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Abstract Astronomical images share a common characteristic, which is low variability. This term refers to images with
minimal changes or variations in pixel values or features. In this article, we leverage the low variability characteristic of
astronomical images to detect celestial objects. We compute the mean squared error for the reconstructed astronomical
image, derived from its Jacobi moments. These moments are calculated multiple times, focusing on different regions within
the image. The mean squared error metric serves as the score function for the simulated annealing algorithm, aiding in
the identification of regions with the highest information loss. The parameters used to compute Jacobi moments to focus
on that region are then interpreted as the coordinates of celestial objects. This method proves effective for preprocessing
images since it provides optimal parameters for Jacobi polynomials, which will enhance their feature extraction capability.
Additionally, it serves as an object detection method, as we can interpret the Jacobi moments’ parameters as coordinates for
the objects within the images.
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1. Introduction

Object detection methods have become indispensable, revolutionizing fields such as autonomous vehicles,
surveillance, medical imaging, and augmented reality. These methods are often grounded in advanced deep
learning techniques like deep convolutional neural networks [1, 2, 3]. Noteworthy advancements in object detection
are Faster R-CNN and YOLO [4, 5]. Object detection in astronomical images helps identify and categorize
celestial objects, including stars, galaxies, and transient events like supernovae. With the ever-increasing volume
of astronomical data from modern telescopes, automated object detection becomes essential for efficient analysis
and systematic sky surveys [6]. The majority of object detection algorithms are two-stage detectors, employing
two passes of the input image to predict the presence and location of objects. In the first pass, a set of proposals or
potential object locations is generated, and the second pass refines these proposals for final predictions. While this
approach is generally more accurate than single-shot object detection, it comes with a higher computational cost.
Consequently, employing two two-stage algorithms is impractical for astronomical images due to their substantial
dimensions and the varying scale of objects. One-stage detectors, such as YOLO, offer faster processing times
but have limitations, as they need to be pretrained for specific use cases. The call for single-shot object detection
without pretraining stems from the need for rapid adaptability and resource efficiency. These techniques allow
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quick deployment and flexibility in handling diverse, unseen data, which is particularly beneficial in resource-
limited scenarios like astronomy.

Jacobi polynomials and moments are named after the eminent mathematician Carl Gustav Jacob Jacobi [7].
They are used in pattern recognition, image analysis, and signal processing, where they excel at capturing essential
features and patterns within complex data [8, 9]. These moments offer an excellent solution for feature extraction
in astronomical images. Their unique advantage lies in their ability to reduce moment order and focus on specific
regions of interest within an image while maintaining a satisfactory quality for most applications. In this paper,
we use the mean squared error (MSE) metric as a scoring function for the simulated annealing algorithm. While
maximizing the MSE metric may seem counterintuitive, it takes on a new meaning when we focus on specific
regions using Jacobi polynomial parameters and look for regions with maximum information loss. In doing so,
we obtain varying MSE scores depending on the content and variability of that region. Through the simulated
annealing algorithm, we determine the region with maximum information loss and consequently optimal Jacobi
polynomial parameters. These parameters serve as precise coordinates, effectively representing objects within low-
variability images. This approach not only aids in object detection but also paves the way for a more nuanced and
adaptive approach to handling diverse image datasets.

We will start by introducing orthogonal Jacobi moments along with their properties and parameters. Next, we’ll
present the mean squared error and its role in identifying regions of maximum information loss using Jacobi
polynomials. Afterward, we will introduce the simulated annealing algorithm as an optimization tool for the mean
squared error. Finally, we will employ the proposed algorithm to detect celestial objects in astronomical images.

2. Orthogonal Jacobi Moments

2.1. Jacobi Polynomials

For α, β ∈ R;α > −1, β > −1, and a nonnegative integer n, we denote by J
(α,β)
n (x) the Jacobi polynomials, which

comprises all the polynomials solutions to singular Sturm-Liouville problems on [−1, 1]. The Jacobi polynomials
J
(α,β)
n (x), have the following Gauss hypergeometric representations:

J (α,β)
n (x) =

(α+ 1)n
n!

