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Abstract Kernel functions are essential for designing and analyzing interior-point methods (IPMs). They are used to
determine search directions and reduce the computational complexity of the interior point method. Currently, IPM based on
kernel functions is one of the most effective methods for solving LO [1, 20], second-order cone optimization (SOCO) [2],
and symmetric optimization (SO) and is a very active research area in mathematical programming. This paper presents a
large-update primal-dual IPM for SDO based on a new bi-parameterized hyperbolic kernel function. Then we proved that
the proposed large-update IPM has the same complexity bound as the best-known IPMs for solving these problems. Taking
advantage of the favorable characteristics of the kernel function, we can deduce that the iteration bound for the large update
method is O

(√
n logn log

n

ε

)
when a takes a special value utilizing the favorable properties of the kernel function. These

theoretical results play an essential role in the design and analysis of IPMs for CQSCO [8] and the Cartesian P∗ (κ)-SCLCP
[7]. The proximity function has never been used. To validate our algorithm’s efficacy and effectiveness, examples illustrate
the applicability of our main results, and we compare our numerical results with some alternatives presented in the literature.
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1. Introduction

We consider the semidefinite optimization problem in its primal format.

(P )

{
min tr (CX)
subject to tr (AiX) = bi, 1 ≤ i ≤ m, X ⪰ 0,

and its dual problems.

(D)

 max bT y

subject to
m∑
i=1

yiAi + S = C, S ⪰ 0,

where each Ai ∈ Sn, b = (b1, b2, ..., bm)
T ∈ Rm, y ∈ Rm and C ∈ Sn. Moreover, the matrices Ai are linearly

independent, with y ∈ Rm and S ∈ Sn. In addition, X ⪰ 0 indicates that X is a symmetric positive semidefinite
matrix. Moreover, the matrices Ai are linearly independent.

∗Correspondence to: Bachir Bounibane (Email: b.bounibane@univ-batna2.dz). Department of Statistics and Data Sciences, University of
Batna 2, Fesdis, Batna, 05078, Algeria.

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 2024 International Academic Press



1746 PRIMAL-DUAL INTERIOR-POINT ALGORITHMS FOR SDO

Semidefinite programming is an essential numerical analysis tool in systems and control theory. (SDP) covers
many scientific fields, including engineering, control theory, electronic structure problems, and statistics, see
[23, 26].

In (2018), Fathi-Hafshejani et al [13] in contrast, hand demonstrated that kernel functions with trigonometric
barrier terms produce good results.

The majority of the kernel functions that are utilized in IPMs may be categorized as either logarithmic, simple
algebraic, exponential, or trigonometric, given the precedence that has been established. The remaining kernel
functions are a binary combination of these different kinds. For more research on primal-dual IPMs that are based
on a kernel function, see various authors, including Bouafia and Yassine [4]; Boudjellal et al. [5]; Fathi-Hafshejani
et al. [13]; Li et al., [16]; Fathi-Hafshejani and Moaberfard, [12]. Inspired by their work, this research addresses
primal-dual IPMs for SDO based on the novel bi-parameterized hyperbolic kernel function.

ψr (z) =
z2 − 1

2
−
∫ z

1

r(
1
w−1)dw r ≥ e. (1)

We deduce that the iteration bounds are O
(√

n(log n) log n
ε

)
for large-update methods, currently the best-known

bounds.
Additionally, based on numerical results, our newly proposed kernel function performs favorably in practice

compared to certain existing kernel functions in the literature.
This paper is structured as follows. Section 2 starts by reviewing the basics of IPMs for SDO, such as the central

path. Section 3 presents details concerning the parametric kernel function and barrier function. We show that the
kernel function meets the eligibility conditions. In Section 4, we derive the algorithm’s inner iteration bound and
total iteration bound. The results of the experimental tests are presented in Section 5. Section 6 is the concluding
part of the paper. It offers some conclusions and remarks.

The following notational conventions are utilized throughout the paper. The sets of real, nonnegative real, and
positive real vectors with n components are denoted by Rn, Rn

+, and Rn
++, respectively. E represente an n× n

identity matrix. If A is a n× n matrix, then its trace is written as tr(A) =
n∑

i=1

Aii . We use the matrix inner

product, i.e., tr(MN) :=
n∑

i,j=1

mijnij . For any Q ∈ Sn
++, the expression Q

1

2 denotes its symmetric square root.

For any V ∈ Sn, we denote by λ (V ) the vector of eigenvalues of V arranged in non-increasing order, that is,
λ1 (V ) ≤ λ2 (V ) ≤, ..., λn (V ). If h(x) ≥ 0 is a real-valued function of the real nonnegative variable, the notation
h(x) = O(x) means that h(x) ≤ kx for some positive constant k and h(x) = Θ(x) that k1x ≤ h(x) ≤ k2x for two
positive constants k1 and k2.

2. Preliminaries

2.1. The central path and search direction for SDO

We assume that both (P ) and (D) satisfy the interior-point condition (IPC), i.e., there exists an(
X0 ≻ 0, y0, S0 ≻ 0

)
such that

tr
(
AiX

0
)
= bi, 1 ≤ i ≤ m,

m∑
i=1

y0iAi + S0 = C, X0 ≻ 0, S0 ≻ 0.

