimum cardinality of the dominant
set with mixed resolving is called the dominant mixed metric dimension, denoted by γmr(G). In our paper, we investigate
the establishment of sharp bounds of the dominant mixed metric dimension of G and determine the exact value of some
family graphs.
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1. Introduction

In this paper, all graphs are nontrivial and connected graph, for detail definition of graph see [1, 4, 5]. The concept
of metric dimension was independently introduced by Slater [6], Harrary and Melter [7]. Slater considered the
minimum resolving set of a graph as the location of the placement of a minimum number of sonar/loran detecting
devices in a network. So, the position of every vertex in the network can be uniquely described in terms of
its distances to the devices in the set. Applications of metric dimension problem can also be found in network
and verification, robot navigation, combinatorial optimization, pharmaceutical chemistry, and strategies for the
mastermind game.

We have the vertex set and edge set, respectively are V (G) and E(G). The distance of u and v and denoted by
d(u, v) is the length of a shortest path of the vertices u to v. For the set W = {s1, s2, . . . , sk} ⊂ V (G). The vertex
representations of the vertex x to the set W is an ordered k-tuple, r(x|W ) = (d(x, s1), d(x, s2), . . . , d(x, sk)). The
set W is called the resolving set of G if every vertices of G has different vertex representations. The resolving
set having minimum cardinality is called basis and its cardinality is called metric dimension of G and denoted by
dim(G) [9].
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The concept of metric dimension can be extended to distinguishing pairs of edges, if the distance of a vertex
s and an edge uv is defined by d(uv, s) = min{d(u, s), d(v, s)}. Then, a vertex s ∈ V (G) distinguishes a pair of
edges e, f ∈ E(G) if d(s, e) ̸= d(s, f). There are graphs in which none of the smallest metric basis distinguishes
all pairs of edges, so they were motivated to introduce a notion of an edge metric basis as any set S ⊂ V (G) which
distinguishes all pairs of edges, the edge metric dimension, denoted by dime(G) as the size of a smallest edge
metric basis [11].

Kelenc, et al [12] introduced the new variant of metric dimension and edge metric dimension of graphs
which is called mixed metric dimension. A vertex w ∈ V (G) distinguishes two elements (vertices or edges)
x, y ∈ E(G) ∪ V (G) if dG(w, x) ̸= dG(w, y). A set S of vertices in a connected graph G is a mixed metric generator
for G if every two distinct elements (vertices or edges) of G are distinguished by some vertex of S. The smallest
cardinality of a mixed metric generator for G is called the mixed metric dimension and is denoted by dimm(G).

A vertex v in a graph G is said to dominate itself as well as its neighbors. A set W of vertices in G is a dominating
set for G if every vertex of G is dominated by some vertex of W . The minimum cardinality of a dominating set
is domination number, denoted by γ(G). In recent years, there exists additional properties for dominating set, for
example independent dominating set require a dominating to be independent, connected dominating set require
a dominating set to induce a connected graphs and total dominating sets are not defined for graphs having an
isolated vertex. For more detail about other conditional domination number in [8]. Brigham, et al. [10] combined
the concept of metric dimension and dominating set by term resolving domination number, denoted by γr(G)
and got a result that max{dim(G), γ(G)} ≤ γr(G) ≤ dim(G) + γ(G). A vertex set of some vertices in G that is
both mixed resolving and dominating set is a mixed resolving dominating set. The minimum cardinality of mixed
resolving dominating set is called dominant mixed metric dimension, denoted by γmr(G). There are some previous
results about dominant metric dimension, edge metric dimension, mixed metric dimension, dominant edge metric
dimension as follows.

Theorem 1
Let G be a connected graph, then

max{γ(G), dim(G)} ≤ γr(G) ≤ min{γ(G) + dim(G), n− 1}.

Theorem 2
Let G be a connected graph, then

max{γ(G), dime(G)} ≤ γer(G) ≤ n− 1.

Theorem 3
Let G be a connected graph, then

max{dim(G), dime(G)} ≤ dimm(G).

2. Results and Discussion

In this section, the property of the dominant mixed resolving set is needed to facilitate the proof of the main result.

Lemma 1
Let G be a connected graph. If there is no dominant mixed resolving set of G with cardinality k, then any set
W ⊂ V (G) with |W | < k, is not a dominant mixed resolving set.

