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Abstract Recommended diets have a central role to play in creating a healthy dietary environment that enables populations
to adopt and maintain health-promoting dietary practices. It’s well known that foods with a low glycemic load (GL)
help release a concentration of glucose in the blood, These can contribute to the prevention of various glycemia-related
health problems. We aim to address an optimization model for diets in the Moroccan context that controls both glycemic
load and total meal costs. The application of a multiple objective particle swarm method which aggregates the problem’s
restrictions with optimized objectives functions helps maintain dietary diversity and facilitates the search for trade-offs
between objectives and problem-specific requirements.
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1. Introduction

Diabetic diets are a combination of foods, naturally rich in nutrients and low in fat and calories. In 1971, a
report was published by the American Diabetes Society’s dietary guidelines [1], Which presents recommendations
concerning the impact of adopting recommended diets for the protection of patients with diabetes mellitus. During
the same period, studies proposing high-carbohydrate, high-fiber diets for men with diabetes suggest the importance
of plant fiber in dietary management and that a low-carbohydrate diet is necessary for diabetes control [2, 3]. One
study (1985) involved data on 25,698 people in California, aged between 30 and 89; Asserts the hypothesis that
a vegetarian diet (a diet characterized by whole plant foods) can reduce the risk of developing diabetes. Death
certificates and diabetes in self-administered questionnaires show that death certificates as well as mortality rates
are lower in vegetarians[4]. In addition, since the introduction of the concepts of GI and GL of carbohydrates
(the early 1980s), several studies have indicated the importance of choosing bass (IG) and (GL) diets, rather than
conventional or high (GI) and (GL) diets [5, 7]. in the treatment of diabetes, as well as in the prevention of other
chronic illnesses such as obesity, cancer at cardiovascular sickness [8, 9]. Although diets play a major role in
the control and treatment of diabetes, food prices can influence food choice, and these costs can limit the best
dietary habits. Our work consists of solving a dietary problem for diabetic patients recently presented in the form
of a multi-objective programming model using a multiobjective particle swarm method (MOPSO). Particle Swarm
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Optimization (PSO) is a recently proposed swarm intelligence heuristic algorithm and one of several widely used
techniques for dealing with constrained and unconstrained optimization problems[10, 11]. In 1995, Kennedy and
Eberhart wrote a research paper in which they introduced The Particle Swarm Optimization (PSO) algorithm which
is based on the social behavior of organisms such as birds and bees [12]. They stated that sharing information within
the group increases the survival advantage. to achieve a given goal in a common search space where each particle
has a certain ability to remember and process information.
In 1998 a new parameter, called inertia weight, was added by Y. Shi et al.[13] to modify the particle swarm
optimizer, which has an impact on improving the performance of (PSO). The first attempt to extend the PSO method
into a multi-objective problem (MOO) was introduced in [14]. Subsequently, in 2002 Coello et al[15] proposed a
multi-objective PSO (MOPSO) as an efficient algorithm for solving multi-objective problems (MOO), which use
an external archive in which each particle will deposit its flight experiences after each flight cycle to preserve
diversity. A state-of-the-art survey of the different MOPSOs mentioned in the literature, with a classification of
each approach according to their main characteristics, is presented in [16]. The procedure of the method (MOPSO)
will be discussed in detail in the next section.
The main objective of this work is to treat the multi-objective optimization model for diets that incorporates the
glycemic load and the total costs of food combinations recently presented in [17], The use of the glycemic load
in menu planning is an advanced method that is extremely useful for people who need to reduce their intake of
carbohydrates, particularly sugar, such as diabetics.
The aggregation of constraints with objectives in the (MOPSO) used enables the search for solutions that satisfy
both optimization objectives and constraints, as well as the search for trade-offs between objectives and constraints.
The resolution of our model enables us to obtain healthy dietary choices that help prevent glycemia-related diseases,
and that remain affordable for consumers in the Moroccan context. The rest of our paper is organized as follows:
the third section presents the formulation of our diet problem as well as the set of data and constraints and all the
symbols adopted in the modeling of our problem, section 4 presents the set of diets provided by our model and a
discussion of the numerical results found, and the last section constitutes a conclusion that summarizes the results
brought by this work.