We can immediately confirm that a pair of optimal solutions for (P ) and (D) corresponds to solving the following
Newton system: 

tr (AiX) = bi, i = 1, ...,m, X ⪰ 0,
m∑
i=1

yiAi + S = C, S ⪰ 0,

XS = 0.

(2)
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The basic idea of primal-dual IPMs is to replace the complementarity condition in (2) with the parameterized
equation XS = µE (µ > 0). This provides the next system.

tr (AiX) = bi, 1 ≤ i ≤ m, X ⪰ 0,
m∑
i=1

yiAi + S = C, S ⪰ 0,

XS = µE.

(3)

This system (3) possesses a unique solution, indicated by (X(µ), y(µ), S(µ)) for any µ > 0.
The set of µ-centers (with µ > 0) defines a homotopy path, which is called the central path of (P ) and (D)

(De Klerk.,[9]). Newton’s method is a well-known procedure to solve a system of nonlinear equations. Suppose
the point (X, y, S) is strictly feasible. Applying Newton’s method to the system (3), thus yielding the following
system: 

tr (Ai∆X) = 0, 1 ≤ i ≤ m, X ⪰ 0,
m∑
i=1

∆yiAi +∆S = 0, S ⪰ 0,

X∆S +∆XS = µE−XS.

(4)

Note that, ∆S is symmetric due to the second equation in (4). Important observation ∆X is not always symmetric.
There are various ways for symmetrizing the third equation of (4). In this paper, we examine the symmetrization

approach that produces NT-direction. (Nesterov and Todd, [17]), which uses the positive definite matrix. Define
the matrix

P := X
1
2 (X

1
2SX

1
2 )−

1
2X

1
2 = S− 1

2

(
S

1
2XS

1
2 )
) 1

2

S− 1
2 .

Moreover, also define D = P
1
2 , where P

1
2 denotes the symmetric square root of P . Then the matrix D can be used

to scale X and S to the same matrix V, defined by.

V =
1
√
µ
D−1XD−1 =

1
√
µ
DSD =

1
√
µ
(D−1XSD)

1
2 . (5)

The matrices D and V are symmetric and positive definite.
Applying on (4) some fundamental reductions of (5) we have

tr
(
ĀiDX

)
= 0, 1 ≤ i ≤ m,

m∑
i=1

∆yiĀi +DS = 0,

DX +DS = V −1 − V,

(6)

with
Āi =

1
√
µ
DAiD, 1 ≤ i ≤ m;

and
DX =

1
√
µ
D−1∆XD−1, DS =

1
√
µ
D∆SD. (7)

We can say that tr(DXDS) = 0, which is coming from the first and second equations of (6) or from the
orthogonality of ∆X and ∆S.

We introduce the new search direction in this section. However, we begin by defining the concept of a matrix
function. (Horn and Johnson, [15]; Roos et al. [21])

Definition 1
Let V ∈ Sn

++ and V = QT
V diag (λ (V ))QV where QV is any orthonormal matrix that diagonalizes V. Let ψ (t) be

defined in (1). Then the matrix valued-function ψ(V ) : Sn
++ −→ Sn is defined by

ψ(V ) = QT diag (ψ(λ1(V )), ψ (λ2(V )) , ..., ψ (λn(V )))Q. (8)
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If the function ψ (t) is differentiable on the interval ]0,+∞[ such that ψ′ (t) > 0, ∀t > 0, the matrix function
ψ′(V ) may be obtained by substituting ψ (λi(V )) in (8) with ψ′(λi(V )) for each i.

Definition 2
Ψ(V ) : Sn

++ → R+ such that

Ψ(V ) = tr(ψ(V )) =

n∑
i=1

ψ(λi(V )), (9)

where ψ(V ) is given by (8) .

Addressing ( Peng et al., [18, 19] ), the second equation in the system (6) can be rewritten as DX +DS =
−∇Ψ(V ). As a result, this system might be constructed as follows:

tr
(
ĀiDX

)
= 0, 1 ≤ i ≤ m,

m∑
i=1

∆yiĀi +DS = 0,

DX +DS = −∇Ψ(V ) .

(10)

where ∇Ψ(V ) denotes the gradient of Ψ(V ), i.e., ψ′ (V ). This system has a unique solution DX , DS , and ∆y,
which can be used to compute ∆X and ∆S from (7) (Wang et al. [25])

Choosing an appropriate step size α, we will use (∆X,∆y,∆S) as the new search direction, the new iterate
(X+, y+, S+) is given by

X+ = X + α∆X, y+ = y + α∆y, S+ = S + α∆S. (11)
Due to the first two equations of the system (10), DX and DS are orthogonal i.e., tr(DXDS) = tr(DXDS) = 0.
Then we have

Ψ(V ) = 0 ⇔ V = E ⇔ DX = DS = 0n×n ⇔ X = X (µ) , S = S (µ) .