Proof
Let G be a connected graph. Suppose that there is no dominant mixed resolving set of G with cardinality k
and there exists a dominant mixed resolving set T ⊂ V (G) with |T | < k so that for every u, v ∈ V (G) we have
r(u|T ) ̸= r(v|T ) and T is a dominating set of G. Moreover, there exists a subset U ⊂ V (G) such that |T ∪ U | = k.
Since T is a mixed resolving set and a dominating set of G, one can easily see that T ∪ U is a mixed resolving set
and a dominating set of G. So that, T ∪ U is a dominant mixed resolving set of G which is a contradiction. Thus
the result follows and the proof is completed.

Stat., Optim. Inf. Comput. Vol. 12, November 2024



1828 DOMINANT MIXED METRIC DIMENSION OF GRAPH

We present basic result for the dominant mixed metric dimension of graphs. We also give the bounds for γmr(G)
as follows.

Lemma 2
Let G be a connected graph of order n, then

max{γ(G), dimm(G)} ≤ γmr(G) ≤ min{γ(G) + dimm(G), n}.

Proof
Let G be a connected graph of order n. Since the dominant mixed metric dimension of a graph G is greater than its
domination number and its mixed metric dimension, then max{γ(G), dimm(G)} ≤ γmr(G). Furthermore, since
the mixed resolving set and the dominating set of a graph are possible to not intersect, and since a subset of V (G)
which consists of n vertices in graph G always becomes mixed resolving set and dominating set of graph G, then
γmr(G) ≤ min{γ(G) + dimm(G), n}.

The following lemma show the property of mixed resolving set of G.

Lemma 3
Let G be a connected graph and W be a mixed resolving set. If W ⊂ V (G), then for every ui, uj ∈ W with i ̸= j,
r(ui|W ) ̸= r(uj |W ).

Proof
Let G be a connected graph and W = {u1, u2, u3, . . . , uk} ⊂ V (G). Since for every ui, uj ∈ W with i ̸= j causes
d(ui, ui) = 0 and d(ui, uj) ̸= 0, then there exists 0 on i-th element of r(ui|W ) for every ui ∈ W . It is consequently
that r(ui|W ) ̸= r(uj |W ).

Furthermore, the dominant mixed metric dimension of path, cycle, star, wheel, friendship, and complete graph
are presented in the Theorems 4, 5, 6, 7, 8, and 9, respectively.

Lemma 4
[12] Let the path graph Pn with n ≥ 2. Then the cardinally of mixed resolving set of Pn, is 2.

Theorem 4
Let Pn be path graph for n ≥ 5, then γmr(Pn) = ⌈n−4

3 ⌉+ 2.

Proof
Choose W = {u1, un, ui; i ≡ 1(mod3)} ⊂ V (Pn) for n ≥ 5. Based on Lemma 4, {u1, un} ⊂ W so that W is
mixed resolving set. We know that u2 ∼ u1, un−1 ∼ un, ui−1 ∼ ui, and ui ∼ ui+1, it implies W is a dominant
mixed resolving set. Now, assume that γmr(Pn) < ⌈n−4

3 ⌉+ 2 . Take |S| = ⌈n−4
3 ⌉+ 1. There are three conditions

for the resolver or dominator vertex as follows.

1. Choose S = W − {u1}, then we have the same representation for vertex and edge, r(u1u2|S) = r(u2|S). It
is contradiction.

2. Choose S = W − {un}, then we have the same representation for vertex and edge, r(unun−1|S) =
r(un−1|S). It is contradiction.

3. Choose S = W − {u3k+1} where u3k+1 is a vertex between ui with i ≡ 1(mod3) and 1 ≤ k ≤ n−2
3 , then we

have condition that there is a vertex not adjacent to vertex in S namely u3k ≁ u3k+1. It is contradiction.

It is clear that S is not dominant mixed resolving set. Based on Lemma 1 that |W | = ⌈n−4
3 ⌉+ 2. Thus,

γmr(Pn) = ⌈n−4
3 ⌉+ 2.

Lemma 5
[12] Let the cycle graph Cn with n ≥ 7. Then the cardinally of mixed resolving set of Cn is 3.

Theorem 5
Let Cn be cycle graph for n ≥ 7, then γmr(Cn) = γ(Cn).
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Proof
Let W = {ui; i ≡ 1(mod3)} be a subset of V (Cn) for n ≥ 7. By Lemma 5, we have {u1, u5, u6} ⊂ W so that
W is mixed resolving set. We know that ui−1 ∼ ui, and ui ∼ ui+1 such that W is a dominant mixed resolving
set. Furthermore, assume that γmr(Cn) < ⌈n

3 ⌉. Take |S| = ⌈n
3 ⌉ − 1. Choose S = W − {u3k+1} where u3k+1 is a

vertex between ui with i ≡ 1(mod3) and 1 ≤ k ≤ ⌈n
3 ⌉, then we have condition that there is a vertex not adjacent

to vertex in S. It is clear that S is not dominant mixed resolving set. Based on Lemma 1, |W | = γ(Cn). Thus,
γmr(Cn) = γ(Cn).