2. Multiobjective particle swarm optimizers

In particle swarm optimized, the entire set S of solution candidates to the optimization problem is represented as a
particle swarm (each particle refers to a candidate solution) particles carrying information on decision variables or
model parameters take up their position in an objective functional space. Then, throughout generations (iterations),
each particle keeps its trajectory (personal best solution), which is determined by its best performance and that of
its neighbors (self-learning and social learning), Similarly, it tries to change its position using information about
its current position, its speed, the distance between the current position and the personal optimum, and the current
position and the swarm optimum. The formula for updating the particle velocity and position at each iteration,
assuming the particle swarm size is n and the dimension of the search space is d is as follows:

Vi
(k+1) = ωVi

(k) + c1γ1 ×
(
pbest

(k)
i − xi

(k)
)
+ c2γ2 ×

(
gbest(k) − xi

(k)
)
. (1)

where,

xi
(k+1) = xi

(k) + Vi
(k+1). (2)

The procedure for moving a particle in the (PSO) method is described in the following figure:

i : the i-th individual particle, i ∈ [|1, n|].
k: is the number of the current iteration.
xi

(k) : The particle i’s location at step k.
Vi

(k) : the value of the speed of a given particle i at step k.
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Figure 1. Particle movement in the (PSO) method

pbest
(k)
i : is the current best location of the particle i in the history of operation k.

gbest(k) : referred to as the cluster swarm guide, is the location of the single particle with the best ability value at
step k.
ω : the weight of inertia forced on the speed vector, computed for each iteration k as follows:

ω = ωmax − k × (ωmax − ωmin)

kmax
(3)

ωmax, ωmin are the highest and minimum values of the weight of inertia. In most cases, the value is set at 0.9 and
0.4 [4], and kmax is the total number of iterations. c1, c2 : are the local and global (cognitive and social) learning
constants.
γ1, γ2 : are random numbers between 0 and 1.
If one particle position updated by a new velocity vector has a fitness value better than its previous best, the new
position is assigned as pbest.
If one of the particles has the best fitness value than the others, it is assigned as gbest. These processes are repeated
in a balance between exploration and exploitation until maximum iterations or mini-mum error criteria are not
satisfied.

(MOPSO) is an extension of the (PSO) algorithm and is, therefore, a modification of the original (PSO) to be
compatible with conflicting multi-objective optimization problems, it’s an algorithm that must reach the global
Pareto-optimal front and maintain the diversity in the Pareto-optimal front. A summary and discussion of the main
changes required for this extension are presented in [16, 18].
The (MOPSO) algorithm uses the same principle as (PSO) such that the velocity and position update equations
and all the parameters declared for (PSO) are also identical. The main difference is in the objective function, which
contains multiple objectives and there is no single definition or ”best” particle in the swarm, Thus, Multi-Particle
Swarm Optimization uses the principle of Pareto dominant to assess the effectiveness of swarm optimization. a
particle’s direction of flight[15] To deal with multi-objective optimization problems, the (MOPSO) algorithm [15]
maintains two archives, one to store the globally non-dominant solutions, the other to store the best individual
solutions, then a Pareto archived evolution strategy presented in [19] used for diversity maintenance.

