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1. Introduction

Let X be a non-negative absolutely continuous random variable with the cumulative distribution function F (x) and
the reliability function F̄ (x) = P (X > x). Rao et al. (2004) introduced the cumulative residual entropy (CRE) as
follows:

CRE(F ) = −
∫ ∞

0

F̄ (x) log F̄ (x) dx .

The CRE is a measure of uncertainly in the random variable X . This measure has some advantages respect to
Shannon entropy (1948). For example, it is always non-negative, can be easily computed from sample data and etc.
Some results and extensions regarding CRE have been studied by many authors including Rao (2005), Asadi, and
Zohrevand (2007), Di Crescenzo and Longobardi (2006, 2009a, b), Drissi et al. (2008), Navarro et al. (2010),
Kapodistria and Psarrakos (2012), Kayal (2016), Psarrakos and Toomaj (2017), Navarro and Psarrakos (2017).
Also, Toomaj et al. (2017) investigated the CRE of coherent and mixed systems when the component lifetimes are
identically distributed.
Recently, an alternative measure of uncertainty, termed by extropy, was proposed by Lad et al. (2015). For an
absolutely continuous non-negative random variable X with probability density function f(x), the extropy of X is
defined as

J(X) = −1

2

∫ ∞

0

f2(x) dx. (1)
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The properties of this measure such as the maximum extropy distribution and statistical applications were presented
in Lad et al. (2015). Also, fruitful results can be found in Qiu (2017) and Qiu and Jia (2018b) related with extropy
and residual extropy properties of order statistics and record values. Furthermore, Qiu et al. (2019) obtained some
results on extropy properties of mixed systems. The problem of estimation of extropy has been considered by
Alizadeh and Jarrahiferiz (2019).
In analogy with (1), Jahanshahi et al. (2020) proposed a cumulative residual extropy (CREX), defined as

J∗(X) = −1

2

∫ ∞

0

F̄ 2(x) dx . (2)

It is clear that J∗(X) is always non-positive. Moreover, Abdul Sathar and Dhanya Nair (2021) introduced a
dynamic cumulative residual extropy for the residual random variable Xt = (X − t|X > t) and studied its various
properties.
Tahmasebi and Toomaj (2022) proposed an alternative measure analogous to (2) which is useful for measuring
uncertainty to the past. They defined the negative cumulative extropy (NCEX) as follows and then investigated
some important properties of it.

NCEX(X) =
1

2

∫ ∞

0

[
1− F 2(x)

]
dx .

Tahmasebi and Toomaj (2022) obtained the value of NCEX for some well-known distributions, for example, NCEX
of a uniform distribution on the interval [0, 1] is 1/3.
Also, they applied the NCEX measure for the coherent systems lifetime with identically distributed components.
Recently, Alizadeh (2023) used the negative cumulative extropy and constructed a test for uniformity. A theorem
of Alizadeh (2023) states that in the class of continuous distributions f , concentrated on [0, 1], it holds

0 ≤ NCEX(f) ≤ 1/2

and the value of NCEX(f) = 1/3, being uniquely attained by the U(0, 1) density. Based on this property, Alizadeh
(2023) proposed the following test statistic for testing uniformity.

Tn =
1

2

n−1∑
i=1

[
1−

(
i

n

)2
] (

X(i+1) −X(i)

)
.