The algorithm is presented in its generic form.
Algorithm 1
Generic primal-dual algorithm for SDO

Input
a threshold parameter τ ≥ 1;
an accuracy parameter ε > 0;
a fixed barrier update parameter θ, 0 < θ < 1;
X0 ≻ 0, S0 ≻ 0 and µ0 = 1 such that Ψ

(
X0, S0, µ0

)
≤ τ.

begin
X := X0; S = S0; µ = µ0

while nµ ≥ ε do
begin
µ := (1− θ)µ
while Ψ(X,S, µ) ≥ τ do

begin
Solve system (10) and use (7) for (∆X, ∆y, ∆S)

Choose a suitable step size α
(X, y, S) := (X, y, S) + α (∆X,∆y,∆S) .
end

end
end

3. Properties of the new parametric kernel function

This section introduces a novel parametric kernel function. Subsequently, several advantageous characteristics of
this function are presented.
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3.1. Kernel function properties

In the sequel, we derive the three first derivatives of ψr (z) with respect to z as follows:

ψ′
r (z) = z − r(

1
z−1), for all z > 0, (12)

ψ′′
r (z) = 1 +

log r

z2
r(

1
z−1), for all z > 0, (13)

ψ′′′
r (z) = − log r (2z + log r)

z4
r(

1
z−1), for all z > 0, (14)

We can deduce from (13) that ψ′′
r (z) > 1 for z > 0, implying that ψr(z) is strongly convex over R++. There is also

ψr(1) = ψ′
r(1) = 0. Thus, ψr(z) is indeed a kernel function.

Because of the conditions ψr(1) = ψ′
r(1) = 0, we can completely describe ψr(z) by its second derivative:

ψr(z) =

∫ z

1

∫ ξ

1

ψ′′
r (ζ) dζdξ.

Next, the lemma proves the qualification of our new kernel function (1).

3.2. The new kernel function’s eligibility

Lemma 1
Let the function ψr (z) be defined as in (1). Then, we have

zψ′′
r (z) + ψ′

r (z) > 0, z < 1, (15)
zψ′′

r (z)− ψ′
r (z) > 0, z > 1, (16)

ψ′′′
r (z) < 0 z > 0, (17)

2 (ψ′′
r (z))

2 − ψ′
r(z)ψ

′′′
r (z) > 0, z < 1, (18)

ψ′′
r (z)ψ

′
r(βz)− βψ′

r(z)ψ
′′
r (βz) > 0, z > 1, β > 1. (19)

Proof
For (15) and all z > 0, we get the following:

zψ′′
r (z) + ψ′

r (z) = 2z +

(
log r

z
− 1

)
r(

1
z−1)

≥
[
2z +

(
log r

z
− 1

)(
1 +

(
1− z

z

)
log r

)]
.

zψ′′
r (z) + ψ′

r (z) ≥ 0 ⇔ log r − z ≥ 0

This last inequality is due to the fact that r ≥ e, and z ∈ (0, 1), this proves the condition is satisfied. For (16) By
substituting ψ′

r (z) and ψ′′
r (z), we obtain,

zψ′′
r (z)− ψ′

r (z) =

(
log r

z
+ 1

)
r(

1
z−1) > 0, z > 0.

The proof (17). It is simple to observe ψ′′′
r (z) < 0 from (14).

For (18) , we have

2 (ψ′′
r (z))

2 − ψ′
r(z)ψ

′′′
r (z) = 2

[
1 +

log r

z2
r(

1
z−1)

]2
+

[
(2z + log r) log r

z4
r(

1
z−1)

]
×
[
z − r(

1
z−1)

]
=

[
2 +

z log r (log r + 6z) r(
1
z−1) + log r (log r − 2z) r2(

1
z−1)

z4

]
,
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If r ≥ e2, the condition (18) is unquestionably satisfied for 0 < z < 1. So it’s still clear that:[
2 (ψ′′

r (z))
2 − ψ′

r(z)ψ
′′′
r (z) > 0

]
⇔

[
z log r (log r + 6z) r(

1
z−1) + log r (log r − 2z) r2(

1
z−1) > 0

]
(20)

Let’s examine the case 0 < r < e2 and z ∈
(
0, log r

2

)
. The relationship (20) is obviously satisfied. It’s sufficient to

prove that (18) holds for {
z ∈

(
log r
2 , 1

)
r ∈

[
e, e2

[
.

Then [
2 (ψ′′

r (z))
2 − ψ′

r(z)ψ
′′′
r (z) > 0

]
⇔

[
r(

1
z−1) ≤ (log r + 6z) z

2z − log r

]
⇔

[
r(

1
z−1) ≤

(
z log r

2z−log r

+ 6z2

2z−log r

)]
,

and this is true if
r(

1
z−1) <

log r

2− log r
z

(21)

Let u = 1
z . The relation (21) can then be expressed as follows:

ru−1 <
log r

2− u log r
, u ∈

(
1

log r
,

2

log r

)
,

which to
1 > (

2

log r
− u)ru−1. (22)

For (22) , let h (u) = 1− ( 2
log r − u)ru−1, then{

h′ (u) = ru−1 (−1 + u log r)

h′′ (u) = ru−1. (log r)
2
u > 0 for t > 0.