3. Formulation of the multiobjective model for ideal meal planning

3.1. About the data set of the diet problem

Diets are the combination of foods consumed over time. The key to understanding the dietary problem is to
define foods in terms of their nutritional values, such as glycemic load, vitamins, calcium, phosphorus, magnesium
and so on. each food provides the body with beneficial nutrients (Positive nutrients) (e.g. Calories(c), Protein(p),
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Algorithm 1 The (PSO) method

1: for individual i particles in a swarm do
2: Initialize xi randomly within [xmin, xmax]
3: Initialize Vi with zero
4: Assign xi to pbesti
5: end for
6: repeat
7: for each particle in a swarm do
8: Assessing an object value function f(xi)
9: if f(xi) < f(pbesti) then

10: Assign xi to pbesti
11: end if
12: end for
13: Assign particle having best fitness value as the gbest
14: for every (i) particle in a swarm do
15: Set Vi based on (Eq. 1 )
16: Set xi based on (Eq. 2 )
17: end for
18: Repeat the same procedure toward the maximum number of iterations

Algorithm 2 (MOPSO) algorithm

1: for each particle i in an swarm do
2: Initialize xi randomly within [xmin, xmax]
3: Initialize Vi with zero
4: Assign xi to pbesti
5: end for
6: repeat
7: for each particle in a swarm do
8: Evaluate an objective function f(xi)
9: if f(xi) < f(pbesti) then

10: Assign xi to pbesti
11: end if
12: end for
13: Initialize non-dominated particles in an external archive
14: Select a leader
15: repeat
16: for each particle i in an swarm do
17: Set Vi based on (Eq. 1 )
18: Set xi based on (Eq. 2 )
19: Increase diversity
20: Evaluate an objective function f(xi)
21: if f (xi < f(pbesti) then
22: Assign xi to pbesti
23: end if
24: end for
25: Maintain non-dominated particles in an external archive
26: Select a leader
27: Repeat the same procedure toward the maximum number of iterations
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Carbohydrate(car), Potassium (po), Magnesium (mg), Dietary fiber (tdf), Calcium (ca), Iron (ir), Phosphorus (ph),
Zinc (z), Vitamin b6 (vb6), Vitamin b12 (vb12), Vitamin C (vc), Vitamin A (va), Vitamin E (ve)), and potentially
harmful elements (Negative nutrients) (e.g. saturated fatty acids (sf), Sodium (s), Cholesterol (ch), Total fat (tf)).
The daily nutrient requirements of the plant foods available are given in the tables 2 and 1 . The parameters of the
model (P) are computed from 177 aliments collected by the team project cited in the acknowledgments section.
x = (xj)j=1,...,177, is, therefore, the portion vector representing the proportion of food j in the optimal diet, where
177 is the total number of foods available in the diet and from which the nutrient contents of the foods have been
derived for 100 g portions. We aim to propose a qualitative and quantitative food composition (an ideal diet x) to
achieve a minimal cost and glycemic load, which meets the needs of patients recommended by experts [20, 21],
The symbols used to evaluate a diet are described below:
CTx : Total cost of diet where C = (Cj)j=1,...,177 denotes the vector of prices per unit of 100g of the foodstuffs
considered.
gTx: Glycemic load generated by foods composed of the diet.
A: Favorable nutrients matrix; in our case, the dimension of A is ( Number of positive nutrients, Number of foods
available)= (16, 177);
E: Unfavorable nutrients matrix; in our case, the dimension of E is (Number of negative nutrients (4), Number of
foods available (177));
b: The minimum amount of beneficial nutrients required.
f : Maximum acceptable levels of potentially harmful elements
Ac:The number of calories that come from foods that are considered beneficial to health;
cn and τn are respectively the quantities and percentages of calories from the nutrients n in the following set
{car, p, tf, sf}; τp = 0.18, τcar = 0; 55, τsf = 0.078 and τtf = 0.29;

3.2. Mathematical mapping of requirements

Mapping the body’s preferable nutriment requirements.
The total beneficial nutrients for an x food choice is Ax and the requirements are registered in b ; so we have
Ax ≥ b.
The ratio of calories generated by carbohydrates is delimited by the inequality cTcarx ≥ 0.55

(
AT

c x
)
.

The calories from Protein must verify the inequality cTp x ≥ 0.18
(
AT

c x
)
.