Star graph, denoted by Sn, has vertex set V (Sn) = {v, vi; 1 ≤ i ≤ n} and edge set E(Sn) = {vvi; 1 ≤ i ≤ n}
[2].

Theorem 6
Let Sn be star graph for n ≥ 7, then γmr(Sn) = n.

Proof
We choose W = {vi; 1 ≤ i ≤ n} ⊂ V (Sn). Every vertices in W has distinct representation as follows:

r(x|W ) =


(1, 1, 1, . . . , 1︸ ︷︷ ︸

n

), if x = v

(2, 2, 2, . . . , 2︸ ︷︷ ︸
i−1

, 0, 2, 2, 2, . . . , 2︸ ︷︷ ︸
n−i

), if x = vi

r(vvi|W ) = (1, 1, 1, . . . , 1︸ ︷︷ ︸
i−1

, 0, 1, 1, 1, . . . , 1︸ ︷︷ ︸
n−i

)

Based on the vertex or edge representation above, W is mixed resolving set. We know that v ∼ vi such that
W is a dominant mixed resolving set. Assume that γmr(Sn) < n. Take |S| = n− 1. Choose S = W − {vk}
where 1 ≤ k ≤ n, then we have condition that there is a vertex not adjacent to vertex in S namely vk ≁ y with
y ∈ S. It is clear that S does not dominant mixed resolving set. Based on Lemma 1, we get |W | = n. Therefore,
γmr(Sn) = n.

Wheel graph, denoted by Wn, has vertex set V (Wn) = {v, vi; 1 ≤ i ≤ n} and edge set E(Wn) = {vvi; 1 ≤ i ≤
n} ∪ {v1vn, vivi+1; 1 ≤ i ≤ n+ 1}.

Figure 1. Dominant Mixed Metric Dimension of S10 is 10
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Theorem 7
Let Wn be wheel graph for n ≥ 4, then γmr(Wn) = n.

Proof
Take W = {vi; 1 ≤ i ≤ n} ⊂ V (Wn) for n ≥ 4. Every vertices in W has distinct representation as follows:

r(x|W ) =



(1, 1, 1, . . . , 1︸ ︷︷ ︸
n

), if x = v

(2, 2, 2, . . . , 2︸ ︷︷ ︸
i−2

, 1, 0, 1, 2, 2, 2, . . . , 2︸ ︷︷ ︸
n−i−1

), if x = vi, 2 ≤ i ≤ n− 1

(0, 1, 2, 2, 2, . . . , 2︸ ︷︷ ︸
n−3

, 1), if x = v1

(1, 2, 2, 2, . . . , 2︸ ︷︷ ︸
n−3

, 1, 0), if x = vn

r(e|W ) =



1, 1, 1, . . . , 1︸ ︷︷ ︸
i−

, 0, 1, 1, 1, . . . , 1︸ ︷︷ ︸
n−i

), if e = vvi

(2, 2, 2, . . . , 2︸ ︷︷ ︸
i−2

, 1, 0, 0, 1, 2, 2, 2, . . . , 2︸ ︷︷ ︸
n−i−2

), if e = vivi+1, 2 ≤ i ≤ n− 2

(0, 0, 1, 2, 2, 2, . . . , 2︸ ︷︷ ︸
n−4

, 1), if e = v1v2

(0, 1, 2, 2, 2, . . . , 2︸ ︷︷ ︸
n−4

, 1, 0), if e = v1vn

(1, 2, 2, 2, . . . , 2︸ ︷︷ ︸
n−4

, 1, 0, 0), if e = vn−1vn

It is clear that, W is mixed resolving set.
We know that v ∼ vi such that W is a dominant mixed resolving set. Next, by Lemma 2, we obtained

γmr(Wn) ≥ max{dimm(Wn), γ(Wn)} = max{n, 1} = n.

Thus, γmr(Wn) = n.

We give results of dominant mixed metric dimension of graph with n− 1 and n for n is the number of vertices
in G which attain the upper bounds. Their graph attained the upper bound namely friendship graphs and complete
graph.