He obtained the percentage points of the test statistic and power of test by simulation and showed that the test based
on NCEX has a good performance respect to the other competing tests. Moreover, recently some goodness-of-fit
tests for different distributions are suggested by some authors see for example Alizadeh (2021a,b), Alizadeh and
Shafaei (2023, 2024).
The logistic distribution has been used for various growth models, and is used in a certain type of regression, known
appropriately as logistic regression. There are many applications of the logistic distribution in literature. Early
applications back to Verhulst (1838, 1845). This distribution has been used in the study of population growth (Pearl
and Reed, 1920), in bioassay studies (Finney, 1947, 1952) and in the analysis of survival distributions (Plackett,
1959). Other applications of this distribution can be found in Balakrishnan (1992). Therefore, in practice, it is
important to test whether the underlying distribution has a logistic form. Some researchers investigated different
properties of the logistic distribution and then proposed some goodness-of-fit tests for this distribution. One can see
for example, Meintanis (2004), Abd-Elfattah (2007), Al-Subh et al. (2012), Al-Shomrani et al. (2016), Alizadeh
(2017), Nikitin and Ragozin (2019, 2020), Esmaeili et al. (2020), Heydari et al. (2021), Alizadeh (2022), Opone et
al. (2023), and Eltehiwy (2023).
This article is organized as follows. Section 2 describes the logistic distribution and the procedure for estimating
the parameters of this model. Also, a test statistic for testing a hypothesis that the sample comes from a logistic
distribution based on the negative cumulative extropy is proposed. Properties and some theoretical aspects of the
proposed test statistic are discussed. In Section 3 the percentage points of our test statistic are obtained for different
sample sizes by a Monte Carlo experiment. Moreover, the results of the power comparison of the proposed test with
some known competing tests under various alternatives are presented. The following section contains an illustrative
example.
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2. The Logistic Distribution and Test Statistic

In this section, we express some properties of the logistic distribution and then construct a goodness-of-fit test
statistic for this distribution.

2.1. The logistic distribution

The probability density function of the logistic distribution has the following form.

f0(x;µ, σ) =
1

σ

exp {−(x− µ)/σ}
(1 + exp {−(x− µ)/σ})2

, −∞ < x < ∞, µ ∈ R, σ > 0

where µ and σ are the location and scale parameters, respectively. The cumulative distribution function can be
obtained as

F0(x;µ, σ) =
1

1 + exp {−(x− µ)/σ}
.

The mean and variance of the distribution are

E(X) = µ ; V ar(X) =
π2σ2

3
.

If Z = (X − µ)/σ, then Z is called the standard logistic random variable with the following density.

f0(z) = e−z
(
1 + e−z

)−2
, −∞ < z < ∞.

The maximum likelihood estimators (MLEs) of the unknown parameters µ and σ are used for computing the test
statistic and therefore we express that how they can be obtained.
It is well-known that the MLEs of the parameters cannot be obtained explicitly. Therefore, we use the approximate
maximum likelihood estimators (AMLEs) suggested by Balakrishnan and Cohen (1990), which are simple explicit
estimators. Through a simulation study, Balakrishnan (1992) showed that these estimators are nearly as efficient as
the MLEs. For the complete samples, the calculation of the AMLEs is described as follows. Also, for the doubly
censored case these estimators can be found in Balakrishnan (1992). Doubly censored survival data arise in studies
where both the time of the originating event and the failure event are either right- or interval-censored. This type
of samplings scheme can result when the originating event is not directly observable but is detected via periodic
screening. For example, it occurs in the study of HIV (human immunodeficiency virus) infected hemophiliacs
whose stored blood samples are screened for evidence of infection with HIV, the virus that causes AIDS. In these
studies, the induction period between infection with HIV and the failure event, onset of AIDS, may be doubly
censored. This sampling scheme is also seen in transmission studies where the susceptible partners of HIV-positive
individuals, whose times of infection are known to within a time interval, are periodically monitored for infection.
For more details about the doubly censored data see De Gruttola and Lagakos (1989) and Kim et al. (1993). Also,
a complete sample means that the sample has not been censored.
Suppose that X(1) ≤ X(2) ≤ ... ≤ X(n) are the ordered sample from a logistic distribution. Define

pi =
i

n+ 1
, qi = 1− pi , δi = piqi , γi = pi − δi ln

(
pi
qi

)
, i = 1, 2, ..., n.