Unfavorable nutrients needs mapping:
The vector of the total in unfavorable nutrients from the diet x is Ex and the requirements are enregistred in f ; so
we have Ex ≤ f .
The total calories from saturated fat are controlled by the inequality cTtfx ≤ 0.29

(
AT

c x
)
.

The total calories from total fat are controlled by the inequality cTsfx ≤ 0.078
(
AT

c x
)
.

3.3. Multiobjectives optimization diet model

The multi-objective mathematical representation of the diet that minimizes both glycemic loads and cost on the
one hand, and meets patients’ dietary needs on the other is given by: If a given food i is expensive (i.e. CTx is very
large), then its negative nutrients are low (i.e. xtEtEx is low ), its positive nutrients are high (i.e. xtAtAx is hight),
its glycemic load is low ( i.e. gTx is low). Thus CTx+K1∥Ax− b∥2 is contradictory with gTx+K2∥Ex− b∥2.
Then, we have the following reduced multiobjective optimization problem:

(P ) :



Min CTx+K1∥Ax− b∥2,Min gTx+K2∥Ex− f∥2

Subject to :

cTi x ≥ τi
(
AT

c x
)

i ∈ {car, p}
cTi x ≤ τi

(
AT

c x
)

i ∈ {tf, sf}
x ≥ 0

(4)
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The constants K1 and K2 are chosen to make compromise between CTx and ∥Ax− b∥ and between gTx and
∥Ex− f∥, respectively.
It is important to note that mathematical programming models of feeding problems do not take into account the
variability of nutrients in foods. Recall artificial intelligence techniques [22, 23, 24, 25, 26, 27] in particular fuzzy
logic [28, 29, 30, 31] are being used to deal with the uncertainty associated with the parameters of the diet problem.
Our problem was first presented in [20] in which the objectives are robust and presented separately as two single-
objective robust optimization problems. The fact of the uncertain glycemic load in this problem was modeled in
another way using quadratic and integral fuzzy methods [32, 33]. subsequently, we have previously treated this
regime model as a multi-objective programming model in [17] and solved using multi-objective genetic algorithms
(MOGA), which is destined by the use of genetic operators which is also efficient to converge to optimal schemes
for this problem.

4. Model resolution and results

4.1. Computation of the proposed multiobjective model parameters

To evaluate a diet, we estimated the parameters of our model (P) based on 177 foods available in the Moroccan
food environment, the nutrient content of each 100 g of these foods is described as 14 positive nutrients, and 4
negative nutrients, in this sense, the imprecision of the quantity of these nutrients have been taken into account,
as an illustration, figure2 presents the nutrient contents considered for a 100 g portion of fruit (apricot). Other

Figure 2. The amount of nutrients per 100g of apricot

examples are given in figures 3 and 4(dried apricot, garlic, pineapple and glazed pineapple).
Daily dietary requirements for positive nutrient minimums and tolerable maximums for potentially harmful

Figure 3. The amount of nutrients per 100g of dried apricot, garlic, pineapple and glazed pineapple.

nutrients are estimated on the basis of U.S. Department of Agriculture guidelines and recommendations [20, 34],
i.e. recommended daily allowances sufficient to meet nutritional needs.

The main objective of the optimal diet problem was the g glycemic load vectors. Glycemic load is a very useful
indicator for classifying carbohydrate-containing foods, by measuring their impact on the body and blood sugar
levels. In particular, how it is stored: as fat or glycogen reserves. According to researchers at the University of
Sydney, who were among the first to study the glycemic load, a GL can be calculated using the following formula
[21]:

Stat., Optim. Inf. Comput. Vol. 12, May 2024



A. AHOURAG, B. ELKARI, K.EL MOUTAOUAKIL, ET AL. 611

Figure 4. The number of nutrients per 100g of passion fruit, gnocchi, guava, sunflower seeds, sesame, and artichoke.