If we set h′ (u) = 0, we obtain u = 1
log r . Since h(u) is strictly convex and has a global minimum,

h

(
1

log r

)
= 1−

(
1

log r

)
r

1−log r
log r = 1−

(
1

log r

)
r−1+ 1

log r > 0.

We have the result

From the exponential convexity property of the kernel function ψ, we can deduce the following result for the
matrix barrier function Ψ(V ).

Lemma 2 (Proposition 3 in Peng et al., [20] )
For any V1, V2 ≻ 0,

Ψ

([
V

1
2
1 V2V

1
2
1

] 1
2

)
≤ 1

2
(Ψ (V1) + Ψ (V2)) .

Lemma 3
Given ψr (z) , we have the following results confirmed.

1

2
(z − 1)

2 ≤ ψr (z) ≤ 1

2
ψ′
r (z)

2
, z > 0, (23)

ψr (z) ≤ 1

2
ψ′′
r (1) (z − 1)

2
, z ≥ 1, (24)

∥V ∥ ≤
√
n+

√
2 Ψ (V ). ∀V ≻ 0. (25)
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Proof
For (23) , according to the definition of ψr (z) , we have:

ψr (z) ≥
1

2
(z − 1)

2
,

which proves the first inequality. The second inequality is obtained as follows:

ψr (z) =

∫ z

1

∫ ξ

ψ′′
r (ζ) dζdξ ≤

∫ z

1

∫ ξ

ψ′′
r (ξ)ψ′′

r (ζ) dζdξ

=

∫ z

1

ψ′′
r (ξ)ψ′

r (ξ) dξ

=

∫ z

1

ψ′
r (ξ) dψ

′
r (ξ)

=
1

2
(ψ′

r (z))
2
.

For (24), since ψr (1) = ψ′
r (1) = 0, ψ′′′

r (z) < 0, ψ′′
r (1) = 1 + log r, and by using Taylor’s expansion we have

for some ξ, such that 1 ≤ ξ ≤ z.

ψr (z) = ψr (1) + ψ′
r (1) (z − 1) +

1

2
ψ′′
r (1) (z − 1)

2
+

1

6
ψ′′′
r (ξ) (ξ − 1)

3

=
1

2
ψ′′
r (1) (z − 1)

2
+

1

6
ψ′′′
r (ξ) (ξ − 1)

3

<
1

2
ψ′′
r (1) (z − 1)

2
,

which completes the proof.
For (25) , using, the left-hand side of (23) , and the Cauchy-Schwarz inequality, one can obtain

2Ψ (V ) = 2

n∑
i=1

ψa (λi (Vi)) ≥
n∑

i=1

(λi (Vi)− 1)
2

=

[
n∑

i=1

λi (Vi)
2 − 2

n∑
i=1

λi (Vi) + n

]
= ∥V ∥2 − 2.ETV + ∥E∥2 ≥

(
∥V ∥2 − 2 ∥V ∥ ∥E∥+ n

)
=

(
∥V ∥ −

√
n
)2
,

that is to say
∥V ∥ ≤

√
n+

√
2Ψ (V ) =

√
n+

√
2Ψ (V ).

where E denotes the all one vector. This completes the proof.

Lemma 4
Let β ≥ 1. Then

ψr (βz) ≤ ψr (z) +
1

2

(
β2 − 1

)
z2.

Proof

Let us define ψr (z) as ψr (z) =
z2−1

2 + φr (z) , where φr (z) = −
z∫
1

r(
1
z−1). Then we have:

φ′
r (z) = −r(

1
z−1) < 0
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i.e., φr (z) is thus a decreasing function when z > 0. Thus φr (z) (βz) ≤ φr (z) for β ≥ 1. So

ψr (βz)− ψr (z) =
1

2

(
β2 − 1

)
z2 + φr (βz)− φr (z) ≤

1

2

(
β2 − 1

)
z2.

That implies the lemma.

Lemma 5
Let ϱ : [0,+∞) −→ [1,+∞) be the inverse function of ψr (z) for z ≥ 1 and ρ : [0,+∞) −→ (0, 1] the inverse
function of −1

2 ψ
′
r (z) for z ∈ (0, 1], we have:

√
2u+ 1 ≤ ϱ (u) ≤

√
2u+ 1 u ≥ 0, (26)

ρ (u) ≥ 1

1 + log(1+2u)
log r

u ≥ 0. (27)

Proof
For (26), let u = ψr (z) for z ≥ 1. Then ϱ (u) = z, z ≥ 1, using (23) of Lemma 3, we have u = ψr (z) ≥ 1

2 (z − 1)
2,

so z = ϱ (u) ≤
√
2u+ 1. By the definition of ψr (z) we have

u = ψr (z) = ψb (z) +
z2 − 1

2
≤ z2 − 1

2
⇔ 2u ≤ z2 − 1

⇔ z = ϱ (u) ≥
√
1 + 2u.

Thus
z = ϱ (u) ≥

√
1 + 2u.

For (27) . To find the inverse function of the restriction of −1
2 ψ

′
r (z) in the interval (0, 1], we need to solve the

equation −1
2 ψ

′
r (z) = u for z ∈ (0, 1]. To do so, we have

2u = −ψ′
r (z) ⇔ −

(
z − r(

1
z−1)

)
= 2u.