Further, let

z = 2

n∑
i=1

δi , B =
2

z

n∑
i=1

δiX(i) , D =

n∑
i=1

(2γi − 1)X(i) , and E = 2

n∑
i=1

δiX
2
(i) − zB2.

Then the approximate ML estimators of µ and σ can be obtained as

µ̂ = B ; σ̂ =
D +

(
D2 + 4nE

)1/2
2n

.

These estimators will be used to computation of the proposed test statistic.
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2.2. The test statistic

Given a random sample X1, ..., Xn from a continuous probability distribution F with a density function f(x), the
hypothesis of interest is

H0 : f(x) = f0(x;µ, σ) =
1

σ

exp {−(x− µ)/σ}
(1 + exp {−(x− µ)/σ})2

, for some (µ, σ) ∈ Θ,

where µ and σ are specified or unspecified and Θ = R×R+. The alternative to H0 is

H1 : f(x) ̸= f0(x;µ, σ) , for any (µ, σ).

Without loss of any generality, one can reduce the above problem of goodness-of-fit, to testing the hypothesis
of uniformity on the unit interval, by means of the probability integral transformation U = F0(X). Therefore if
Ui = F0(Xi) , i = 1, 2, ...., n be the transformed sample, the problem becomes the following testing uniformity.

H0 : f(u) = 1, 0 < u < 1

against
H1 : f(u) ̸= 1, 0 < u < 1.

Now, we use the test proposed by Alizadeh (2023) for uniformity. Therefore, the proposed test statistic can be
constructed as follows.
Let X(1) ≤ X(2) ≤ ... ≤ X(n) denote the order statistics of the sample. The NCEX of a non-negative random
variable X with the absolutely continuous density f(x) and the cumulative distribution function F (x) is given by

NCEX(F ) = NCEX(f) =
1

2

∫ ∞

0

[
1− F 2(x)

]
dx =

∫ 1

0

ϕ(u)

f(F−1(u))
du ,

where ϕ(u) = 1−u2

2 , 0 < u < 1.
Alizadeh (2023) showed that for an f concentrated on [0, 1] one always has 0 ≤ NCEX(f) ≤ 1/2, and for the
U(0, 1) density the value of NCEX(f) is 1/3, and this value being uniquely attained by the uniform distribution.
Based on this property, we construct our test of H0. A consistent test of the hypothesis of uniformity is then given
by

Tn = NCEX(Fn),

where NCEX(Fn) is the sample estimate of NCEX(F ) given by (Tahmasebi and Toomaj, 2020)

NCEX(Fn) =
1

2

∫ [
1− F 2

n(x)
]
dx,

where Fn is the empirical distribution function defined by

Fn(x) =

n−1∑
i=1

i

n
I(X(i),X(i+1)](x) , x ∈ R

and IA is the indicator function of A. Therefore, the proposed test statistic can be written as

Tn = NCEX(Fn) =
1
2

n−1∑
i=1

∫ X(i+1)

X(i)

[
1−

(
i
n

)2]
dx = 1

2

n−1∑
i=1

[
1−

(
i
n

)2] (
U(i+1) − U(i)

)
= 1

2

n−1∑
i=1

Wi

(
U(i+1) − U(i)

)
= 1

2

n−1∑
i=1

WiZi ,

where Wi = 1−
(
i
n

)2
, Ui = F0(Xi; µ̂, σ̂) , i = 1, 2, ...., n and Zi = U(i+1) − U(i), i = 1, ..., n− 1, denote the

transformed sample spacings. Also, µ̂ and σ̂ are the approximated maximum likelihood estimates of the parameters

Stat., Optim. Inf. Comput. Vol. x, Month 202x



4 ON TESTING THE ADEQUACY OF THE LOGISTIC MODEL BASED ON NEGATIVE CUMULATIVE EXTROPY

µ and σ, respectively.

µ̂ = B and σ̂ =
D +

(
D2 + 4nE

)1/2
2n

.