Table 1. The negative nutrient requirements

Potentially harmful elements Maximum tolerable

Saturated fat (sf) 17 g
Sodium (s) 1.779mg

Cholesterol (ch) 230mg
Total fat (tf) 65g

Table 2. Nutrient requirements for beneficial nutrients

Nutriments favorables Minimum requirements

Calories (c) 2000 kcal
Protein (p) 91 g

Carbohydrate (car) 271g
Potassium (po) 4044 mg

Magnesium (mg) 380 mg
Calcium (ca) 1316 mg

Iron (ir) 18mg
Phosphorus (ph) 1740 mg

Zinc (z) 14 mg
Vitamin b6 (Vb6) 2.4 mg

Vitamin b12 (vb12) 8.3 µg
Vitamin C (vc) 155 mg
Vitamin A (va) 1052 µg
Vitamin E (ve) 9.5 AT

GL = (GI× the amount of carbohydrate) divided by one hundred such as (GI) is the glycemic index of the
food, a table of glycemic index values for different foods can be found in [35]. A Glycemic Load below 10 units
is considered low, while above 20 units it is considered high. We used the ranking equation described above to
estimate the values (minimum, average, maximum) of the glycemic load, part of these values are given in the table
3. Concerning feed costs, a study of the various regions of Morocco has enabled us to determine the price margins
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Table 3. The level of glycemic load contained in any 100g portion of certain foods

Aliments the quantity in GL
low medium high

Apricot 5.13 5.13 5.13
apricot Dry 15.9 18.55 21.2
Garlic 3.225 3.225 3.225
ppineaple 3.57 3.753 3.936
ananas conserve 0 0.313 0.626
Artichaut 0.735 0.735 0.735
Asparagus 0.48 0.48 0.48
Eggplant 0.945 0.945 0.945
Cherry 29.88 29.88 29.88
Veal brain 0 0 0
Chestnut 28.68 28.68 28.68
Shrimp chips 0 0 0
Cabbage white 0.72 0.72 0.72
Cabbage red 0.75 0.75 0.75
Sauerkraut 0.24 0.24 0.24

for each feed, some of these prices are shown in the following table. 4

Table 4. Costs of some adopted foods

Cost
low medium high

Apricot 0.9 1,1 1,3
Apricot dried 8,4 2 10
Garlic 4 6 8
Almond 6.9 20.4 33,9
pineapple 3 3.4 3,8
Pineapple, canned 5.16 7.905 10,77
Artichoke 0.8 1 1,2
Asparagus 0.5 0.64 0,78
Aubergine 0.2 0.5 0,8
Avocado 5 6.5 8
Baguette 0.26 0.67 1,08
Banana 1 1.25 1,5
Beetroot 0.3 0.55 0,8
Egg white (cooked) 0.1 0.11 0,12
Broccoli (cooked) 1.8 2.15 2,5

4.2. Numerical results

In this section, we have used the multiobjective particle swarm optimizer (MOPSO) to solve the multiobjective
regime problem model proposed in Section 3. The (MOPSO) method is applied by aggregating the constraints and
the two objective functions using the following penalty parameters: Penalization parameters (GLp) for glycemic
load, (Cstp) for diet cost, Favp for the favorable nutrient gap, and (Unfavp) for the unfavorable nutritional gap.
These parameters have been varied in the interval [0.2 1] with a step of 0.2 thus we have solved 625 multi-objective
problems.

Stat., Optim. Inf. Comput. Vol. 12, May 2024



A. AHOURAG, B. ELKARI, K.EL MOUTAOUAKIL, ET AL. 613

The parameters of the adopted particle swarm optimizer are given by : Swarm Size=100, MaxIterations=500,
pswcreation=’uniform density’, Inertia Range interval= [0.1,1.1], Minimum Neighbors Fraction= 0.25, Self
Adjustment Weight= 1.49, Social Adjustment Weight= 1.49.
The following figure 5 shows the Pareto Front (non-dominated solution) obtained for our diet problem (P), in which
6 diets (optimal solution) were established taking into account the compromise between glycemic loads and total
diet cost and respecting problem constraints. The objective values of the solutions found, along with the gaps in