This implies that

r(
1
z−1) = z + 2u ≤ 1 + 2u ⇔ 1

z
≤ 1 +

log (1 + 2u)

log r

⇔ z = ρ (u) ≥ 1

1 + log(1+2u)
log r

,

where the last inequality is obtained from the fact that z ≤ 1. This completes the proof.

We now present a norm-based proximity measure

δ (V ) :=
1

2
∥∇Ψ(V )∥ =

1

2

√
tr(ψ′(V )2). (28)

This lemma establishes a lower bound for the function δ (V ) using the proximity function Ψ(V ).

Lemma 6
Let δ (V ) be defined as in (28) .

δ (V ) ≥
√

Ψ(V )

2
. V ∈ Sn

++, r ≥ e (29)
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Proof
Using (23)

Ψ (V ) =

n∑
i=1

ψr (λi (V ))

≤ 1

2

n∑
i=1

ψ′
r (λi (V ))

2

=
1

2
∥▽Ψ∥2 = 2δ (V )

2
.

So that δ (V ) ≥
√

Ψ(V )
2 . This finishes the proof.

Remark 1
We always assume that τ ≥ 1. During this work, we use Lemma 6 and the assumption that Ψ(v) ≥ τ we have

δ(V ) ≥
√

1

2
.

Theorem 1 (Theorem 3.2, [1])
Assume that ϱ it is defined as in Lemma 5. and V ≻ 0, β ≥ 1, then

Ψ(βV ) ≤ nψ

(
βϱ

(
Ψ(V )

n

))
.

Lemma 7
Let 0 ≤ θ < 1 and V+ = V√

1−θ
. If Ψ(V ) ≤ τ then we have:

Ψ(V+) ≤ Ψ(V ) +
1

2

(
θ

1− θ

)[
n+ 2 Ψ (V ) + 2

√
2n Ψ(V )

]
, (30)

Proof
For (30) , using Lemma 4 with β = 1√

1−θ
, Lemma 3 and (25) we obtain

Ψ(V+) = Ψ (βV ) =

n∑
i=1

ψa (βVi) ≤
n∑

i=1

[
ψa (Vi) +

1

2

(
β2 − 1

)
V 2
i

]
= Ψ(V ) +

1

2

(
β2 − 1

)∑n

i=1
V 2
i

= Ψ(V ) +
1

2

(
θ

1− θ

)
∥V ∥2

≤ Ψ(V ) +
1

2

(
θ

1− θ

)(√
n+

√
2Ψ (V )

)2
= Ψ(V ) +

1

2

(
θ

1− θ

)(
n+ 2Ψ (V ) + 2

√
2nΨ(V )

)
.

We obtain

Ψ(V+) ≤ τ +
θ

2 (1− θ)

(
n+ 2τ + 2

√
2nτ

)
.

This completes the proof.
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Denote

Ψ̄0 =
2τ + nθ + 2θ

√
2nτ

1− θ
, (31)

We’ll utilize Ψ̄0 for the upper bounds of Ψ(V ) for large-update methods throughout the algorithm.

Remark 2
For the large-update method, by taking τ = O (n) , θ = Θ(1) we have Ψ̄0 = O (n)

Now we determine a default step size and obtain an upper bound for the decrease of the barrier function Ψ(V )
during an inner iteration.

4. Analysis of the interior-point algorithm for SDO

4.1. Default value for the step size

We are utilizing (11) and (7) . After a step of size α, the next iteration is determined by

X+ := X + α∆X = X + α
√
µDDXD =

√
µD(V + αDX)D,

S+ := S + α∆S = S + α
√
µD−1DSD

−1 =
√
µD−1(V + αDS)D

−1.

We obtain the result from (5)by defining the matrix V after the step as V+.

V+ =
1
√
µ
(D−1X+S+D)

1
2

We can verify that V 2
+ is unitarily similar to the matrix X

1
2
+S+X

1
2
+ and thus to (V + αDX)

1
2 (V + αDS)(V +

αDX)
1
2 . This implies that the eigenvalues of V+ are precisely the same as those of the matrix

Consequently, the eigenvalues of the matrix V+ are the same as those of[
(V + αDX)

1
2 (V + αDS)(V + αDX)

1
2

] 1
2

.

Since the proximity after one step is defined by Ψ(V+), and then we have

Ψ(V+) = Ψ

([
(V + αDX)

1
2 (V + αDS)(V + αDX)

1
2

] 1
2

)
.

By Lemma 2, we obtain

Ψ(V+) ≤
1

2
[Ψ(V + αDX) + Ψ(V + αDS)] .

Defining

f (α) := Ψ(V+)−Ψ(V ).

Due to Lemma 2 and the definition of f (α), it follows that f (α) ≤ f1 (α) where

f1 (α) :=
1

2
(Ψ(V + αDX) + Ψ(V + αDS))−Ψ(V ).

Obviously
f (0) = f1(0) = 0.