Under the null hypothesis H0, Tn converges in probability to 1/3 as n → ∞ and under an alternative distribution
on [0, 1] with absolutely continuous density f , Tn converges in probability to a number smaller or larger than 1/3
as n → ∞.
Guided by these properties, given any significance level α, and any finite sample size n, our test procedure is then
defined by the critical region

Tn ≤ T ∗
α/2 or Tn ≥ T ∗

1−α/2 (3)

where T ∗
α/2 and T ∗

1−α/2 are set so that the test has the desired level α for given n. For specific α and n, the T ∗
α can

be obtained by Monte Carlo methods.
We show that the test statistic is non-negative, i.e., Tn ≥ 0, and also the test based on Tn is consistent.

Remark 1. Clearly, the proposed test statistic is invariant to transformations of location-scale and also the
parameter space is transitive. Therefore, the distribution of the proposed test statistic Tn does not depend on the
unknown parameters µ and σ. We will use this property to obtain the critical values of the test statistic.

Theorem 1. Let X1, ..., Xn be a random sample from an unknown continuous distribution F with probability
density function f(x). Then, we have

0 ≤ Tn ≤ 1/2.

Proof. Set g(p) = 1
2 (1− p2) , 0 < p < 1. It is easy to show that the maximum g(p) is 1/2. Then, we can write

Tn = NCEX(Fn) =
1
2

n−1∑
i=1

[
1−

(
i
n

)2] (
U(i+1) − U(i)

)
≤ 1

2

n−1∑
i=1

(
U(i+1) − U(i)

)
= 1

2

(
U(n) − U(1)

)
≤ 1

2 .

Also, it is clear that NCEX(Fn) ≥ 0. Therefore, 0 ≤ Tn ≤ 1/2.

Theorem 2. The test based on Tn is consistent.

Proof. We know that as n → ∞, the maximum likelihood estimators (µ̂, σ̂) trend to (µ, σ). Based on the Glivenko-
Cantelli theorem asserts that

sup
x

|Fn(x)− F (x)| → 0 as n → ∞.

Tahmasebi and Toomaj (2022) showed that the empirical NCEX converges to the NCEX of X , i.e.,

NCEX(Fn) → NCEX(F ),

almost surely. Therefore, the proof of theorem is completed.

Theorem 3. The mean of the proposed test statistic Tn, under H0 is

E(Tn) =

n−1∑
i=1

Wi

2(n+ 1)
,

where Wi = 1−
(
i
n

)2
for i = 1, ..., n− 1.
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Proof. For the uniform distribution, the sample spacing Zi = U(i+1) − U(i) has the beta distribution with
parameters 1 and n, i.e., Zi ∼ Beta(1, n) and hence E(Zi) = (n+ 1)−1. Therefore,

E(Tn) = E

[
1

2

n−1∑
i=1

WiZi

]
=

1

2

n−1∑
i=1

WiE(Zi) =
1

2(n+ 1)

n−1∑
i=1

Wi .

From the above theorem, we immediately obtain lim
n→∞

E(Tn) =
1
3 = NCEX(U), where NCEX(U) is the

negative cumulative extropy of the uniform distribution on (0, 1).

Theorem 4. The variance of the proposed test statistic Tn, under H0 is

V ar(Tn) =
n

4(n+ 1)
2
(n+ 2)

n−1∑
i=1

W 2
i ,

and also the second moment of Tn is

E(T 2
n) =

1

2(n+ 1)
2

[(
1− 1

n+ 2

) n−1∑
i=1

W 2
i +

∑∑
i<j

WiWj

]
.

Proof. Since Zi ∼ Beta(1, n), V ar(Zi) =
n

(n+1)2(n+2)
, and we have

V ar(Tn) = V ar

[
1

2

n−1∑
i=1

WiZi

]
=

1

4

n−1∑
i=1

W 2
i V ar(Zi) =

n

4(n+ 1)
2
(n+ 2)

n−1∑
i=1

W 2
i .