Figure 5. Pareto curve basing on 625 simulations

nutritional requirements and the weight of each diet, are shown in the table 5

Table 5. Objective values for the 6 food combinations identified by our model

Diet Total glycemic Diet Favorable nutrients Unfavorable nutrients Weight of
load price (MD) gap (mg) gap (mg) the diet g

1 40.36 27.37 1762.79 25.90 35.62
2 40.33 32.87 972.82 264.88 20.23
3 74.01 16.23 908.05 56.41 19.72
4 40.00 43.64 1172.54 223.69 27.94
5 41.41 18.25 690.97 181.17 17.90
6 63.14 17.47 1043.55 53.78 15.57

Dietary recommendations often consider the average acceptable glycemic load of a balanced diet to be less
than 100 per day, so it’s clear that all the food combinations identified by our model generate acceptable average
glycemic loads to help prevent glycemia-related diseases.

The application of (MOPSO) approaches in multi-criteria optimization often enables efficient exploration of the
solution space in search of diversified solutions that also respect the possible problem requirements, From Table 6,
we can see that almost all the diets generated are generally diversified and healthy, rich in vegetables, fruit, and lean
proteins, so they are beneficial and recommended for people with diabetes, as well as being part of a daily diet and
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Table 6. Penality parameters and different obtained diets

Diet GLp Cstp Favp Unfavp Diet
1 0.4 0.4 0.8 0.6 Lime (6) ;Cooked zucchini (6) ; Grapefruit juice (6)

Goat’s milk (4);Onion (6) ; Tea(2) ; Tomato(6) .
2 0.4 0.6 0.8 0.2 Sesame seed (1);Coconut(6); Orange(6);

Raw whiting fish (2) ;.
3 0.6 0.6 0.2 0.6 Eggplant (6);Clementine(6); Sesame seed(1); Melon(6)

; Roasted pigeon(1).
4 0.6 0.8 1 0.2 Egg white cooked (6);Sesame seed (1); Orange juice (6); Goat milk (6);

Soy milk (6); Salad (2); Green salad without oil (2)
5 0.8 0.2 0.6 0.8 Cooked zucchini (6); Crab (1); Raw lamb liver (1);

Sesame seed (1); Grape juice (6); Green salad without oil (4)
6 1 0.4 0.4 0.4 Clementine (6) ; Sesame seed (1); Green salad without oil(2)

well known in Moroccan eating habits. On the other hand, people should limit their intake of fatty, carbohydrate-
rich foods, and reduce alcohol consumption. In addition, the prices presented in table 5 show that the cost of food in
the diets found is within reach of the cost of living in Morocco. The results obtained by the multi-objective particle
swarm optimizer for 500 iterations with the following Penalization parameters of the glycemic load GLp= 0.8, the
diet price Cstp=0.2, the favorable nutrient deviation Favp=0.6 and the unfavorable nutrient deviation Unfavp= 0.8
are shown in the following figures 6, which provide a best-value function.

Figure 6. : Multi-objectives Particule Swarm Optimizer with GLp=.8 ; Cstp=.2 ; Favp=.6 ; Unfavp= .8
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5. Conclusion

In this article, we aim to address a dietary problem for diabetics that focuses on minimizing glycemic load while
taking into account food costs and the essential nutritional requirements for the human body recommended, this
problem is presented with the aim of a multi-objective diet model. Applying a particle swarm optimization approach
enables us to find better trade-off solutions that provide healthy diets that are better at controlling blood sugar levels
and preventing diabetic complications. on another hand, the costs of the different diets found are appropriate for
an economically comfortable diet in the Moroccan region. The nutrients in the different diets found are fruits,
vegetables, and whole grains. This type of diet is the best diet for almost everyone.

Acknowledgement

This work was supported by the Ministry of National Education, Professional Training, Higher 707 Education and
Scientific Research (MENFPESRS) and the Digital Development Agency (DDA) and 708 CNRST of Morocco
(Nos. Alkhawarizmi/2020/23).