Friendship graph has vertex set V (Frn) = {u, ui, vi; 1 ≤ i ≤ n} and edge set E(Frn) = {uui, uvi, uivi; 1 ≤
i ≤ n} [3]. While, for complete graph Kn with vertex set V (Kn) = {ui; 1 ≤ i ≤ n} and E(Kn) = {uiui+k; 1 ≤
i ≤ n, 1 ≤ k ≤ n− i} [2]. Theorems 8 and 9 show the dominant mixed metric dimension of friendship graphs and
complete graph, respectively.

Theorem 8
Let Frn be a friendship graph with n ≥ 2, then γmr(Frn) = 2n.

Proof
Let W = {ui, vi; 1 ≤ i ≤ n} be a subset of Frn with n ≥ 2. Every vertices in W has distinct representation as
follows
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r(x|W ) =



(1, 1, 1, . . . , 1︸ ︷︷ ︸
2n−1

), if x = u

(2, 2, 2, . . . , 2︸ ︷︷ ︸
i−1

, 0, 2, 2, 2, . . . , 2︸ ︷︷ ︸
n−i

, 2, 2, 2, . . . , 2︸ ︷︷ ︸
i−1

, 1, 2, 2, 2, . . . , 2︸ ︷︷ ︸
n−i

), if x = ui, 1 ≤ i ≤ n

(2, 2, 2, . . . , 2︸ ︷︷ ︸
i−1

, 1, 2, 2, 2, . . . , 2︸ ︷︷ ︸
n−i

, 2, 2, 2, . . . , 2︸ ︷︷ ︸
i−1

, 0, 2, 2, 2, . . . , 2︸ ︷︷ ︸
n−i

), if x = vi, 1 ≤ i ≤ n

r(e|W ) =



(2, 2, . . . , 2︸ ︷︷ ︸
i−1

, 0, 2, 2, . . . , 2︸ ︷︷ ︸
n−i

, 2, 2, . . . , 2︸ ︷︷ ︸
i−1

, 0, 2, 2, . . . , 2︸ ︷︷ ︸
n−i

), if e = uivi, 1 ≤ i ≤ n

(1, 1, . . . , 1︸ ︷︷ ︸
i−1

, 0, 1, 1, . . . , 1︸ ︷︷ ︸
n−i

, 1, 1, . . . , 1︸ ︷︷ ︸
i−1

, 1, 1, 1, . . . , 1︸ ︷︷ ︸
n−i

), if e = uui, 1 ≤ i ≤ n

(1, 1, . . . , 1︸ ︷︷ ︸
i−1

, 1, 1, 1, . . . , 1︸ ︷︷ ︸
n−i

, 1, 1, . . . , 1︸ ︷︷ ︸
i−1

, 0, 1, 1, . . . , 1︸ ︷︷ ︸
n−i

), if e = uvi, 1 ≤ i ≤ n

The vertex representations above show that W is mixed resolving set. We show that W is also dominating
set since for u /∈ W adjacent to ui, vi ∈ W such that W is dominant mixed resolving set with |W | = 2n and
γmr(Frn) ≤ 2n.
Next, assume γmr(Frn) < 2n. Taking |S| = 2n− 1, then there are two cases: vk /∈ S or vl /∈ S.

1. for vk /∈ S, then we get the same representation for vertex and edge,
r(u|S) = r(uvk|S) = (1, 1, 1, . . . , 1︸ ︷︷ ︸

2n−1

). It is contradiction.

2. for vl /∈ S, then we get the same representation for vertex and edge,
r(u|S) = r(uvl|S) = (1, 1, 1, . . . , 1︸ ︷︷ ︸

2n−1

). It is contradiction.

Since S is not dominant mixed resolving set of Frn. Thus, γmr(Frn) = 2n.

Theorem 9
Let Kn be a complete graph with n ≥ 3, then γmr(Kn) = n.

Proof
Take W = {ui; 1 ≤ i ≤ n} as a subset of Kn with n ≥ 3. Every vertices in W has distinct representation as follows

r(ui|W ) = (1, 1, 1, . . . , 1︸ ︷︷ ︸
i−1

, 0, 1, 1, 1, . . . , 1︸ ︷︷ ︸
n−i

),

r(uiui+k|W ) = (1, 1, 1, . . . , 1︸ ︷︷ ︸
i−1

, 0, 1, 1, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, 1, 1, 1, . . . , 1︸ ︷︷ ︸
n−i−k

).