When we take the first two derivatives of f1(α) with respect to α, we get the following:

f ′1(α) =
1

2
tr (ψ′(V + αDX)DX + ψ′(V + αDS)DS) ,
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and

f ′′1 (α) =
1

2

d2

dα2
tr (ψ(V + αDX) + ψ(V + αDS))

=
1

2
tr
(
ψ′′(V + αDX)D2

X + ψ′′(V + αDS)D
2
S

)
.

It is clear that f1(α) > 0 unless DX = DS = 0.
Using the third equation of system (10) and (28) , we get

f ′1(0) =
1

2
tr[ψ(V )′DX + ψ(V )′DS ] =

1

2
tr (ψ′(V )(DX +DS))

=
1

2
tr [ψ(V )′ (−ψ′(V ))] =

1

2
tr
(
−ψ′(V )2

)
= −2δ2 (V ) . (32)

In the following, we will utilize the abbreviated notation: δ := δ(V ) and Ψ := Ψ(V ).
Similar to the LO case, the following lemma holds for all kernel functions that satisfy ψ′′′ (z) < 0. (see Wang

and Bai., [24]).

Lemma 8
Let δ be defined as in (28). Then we have

f ′′1 (α) ≤ 2δ2ψ′′(λn(V )− 2αδ),

where λn(V ) is the smallest eigenvalue of V.

Our objective in introducing a suitable step size is for it to be chosen so that X+ and S+ are realizable and f(α)
decreases adequately.

Without proof, from Lemmas 4.2-4.5 in (Bai et al.,[1] ). We have the following Lemmas 9, 10, 11 and 13.

Lemma 9
If the step size α satisfies

ψ′(λn(V ))− ψ′(λn(V )− 2αδ) ≤ 2δ, (33)

then
f ′(α) ≤ 0.

Lemma 10
Let ρ : [0,∞) → (0, 1] denote the inverse function of the restriction of - 12ψ

′(z) on the interval (0, 1], then the largest
possible value of the step size of α satisfying (33) is given by

ᾱ :=
1

2δ
(ρ(δ)− ρ (2δ) .

Lemma 11
Let ρ and ᾱ as defined in Lemma 10. Then

ᾱ ≥ 1

ψ′′ (ρ (2δ))
.

As we did with LO, we use

ᾱ =
1

ψ′′ (ρ (2δ))
(34)

The necessary step size α is determined for the algorithm.

Lemma 12
Let ρ and ᾱ be as defined in Lemma 11. If Ψ(v) ≥ τ ≥ 1, then we have

ᾱ ≥ 1

8δ log r
[
1 + log(1+4δ)

log r

]2 .
Stat., Optim. Inf. Comput. Vol. 12, November 2024



1756 PRIMAL-DUAL INTERIOR-POINT ALGORITHMS FOR SDO

Proof
From Lemma 11 using z = 2δ, (27) and (29), we get

ᾱ ≥ 1

ψ′′
r (ρ (2δ))

=
1

1 + log r
(ρ(2δ))2

r(
1

ρ(2δ)
−1)

≥ 1

1 + log r (4δ + 1)
[
log(4δ+1)

log r + 1
]2 .

Using Remark 1, one has

ᾱ ≥ 1
√
2δ log r +

(
1 + log(1+4δ)

log r

)2 (
4δ +

√
2δ
)
log r

≥ 1

2δ log r +
(
1 + log(1+4δ)

log r

)2
(4δ + 2δ) log r

.

This implies that

ᾱ ≥ 1

8δ
(
1 + log(1+4δ)

log r

)2
log r

.

This completes the proof.

Denoting

α̃ =
1

8δ
[
1 + log(1+4δ)

log r

]2
log r

, (35)

4.2. Decrease the Value of Ψ(V )

Lemma 13
If the step size α is such that α ≤ ᾱ, then

f(α) ≤ −αδ2.

Lemma 14
If the step size α̃ in as (34) Then we have

f (α̃) ≤ − δ2

ψ′′ (ρ (2δ))
. (36)

Indeed, the upper bound for the decreasing value of proximity in the inner iteration may be obtained through the
following lemma

Lemma 15
Let α̃ be as defined in (35) and Ψ(v) ≥ 1. Then we have the following upper bound for f (α̃) :

f (α̃) ≤ −
√
Ψ

16 log r

[
1 +

log(1+2
√
Ψ0)

log r

]2 . (37)
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Proof
According to Lemma 13, with α = α̃ and (35), we have

f (α̃) ≤ −α̃δ2

= − δ2

8δ log r
[
1 + log(1+4δ)

log r

]2
≤ −

√
Ψ

16 log r

[
1 +

log(1+2
√
Ψ0)

log r

]2 .
This proves the theorem.

4.3. Iteration complexity

We first offer the following technical result to determine an upper bound K for the number of inner iterations.

Lemma 16
Suppose that a sequence

{
tk > 0, k = 0, 1, 2, ...,K

}
is satisfying the following inequality:

tk+1 ≤ tk − ηt1−γ
k , k = 0, 1, 2, ...,K − 1,

where η > 0 and γ ∈ (0, 1] . Then K ≤
⌈
tγ0
ηγ

⌉
.

(35) shows the diminution of every inner iteration. In [18] we may obtain the proper values of η and γ ∈ (0, 1].