REFERENCES

1. American Diabetes Association. (1979). Principles of nutrition and dietary recommendations for individuals with diabetes mellitus:
1979. Diabetes, 28(11), 1027–1030.

2. Anderson, J. W., and Ward, K. (1979). High-carbohydrate, high-fiber diets for insulin-treated men with diabetes mellitus. The
American journal of clinical nutrition, 32(11), 2312–2321.

3. Jenkins, D. J., Wolever, T. M., Bacon, S., Nineham, R., Lees, R., Rowden, R., and Hockaday, T. D. R. (1980). Diabetic diets: high
carbohydrate combined with high fiber. The American journal of clinical nutrition, 33(8), 1729–1733.

4. Snowdon, D. A., and Phillips, R. L. (1985). Does a vegetarian diet reduce the occurrence of diabetes. American journal of public
health, 75(5), 507–512. Olfert, M. D., and Wattick, R. A. (2018). Vegetarian diets and the risk of diabetes. Current diabetes reports,
18, 1–6.

5. Willett, W., Manson, J., and Liu, S. (2002). Glycemic index, glycemic load,and risk of type 2 diabetes. The American journal of clinical
nutrition, 76(1), 274S–280S.

6. https://mail.glycemicindex.com/faqsList.php
7. Marsh, K., Barclay, A., Colagiuri, S., and Brand-Miller, J. (2011). Glycemic index and glycemic load of carbohydrates in the diabetes

diet. Current diabetes reports, 11, 120–127.
8. Gnagnarella, P., Gandini, S., La Vecchia, C., and Maisonneuve, P. (2008). Glycemic index, glycemic load, and cancer risk: a meta-

analysis. The American journal of clinical nutrition, 87(6), 1793–1801.
9. Jenkins, D. J., Dehghan, M., Mente, A., Bangdiwala, S. I., Rangarajan, S., Srichaikul, K., ... and Yusuf, S. (2021). Glycemic index,

glycemic load, and cardiovascular disease and mortality. New England Journal of Medicine, 384(14), 1312–1322.
10. Parsopoulos, K. E., Vrahatis, M. N. (2002). Particle swarm optimization method for constrained optimization problems. Intelligent

technologies–theory and application: New trends in intelligent technologies, 76(1), 214–220.
11. Zhu, H., Wang, Y., Wang, K., Chen, Y. (2011). Particle Swarm Optimization (PSO) for the constrained portfolio optimization problem.

Expert Systems with Applications, 38(8), 10161–10169.
12. EBERHART, Russell et KENNEDY, James. Particle swarm optimization. In : Proceedings of the IEEE international conference on

neural networks. 1995. p. 1942–1948.
13. Y. Shi and R. Eberhart, A Modified Particle Swarm Optimizer, in IEEE International Conference on Evolutionary Computation

Proceedings, 1998, pp. 69-–73, May.
14. Moore, J. (1999). Application of particle swarm to multiobjective optimization. Technical report.
15. K. E. Parsopoulos and M. N. Vrahatis, Particle swarm optimization method in multiobjective problems, Proceedings of the 2002 ACM

symposium on Applied computing - SAC ’02, vol. 1, p. 603, 2002.
16. Reyes-Sierra, M.,Coello, C. C. (2006). Multi-objective particle swarm optimizers: A survey of the state-of-the-art. International

journal of computational intelligence research, 2(3), 287–308.
17. Ahourag, A., El Moutaouakil, K., Cheggour, M., Chellak, S., and Baizri, H. (2023). Multiobjective Optimization to Optimal Moroccan

Diet Using Genetic Algorithm. International Journal for Engineering Modelling, 36(1), 67–79.
18. Coello, C. A. C. (2011). An introduction to multi-objective particle swarm optimizers. In Soft computing in industrial applications

(pp. 3-12). Springer Berlin Heidelberg.
19. Knowles, J. D., Corne, D. W. (2000). Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary

computation, 8(2), 149–172.
20. Bas, E. (2014). A robust optimization approach to diet problem with overall glycemic load as objective function. Applied Mathematical

Modelling, 38(19-20), 4926–4940
21. https://mail.glycemicindex.com/faqsList.php
22. Sak, J., Suchodolska, M. (2021). Artificial intelligence in nutrients science research: a review. Nutrients, 13(2), 322.