E(T 2
n) = V ar(Tn) + E2(Tn) =

n
4(n+1)2(n+2)

n−1∑
i=1

W 2
i +

(
n−1∑
i=1

Wi

)2

4(n+1)2

=

n−1∑
i=1

W 2
i +

(
n−1∑
i=1

Wi

)2

4(n+1)2
−

n−1∑
i=1

W 2
i

2(n+1)2(n+2)

=

[
n−1∑
i=1

W 2
i +

∑∑
i<j WiWj

]
2(n+1)2

−
n−1∑
i=1

W 2
i

2(n+1)2(n+2)

= 1
2(n+1)2

[(
1− 1

n+2

) n−1∑
i=1

W 2
i +

∑∑
i<j WiWj

]
.

Remark 2. We can see that V ar(Tn) tends to zero as n → ∞.

3. Percentage Points and Power Study

We obtain the percentage points by Monte Carlo methods. For different values of the sample size n, 100,000
samples of size n from the standard logistic distribution are generated. For each sample, the test statistic is
computed. For level α, the lower(upper)-tail percentage points T ∗

α/2(T ∗
1−α/2) of the distribution of Tn are estimated

by the α/2(1− α/2) percentiles of the empirical distribution function of Tn based on the observed 100,000
samples. These estimates are presented in Table 1. Also, in Figure 1, we show the behavior of the critical values of
the proposed test. We can see that when the sample size increases the lower and upper tails percentage points are
close to each other and also percentage points tend to 1/3 when n increases.
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Table 1. Percentage points of the proposed test statistic at level α = 0.05.

n lower upper

10 0.2350 0.3246
20 0.2740 0.3294
30 0.2903 0.3309
40 0.2997 0.3317
50 0.3056 0.3322
75 0.3141 0.3328

100 0.3184 0.3331

Figure 1. The lower and upper tails percentage points of the proposed test statistic for different values of sample sizes.

We evaluate the estimated type I error control using the critical values of the proposed test. We generated
random samples from different logistic populations and then obtained the actual sizes of the proposed test. The
results are displayed in Table 2. It is evident that the empirical percentiles given in Table 1 provides an excellent
type I error control.

Table 2. Type I error control of the test for the nominal significance level α = 0.05.

n logis(0, 0.5) logis(0, 2) logis(0, 4) logis(0, 8)

10 0.0503 0.0498 0.0487 0.0493
20 0.0483 0.0489 0.0483 0.0492
30 0.0472 0.0472 0.0497 0.0495
50 0.0494 0.0508 0.0496 0.0512

Figures 2 shows the estimated probability density functions of our test statistic with Monte Carlo samples for
different sample sizes. We can see that the test statistic has closer values to 1/3 when n increases, which means
that the bias of Tn with increasing decreases. We can also see that variance of Tn decreases when n increases.
The power values of the proposed test against various alternatives are computed by Monte Carlo simulations. We
compare the power values of the proposed test with the existing tests. In our power comparisons, we consider the
well-known tests which are applied in practice and statistical software. The test statistics of these tests are briefly
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Figure 2. Empirical density functions of the test statistic generated with 100,000 samples of sizes n = 20, 30, 50, 100 from
the standard logistic distribution.

described as follows. For more details about these tests, on can see D’Agostino and Stephens (1986).
Let X(1) ≤ X(2) ≤ ... ≤ X(n) are the order statistics based on the random sample X1, ..., Xn.

1. The Cramer-von Mises statistic (1931):

W 2 =
1

12n
+

n∑
i=1

(
2i− 1

2n
− F0(X(i); µ̂, σ̂)

)2

.