η =
1

16 log r

(
1 +

log(1+2
√
Ψ0)

log r

)2 , γ =
1

2
.

Theorem 2
Let Ψ̄0 be defined as in (31) and let L is the total number of inner iterations in the outer iteration for large-update
methods. We have

L ≤ 32 log r

1 +
log
(
1 + 2

√
Ψ̄0

)
log r

2

Ψ̄
1
2
0 ,

Proof
By Lemma 16 and Theorem 1, we have

L ≤ Ψ̄γ
0

ηγ
= 32 log r

1 +
log
(
1 + 2

√
Ψ̄0

)
log r

2

Ψ̄
1
2
0 .

This proves the lemma

The number of outer iterations is bounded above by log n
ϵ

θ (see [21] Lemma II.17, page 116). By multiplying
the number of outer iterations by the number of inner iterations, we get an upper bound for the total number of
iterations, which is32 log r

 log r + log
(
1 + 2

√
Ψ̄0

)
log r

2

Ψ̄
1
2
0

1

θ
log

n

ϵ

 , for large -update methods.
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For large-update methods, set τ = O(n) and θ = Θ(1). In special cases, by choosing

r = 1 + 2

(
nθ + 2τ + 2

√
2nτ

2 (1− θ)

) 1
2

, (38)

we get the so far best known LO case complexity, i.e. O
(√

n log n log
n

ε

)
, for large update primal dual interior

point methods for SDO also.

5. NUMERICAL RESULTS

In this section, we present some numerical results on some problems to confirm the effectiveness of our proposed
function where the experiments were manipulated in MATLAB (R2017a) and run it on a PC. We take, the
accuracy parameter ϵ = 10−8, a threshold parameter τ = 3, barrier update θ ∈ {0.15, 0.3, 0.5, 0.75, 0.9}, for each
parametrized function, we choose the barrier parameter p, which satisfies the best complexity for large updates and
the practical value for step size αpra are given by αpra = ρmin(αX , αS) with ρ ∈ (0, 1) where

αX =

{ −1

λmin(X−1∆X)
if λmin(X

−1∆X) < 0

1 else

and

αS =

{ −1

λmin(S−1∆S)
if λmin(S

−1∆S) < 0

1 else

We assume that Iter and Cpu are used to represent the number of iterations and the time (seconds) produced by
our algorithm, respectively. Our main goal is to compare iteration numbers and the calculation time of the algorithm
for the following kernel functions.

i The kernel function ψi(z) Ref

r
z2 − 1

2
−
∫ z

1

r(
1
w−1)dw, r ≥ e new

cl
z2 − 1

2
− log(z) [14]

1 z2 − 1− log(z) +
z−p − 1

p
, p ≥ 1 [6]

2 z2 − z +
z−p+1 − 1

p+ 1
, p > 1 [5]

3 z2 − 1− z−2p+1 − 1

−2p+ 1
− z−p+1 − 1

−p+ 1
, p > 1 [3]

4 (p+ 1)z2 − 1

zp
− (p+ 2)z, p > 4 [11]

5
z2 − 1− log(z)

2
+
e

1
zp −1 − 1

2p
, p ≥ 1 [10]

Table 1. SOME KERNEL FUNCTIONS.

Problem 1
(Example 1, [22]) For this problem, we have

b =

(
1
1

)
, C =

(
−1 −1
−1 −1

)
, A1 =

(
1 −1
−1 1

)
and A2 =

(
1 0
0 1

)
.

The procedure begins by generating initial strictly feasible primal and dual point solutions to this test problem.
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ψ(z) \ θ 0.15 0.3 0.5 0.75 0.9
Iter Cpu Iter Cpu Iter Cpu Iter Cpu Iter Cpu

ψr(z) 118 0.312 56 0.321 29 0.256 16 0.222 11 0.199
ψcl(z) 124 0.450 67 0.440 36 0.405 24 0.401 18 0.391
ψ1(z) 124 0.435 79 0.379 36 0.375 23 0.340 13 0.333
ψ2(z) 124 0.434 79 0.417 45 0.377 29 0.338 17 0.310
ψ3(z) 122 0.335 58 0.316 31 0.279 18 0.268 18 0.211
ψ4(z) 120 0.239 56 0.337 34 0.312 19 0.294 18 0.292
ψ5(z) 119 0.401 62 0.353 34 0.341 22 0.361 18 0.252

Table 2. NUMERICAL RESULTS FOR SOME KERNEL FUNCTIONS.

X0 =

(
0.5 0
0 0.5

)
, y0 =

(
0
−3

)
and S0 =

(
2 −1
−1 2

)
The numerical outcomes are as follows

Problem 2
(problem, [25]) The primal-dual pair (SDO) and (SDD) are treated as the following data.

b =
(
−2 2 −2

)T
,

C =


3 3 −3 1 1
3 5 3 1 2
−3 3 −1 1 2
1 1 1 −3 −1
1 2 2 −1 −1

 , A1 =


0 1 0 0 0
1 2 0 0 −1
0 0 0 0 1
0 0 0 −2 −1
0 −1 1 −1 −2

 ,

A2 =


0 0 −2 2 0
0 2 1 0 2
−2 1 −2 0 1
2 0 0 0 0
0 2 1 0 2

 and A3 =


2 2 −1 −1 1
2 0 2 1 1
−1 2 0 1 0
−1 1 1 −2 0
1 1 0 0 2

 .