Stat., Optim. Inf. Comput. Vol. 12, May 2024



616 A MULTIOBJECTIVE DIET PLANNING MODEL FOR DIABETIC PATIENTS

23. Duvenage, H., Gericke, G. J., Muchiri, J. W. (2023). Diet quality of adults with poorly controlled type 2 diabetes mellitus at a tertiary
hospital outpatient clinic in Tshwane District, South Africa. South African Journal of Clinical Nutrition, 36(3), 93–99.

24. El Moutaouakil, K., and Touhafi, A. (2020, November). A new recurrent neural network fuzzy mean square clustering method. In
2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech) (pp.
1-5). IEEE.

25. El Moutaouakil, K., Yahyaouy, A., Chellak, S., and Baizri, H. (2022). An optimized gradient dynamic-neuro-weighted-fuzzy clustering
method: Application in the nutrition field. International Journal of Fuzzy Systems, 24(8), 3731–3744.

26. Abdellatif, E. O., Karim, E. M., Hicham, B., and Saliha, C. (2022). Intelligent local search for an optimal control of diabetic population
dynamics. Mathematical Models and Computer Simulations, 14(6), 1051–1071.

27. El Moutaouakil, K., Palade, V., Safouan, S., and Charroud, A. (2023). FP-Conv-CM: Fuzzy Probabilistic Convolution C-Means.
Mathematics, 11(8), 1931.

28. Bounabi, M., Moutaouakil, K. E., Satori, K. (2022). The Optimal Inference Rules Selection for Unstructured Data Multi-Classification.
Statistics, Optimization & Information Computing, 10(1), 225–235.

29. Ahmed, S., Yahia, K. (2024). Implementation of Fuzzy Logic Controller Algorithms with MF optimization on FPGA. Statistics,
Optimization & Information Computing, 12(1), 182–199.

30. El Ouissari, A., and El Moutaouakil, K. (2021). Density based fuzzy support vector machine: application to diabetes dataset.
Mathematical modeling and computing, 8, 747–760.

31. El Ouissari, A.; El Moutaouakil, K. Density based fuzzy support vector machine: application to diabetes dataset. Math. Model.
Comput. 2021, 8, 747–760.

32. Ahourag, A., Chellak, S., Cheggour, M., Baizri, H., andBahri, A. (2023). Quadratic Programming and Triangular Numbers Ranking
to an Optimal Moroccan Diet with Minimal Glycemic Load. Statistics, Optimization and Information Computing, 11(1), 85–94.

33. El Moutaouakil, K., Ahourag, A., Chakir, S., Kabbaj, Z., Chellack, S., Cheggour, M., and Baizri, H. (2023). Hybrid firefly genetic
algorithm and integral fuzzy quadratic programming to an optimal Moroccan diet. Math. Model. Comput, 10, 338–350.

34. U.S. Department of Health and Human Services U.S. Department of Agriculture, Dietary guide- lines for Americans
35. Atkinson, F. S., Foster-Powell, K., and BranMiller, J. C. (2008). International tables of glycemic index and glycemic load values:

2008. Diabetes care, 31(12), 2281–2283.

Stat., Optim. Inf. Comput. Vol. 12, May 2024


	1 Introduction
	2 Multiobjective particle swarm optimizers
	3 Formulation of the multiobjective model for ideal meal planning
	3.1 About the data set of the diet problem
	3.2 Mathematical mapping of requirements
	3.3 Multiobjectives optimization diet model

	4 Model resolution and results
	4.1  Computation of the proposed multiobjective model parameters
	4.2 Numerical results

	5 Conclusion