It is shows that W is mixed resolving set. Clearly the set W is obvious dominant mixed resolving set with
|W | = n and γmr(Kn) ≤ n.
Now, suppose that γmr(Kn) < n and |S| = n− 1, for uk /∈ S. Since the representation for vertex and edge are
r(uk|S) = r(ukul|S) = (1, 1, 1, . . . , 1︸ ︷︷ ︸

l−1

, 0, 1, 1, 1, . . . , 1︸ ︷︷ ︸
n−l−1

), then S is not dominant mixed resolving set of Kn. Thus,

γmr(Kn) = n.

Next, the dominant mixed metric dimension of graphs resulting on corona product is provided.

Definition 1
[13] Let G and H be two connected graphs. The corona product between G and H , denoted by G⊙H , is defined
as the graph created by taking one duplicate of G and |V (G)| copies of H and connecting the j-th vertex of G to
every vertices in the j-th duplicate of H .
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Proposition 1
[14] Let G⊙H be a corona product of G and H , then

dimm(G⊙H) = |V (G)||V (H)|.

The following theorem shows the dominant mixed metric dimension of corona product.

Theorem 10
Let G⊙H be a corona product of G and H , Then

γmr(G⊙H) = |V (G)||V (H).

Proof
We choose W = {ui,j ; 1 ≤ i ≤ n, 1 ≤ j ≤ m} as a subset of V (G⊙H). Every vertices in W can be present as the
following distinct representations:

1. For every vertices ui,j ∈ W . Based on Lemma 3, r(uk,j |W ) ̸= r(ul,j |W ).
2. For dG⊙H(uk, uk,j) = 1 and

dG⊙H(uk, ul,j) = dG(uk, ul) + dG⊙H(ul, ul,j) = dG(uk, ul) + 1.

We have r(uk|W ) ̸= r(ul|W ).
3. For dG⊙H(ukuk+1, uk,j) = 1 and

dG⊙H(ukuk+1, ul,j) = min{d(uk, ul), d(uk+1, ul)}+ dG⊙H(ul, ul,j)

= min{d(uk, ul), d(uk+1, ul)}+ 1.

We have r(ukuk+1|W ) ̸= r(uluk+1|W ).
4. For dG⊙H(ukuk,s, uk,j) = 1 with s ̸= j, dG⊙H(ukuk,s, uk,s) = 0 and

dG⊙H(ukuk,j , ul,j) = dG⊙H(uk, ul) + dG⊙H(uL, ul,j) = dG⊙H(uk, ul) + 1,

then there exists 0 on i+ j-th element of r(ukuk,j |W ) for every uk,j ∈ W . It is consequently that
r(ukuk,j |W ) ̸= r(ukuk,s|W ).

5. For dH(ukuk+1, uk,j) = 1 and

dG⊙H(ukuk+1, ul,j) = min{d(uk, ul), d(uk+1, ul)}+ dG⊙H(ul, ul,j)

= min{d(uk, ul), d(uk+1, ul)}+ 1.

We get r(ukuk+1|W ) ̸= r(uluk+1|W ).
6. For

dH(uk,suk,s+1, uk,j) =

{
2, if uk,j ≁ uk,s+1, uk,j ≁ uk,s

1, if uk,j ∼ uk,s+1 or uk,j ≁ uk,s

and

dG⊙H(uk,suk,s+1, ul,j) = dG⊙H(uk,s, uk) + dG⊙H(uk, ul,j)

= dG⊙H(uk, ul,j) + 1,

then there exists 0 on i+ j-th element of r(uk,suk,j |W ) for every uk,j ∈ W . Such that, we obtained
r(uk,suk,j |W ) ̸= r(uk,ruk,j |W ).

The vertex or edge representations above show that W is mixed resolving set.
We know that v ∼ vi such that W is a dominant mixed resolving set.
Furthermore, Based on Lemma 2, we have

γmr(G⊙H) ≥ max{dimm(G⊙H), γ(G⊙H)} = max{|V (G)||V (H)|, |V (G)|}
= |V (G)||V (H)|.

Thus, γmr(G⊙H) = |V (G)||V (H)|.
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3. Conclusion

We have characterized the bounds of dominant mixed metric of graphs which depend on domination number or
mixed metric dimension of graph. There are some open problem for this topic as follows.

Open Problem 1
Determine all graph with the characterization γmr(G) = 2?

Open Problem 2
Determine all graph with the characterization γmr(G) = dimm(G) or γmr(G) = γ(G)?
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