2. The Watson statistic (1961):
U2 = W 2 − n

(
P̄ − 0.5

)2
,

where P̄ is the mean of F0(X(i); µ̂, σ̂), i = 1, ..., n.
3. The Kolmogorov-Smirnov statistic (1933):

D = max(D+, D−),

where

D+ = max
1≤i≤n

{
i

n
− F0(X(i); µ̂, σ̂)

}
; D− = max

1≤i≤n

{
F0(X(i); µ̂, σ̂)−

i− 1

n

}
.

4. The Kuiper statistic (1960):
V = D+ +D−.

5. The Anderson-Darling statistic (1952):

A2 = −n− 1

n

n∑
i=1

(2i− 1)
{
logF0(X(i); µ̂, σ̂) + log

[
1− F0(X(n−i+1); µ̂, σ̂)

]}
.

In the above test statistics, F0(x) is the cumulative distribution function of the logistic distribution and (µ̂, σ̂)
are the maximum likelihood estimates of the parameters (µ, σ).
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Moreover, we consider the recent tests proposed by Alizadeh (2015) in our power comparisons. This test statistic
is constructed based on the empirical likelihood ratio and it is shown that the test has a good performance as
compared to the competing tests, see Alizadeh (2015). This test statistic is as follows.

LR =

min
1≤m<nδ

n∏
j=1

2m

n(X(j+m)−X(j−m))

n∏
j=1

f0(Xj ; µ̂, σ̂)

,

where δ ∈ (0, 1). Here, based on the recommendation of Alizadeh (2015), we take δ = 0.5. Also, f0 denotes the
logistic probability density function.
We consider various alternatives to power study of the considered tests. They are:

• the exponential distribution, Exp(1);
• the Gamma distribution, Γ(0.5, 1) and Γ(2, 1);
• the lognormal distribution, LN(0, 1);
• the Gumbel distribution, Gu(0, 1);
• the Weibull distribution, W (0.5, 1) and W (2, 1);
• the inverse Gaussian distribution, IG(1, 0.5), IG(1, 1) and IG(1, 2);
• the student’s t distribution with 3 degrees of freedom, denoted by t(3);
• the standard Cauchy distribution, denoted by C(0, 1);
• the skew normal distribution, SN(0, 1, 2) and SN(0, 1, 3).

A simulation study is carried out to obtain the power values of all tests under the above alternatives. Under
each alternative 100,000 samples of size 10, 20, 30 and 50 are generated and the test statistics are calculated. Then
power of the corresponding test is computed by the frequency of the event “the statistic is in the critical region”. The
power estimates resulting based on a Monte Carlo study are given in Table 3, for α = 0.05 and n = 10, 20, 30, 50.
All computational codes are available on request from the corresponding author.
For each sample size and alternative, the bold type in these tables indicates the tests achieving the maximal power.
From Table 3, it is seen that the test the proposed test Tn has a high performance and it is a powerful test (with the
exception of the cases where t(3), Cauchy and SN(0, 1, 2) were the alternative). The power differences between
the proposed test and the EDF-based tests are substantial. Also, when the sample size increases the performance of
our test increases. Therefore, the proposed test Tn can be confidently recommended in practice.
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Table 3. Empirical powers of the tests at significance level 5%.

Alternative n W 2 D V U2 A2 LR Tn

Exp(1) 10 0.2934 0.2264 0.2950 0.2954 0.3280 0.3937 0.4331
20 0.5804 0.5258 0.5940 0.5818 0.6869 0.8157 0.8839
30 0.7810 0.7864 0.8188 0.7822 0.8970 0.9629 0.9887
50 0.9548 0.9796 0.9772 0.9551 0.9928 0.9992 1.0000

Γ(0.5, 1) 10 0.5911 0.5134 0.6142 0.5948 0.6378 0.7512 0.7495
20 0.9138 0.9240 0.9356 0.9150 0.9532 0.9902 0.9939
30 0.9875 0.9954 0.9946 0.9876 0.9973 0.9998 0.9999
50 0.9999 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000