To get the optimal solution (X∗, y∗, S∗) for our problem, we use the feasible point for the primal and dual
problems, which are

X0 = I, S0 = I, y0 =
(
1 1 1

)T
,

respectively. The results are presented in the tables below.

ψ(z) \ θ 0.15 0.3 0.5 0.75 0.9
Iter Cpu Iter Cpu Iter Cpu Iter Cpu Iter Cpu

ψr(z) 121 0.308 57 0.272 31 0.266 16 0.229 11 0.188
ψcl(z) 126 0.400 60 0.389 35 0.366 19 0.355 15 0.278
ψ1(z) 128 0.375 60 0.359 32 0.347 17 0.323 12 0.262
ψ2(z) 127 0.414 60 0.407 37 0.401 19 0.378 13 0.372
ψ3(z) 126 0.428 59 0.391 32 0.390 20 0.339 15 0.327
ψ4(z) 128 0.354 61 0.352 32 0.298 17 0.268 13 0.259
ψ5(z) 127 0.331 59 0.326 32 0.299 22 0.282 15 0.220

Table 3. NUMERICAL RESULTS FOR SOME KERNEL FUNCTIONS.

Problem 3
(Example 4, [22]) The information in this problem is as follows

n = 2m, m ∈ {25, 50}, b =
(
2 . . . 2

)T
, C = −I ,

Ak(i, j) =

{
1 if i = j = k or i = j = k +m
0 else ,
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X0 =

{
1.5 if i ≤ j
0.5 if i > j

, y0 =
(
−2 . . . −2

)T
and S0 = I

The numerical results are as follows

ψ(z) \ θ 0.15 0.3 0.5 0.75 0.9
Iter Cpu Iter Cpu Iter Cpu Iter Cpu Iter Cpu

m = 25
ψr(z) 147 4.086 61 2.976 32 2.391 18 1.692 11 1.382
ψcl(z) 162 4.176 75 3.249 39 2.593 20 2.403 13 2.074
ψ1(z) 148 4.004 62 2.901 33 2.281 18 1.849 11 1.605
ψ2(z) 150 4.289 64 3.169 34 2.507 19 2.104 11 2.052
ψ3(z) 150 4.419 64 3.224 34 2.113 20 1.868 11 1.731
ψ4(z) 150 4.486 64 3.024 34 2.640 19 2.114 11 2.054
ψ5(z) 153 6.149 65 4.303 36 3.270 20 2.540 12 2.334

m = 50
ψr(z) 167 16.790 82 12.005 47 8.312 23 6.739 16 6.643
ψcl(z) 171 17.673 85 13.862 51 8.928 25 6.892 18 6.712
ψ1(z) 168 16.711 83 12.209 48 8.495 24 6.803 16 6.670
ψ2(z) 170 17.581 84 12.461 50 8.511 24 6.765 17 6.713
ψ3(z) 170 16.956 84 12.671 50 8.898 24 7.129 17 6.743
ψ4(z) 170 17.046 84 12.937 50 8.974 24 7.181 17 6.818
ψ5(z) 170 21.070 83 12.701 49 8.695 23 8.356 16 6.446

Table 4. NUMERICAL RESULTS FOR ψr(z) AND SOME KERNEL FUNCTIONS.

The numerical results shown in tables 3,2,4 demonstrate that the approach based on our novel kernel function
ψr(z) outperforms ψcl(z) and ψi(z) for i = 1, . . . , 5 us in terms of iterations and time. A few observations may be
drawn from the above tables :

• With the values of r selected in (38) and the step size αpra, our kernel function ψr(z) gives the best results
in terms of iterations and time taken in all circumstances, regardless of θ.

• The algorithm’s iteration numbers are determined by the values of the parameter θ. For each θ to be close to
1, we achieve the fewest possible number of iterations in the shortest possible time.

• Even if the number of iterations is equal (see table 3 when θ = 0.3 and table 4 when θ = 0.75, 0.9 for
m = 25, 50) our new function ψr(z) always contributes to solving in the shortest time.

6. CONCLUSIONS AND VARIOUS PROPOSALS FOR FURTHER RESEARCH

This paper proposes the first bi-parameterized hyperbolic kernel function for semidefinite programming (1). We
proved that the new kernel function is eligible by examining several properties. Based on the empirical findings,
the kernel function being considered has significant potential in practical applications compared to other evaluated
kernel functions. Finally, with a special value given to the parameter a, we obtain the complexity bound of the
algorithm as O

(√
n log n log

n

ε

)
, which matches the best-known iteration bound for large-update IPMs so far.

The numerical results indicate that the new proposed kernel function exhibits promising performance in practice
compared to other considered kernel functions. The results of the implemented numerical trials validate the use of
our new kernel function.

Expanding this study to include linear and convex quadratic optimization problems, complementarity, and conic
problems would be interesting.
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