Γ(2, 1) 10 0.1459 0.1186 0.1406 0.1477 0.1606 0.1759 0.2016
20 0.2708 0.2032 0.2436 0.2720 0.3434 0.4184 0.5332
30 0.4007 0.3094 0.3749 0.4023 0.5478 0.6437 0.7967
50 0.6198 0.5471 0.6074 0.6207 0.8168 0.9010 0.9834

LN(0, 0.5) 10 0.1463 0.1188 0.1371 0.1459 0.1620 0.1516 0.2038
20 0.2698 0.2039 0.2379 0.2706 0.3410 0.3417 0.4780
30 0.3740 0.2888 0.3368 0.3748 0.5101 0.5118 0.7017
50 0.5807 0.4780 0.5419 0.5810 0.7683 0.7756 0.9335

LN(0, 1) 10 0.4623 0.3843 0.4596 0.4640 0.4999 0.5200 0.5931
20 0.7910 0.7459 0.7930 0.7919 0.8577 0.8960 0.9475
30 0.9235 0.9160 0.9308 0.9242 0.9689 0.9833 0.9965
50 0.9936 0.9952 0.9952 0.9937 0.9990 0.9995 1.0000

LN(0, 2) 10 0.8636 0.8225 0.8732 0.8658 0.8834 0.9316 0.9294
20 0.9937 0.9954 0.9955 0.9938 0.9970 0.9996 0.9998
30 0.9998 1.0000 1.0000 0.9998 1.0000 1.0000 1.0000
50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Gu(0, 1) 10 0.0920 0.0921 0.0800 0.0867 0.1001 0.0963 0.1100
20 0.1411 0.1134 0.1244 0.1409 0.1753 0.1749 0.2403
30 0.1928 0.1447 0.1614 0.1926 0.2634 0.2629 0.3730
50 0.2913 0.2089 0.2443 0.2916 0.4341 0.4247 0.6170

W (0.5, 1) 10 0.8106 0.7632 0.8296 0.8146 0.8412 0.9127 0.9080
20 0.9908 0.9937 0.9946 0.9908 0.9962 0.9994 0.9997
30 0.9996 0.9999 0.9998 0.9996 1.0000 1.0000 1.0000
50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

W (2, 1) 10 0.0566 0.0540 0.0588 0.0578 0.0557 0.0860 0.0574
20 0.0891 0.0698 0.0772 0.0896 0.0972 0.1729 0.1289
30 0.1208 0.0911 0.1036 0.1214 0.1462 0.2627 0.2371
50 0.1882 0.1349 0.1553 0.1884 0.2694 0.4693 0.5301

IG(1, 0.5) 10 0.5945 0.5092 0.5978 0.5962 0.6342 0.6854 0.7275
20 0.9080 0.8916 0.9142 0.9088 0.9437 0.9703 0.9861
30 0.9816 0.9838 0.9869 0.9818 0.9943 0.9980 0.9996
50 0.9998 1.0000 0.9999 0.9998 1.0000 1.0000 1.0000
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Table 3. Continued.

Alternative n W 2 D V U2 A2 LR Tn

IG(1, 1) 10 0.4005 0.3232 0.3983 0.4032 0.4388 0.4684 0.5388
20 0.7321 0.6712 0.7266 0.7330 0.8129 0.8594 0.9262
30 0.8892 0.8752 0.8984 0.8897 0.9526 0.9730 0.9936
50 0.9882 0.9904 0.9914 0.9882 0.9986 0.9994 1.0000

IG(1, 2) 10 0.2458 0.1914 0.2375 0.2479 0.2736 0.2698 0.3374
20 0.4718 0.3846 0.4516 0.4722 0.5712 0.6087 0.7432
30 0.6475 0.5599 0.6284 0.6481 0.7800 0.8192 0.9294
50 0.8652 0.8364 0.8635 0.8656 0.9609 0.9718 0.9976

t(3) 10 0.1200 0.1091 0.1152 0.1196 0.1272 0.0744 0.0911
20 0.1742 0.1477 0.1552 0.1738 0.1900 0.0696 0.0922
30 0.2060 0.1737 0.1840 0.2056 0.2275 0.0662 0.0823
50 0.2588 0.2178 0.2355 0.2589 0.2924 0.0543 0.0716

C(0, 1) 10 0.5369 0.5034 0.5195 0.5362 0.5389 0.3351 0.2338
20 0.8048 0.7638 0.7805 0.8041 0.8070 0.5269 0.2699
30 0.9186 0.8898 0.9033 0.9180 0.9216 0.6702 0.3725
50 0.9840 0.9760 0.9806 0.9840 0.9844 0.8326 0.6179

SN(0, 1, 2) 10 0.0484 0.0474 0.0501 0.0495 0.0458 0.0624 0.0453
20 0.0610 0.0542 0.0560 0.0614 0.0604 0.0921 0.0696
30 0.0756 0.0646 0.0664 0.0758 0.0836 0.1205 0.0967
50 0.1016 0.0820 0.0865 0.1020 0.1261 0.1821 0.1644

SN(0, 1, 3) 10 0.0602 0.0570 0.0594 0.0612 0.0587 0.0780 0.0658
20 0.0911 0.0728 0.0766 0.0920 0.1016 0.1352 0.1263
30 0.1286 0.0976 0.1076 0.1293 0.1549 0.1936 0.2022
50 0.1918 0.1379 0.1554 0.1924 0.2632 0.3102 0.3623

Figure 3. Histogram of data and a fitted logistic density function.
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Table 4. Nickel concentrations (ppb) at four monitoring wells, USEPA (1992).

Observations n = 20

58.8 331.0 587.0 1.0 14.0 3.1 262.0
64.4 942.0 56.0 39.0 85.6 8.7 151.0
10.0 19.0 27.0 637.0 81.5 21.4

4. An Illustrative Example

Through an example, we illustrate how the proposed test can be applied to test the goodness-of-fit for the logistic
distribution when the observations are available.

Example 1. We consider the data set presented by Modarress et al. (2002, p. 550). The data set consists of n = 20
nickel concentrations in parts per billion. These data are presented in Table 4 and histogram of them is presented
in Figure 3.

Modarress et al. (2002) applied the Anderson-Darling procedure to test if the underlying distribution is log-
normal, log-logistic or double exponential. They found that there is considerable uncertainty about the underlying
model. Any of the three distributions are not rejected: the obtained p-values are 0.25 for the log normal and 0.15
for both the log-logistic and the double exponential.
Applying the proposed procedure to the log of this data set the following is obtained:

z = 6.984 , B = 3.950 , D = 8.798 , and E = 12.010.

Therefore, the approximate ML estimators of µ and σ are:

µ̂ = 3.950 and σ̂ = 1.025.

The value of the test statistic is Tn = 0.32377 and the lower and upper tail percentage points at the 5% are 0.2740
and 0.3294, respectively. Since the values of the test statistic is between the lower and upper tail percentage points,
the log-logistic hypothesis is not rejected for these data at significance level of 0.05. Therefore, we can conclude
that the data come from a log logistic distribution.

5. Conclusions

In this paper, we have introduced a goodness-of-fit test for the logistic distribution based on the negative cumulative
extropy, and have shown that the test outperforms the EDF-goodness-of-fit tests which are commonly used in
practice. The proposed test statistic is easy to compute. Consistency of the test statistic is shown and also the mean,
variance and other properties of the proposed test statistic have presented.
We have carried out an extensive power comparison using Monte Carlo simulation. Through the obtained results,
we have shown that the proposed test outperforms in most cases all other competitor tests. Finally, we have
presented a real data set and have illustrated how the proposed test can be applied to test the goodness-of-fit
for the logistic distribution when a sample is available.
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