2F1(−n, 1 + α+ β + n, α+ 1;
1− x

2
) (1)

where (α+ 1)n is the Pochhammer’s symbol given by:

(α+ 1)n = (α+ 1)(α+ 2) . . . (α+ n − 1), n ≥ 1 and (α+ 1)0 = 1 (2)

and 2F 1 is the generalized hypergeometric which is defined as:

2F 1(a, b, c;x) =

∞∑
k=0

(a)k(b)k
(c)k

xk

k!
(3)

In this case, the series for the hypergeometric function is finite, so we get the expression of the Jacobi polynomials
J
(α,β)
n (x) of degree n given by:

Jn(α, β)(x) =

n∑
k=0

χ
(α,β,n)
k xk (4)

where
χ
(α,β,n)
k = (−1)n−k Γ(n+ β + 1)Γ(n+ k + α+ β + 1)

Γ(k + β + 1)Γ(n+ α+ β + 1)(n− k)!k!
(5)

Directly calculating Jacobi polynomials is highly complex, demanding significant computation time and
resulting in numerical fluctuations, particularly when dealing with large orders. To address this issue, it is
recommended to employ the recursive form of Jacobi polynomials [10]. These polynomials are generated using
three-term recurrence relations:
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J
(α,β)
n+1 (x) = (Anx−Bn)J

(α,β)
n (x)− CnJ

(α,β)
n−1 (x), n ≥ 1 (6)

with
J
(α,β)
0 (x) = 1 and J

(α,β)
1 (x) = (α+ β + 2)x− (β + 1) (7)

and

An =
(2n+ α+ β + 1)(2n+ α+ β + 2)

(n+ 1)(n+ α+ β + 1)
(8)

Bn =
(2n+ α+ β + 1)(2n2 + (1 + β)(α+ β) + 2n(α+ β + 1))

(n+ 1)(n+ α+ β + 1)(2n+ α+ β)
(9)

Cn =
(2n+ α+ β + 2)(n+ α)(n+ β)

(n+ 1)(n+ α+ β + 1)(2n+ α+ β)
(10)

The Jacobi polynomials constitute an orthogonal system with respect to the following weight function:
ω(α,β)(x) = (1 + x)α(1− x)β over I = [−1, 1], that is,∫ 1

−1

J
(α,β)
j (x)J

(α,β)
k (x)ω(α,β)(x)dx = h

(α,β)
k δjk (11)

where δjk is the Kronecker function and

h
(α,β)
k =

2α+β+1Γ(k + α+ 1)Γ(k + β + 1)

(2k + α+ β + 1)k!Γ(k + α+ β + 1)
(12)

The normalized Jacobi polynomials J̃ (α,β)
n (x) are defined as:

J̃ (α,β)
n (x) =

√
ω(α,β)(x)

h
(α,β)
k

J (α,β)
n (x) (13)

We can deduce the orthogonality relation of the normalized Jacobi polynomials:∫ 1

−1

J̃
(α,β)
j (x)J̃

(α,β)
k (x)dx = δjk (14)

2.2. Computation of Jacobi Moments

The classical Jacobi moments (CJMs) of order (n+m) of any function f (x, y) defined on [−1, 1]× [−1, 1] can be
computed using continuous integrals [8] as:

CJMnm =

∫ 1

−1

∫ 1

−1

f(x, y)J̃ (α,β)
n (x)J̃ (α,β)

m (y)dxdy (15)

where n = 0, 1, 2, ..., N − 1 and m = 0, 1, 2, ...,M − 1

Therefore, the Classical Jacobi Moments CJM
(α,β)
nm of a digital image function f (x, y) with the size N ×M ,

mapped into the region [−1, 1]× [−1, 1], can be computed using Zeroth Order Approximation (ZOA) method as:

CJMnm =

N−1∑
i=0

M−1∑
j=0

f(i, j)J̃ (α,β)
n (xi)J̃

(α,β)
m (yj)∆x∆y (16)

where J̃
(α,β)
n (x) is the nth order orthogonal Jacobi polynomials and ∆x = xi − xi−1, are sampling intervals

in the ‘x’ and ‘y’ directions respectively, (xi, yj) is the center of (i, j) pixel. The image coordinate transform
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is defined as follows: xi =
(
i+ 1

2

)
∆x− 1, yj =

(
j + 1

2

)
∆y − 1 with ∆x = 2

N ,∆y = 2
M , i = 0, 1, 2 . . . .., N − 1

and j = 0, 1, 2 . . . ..,M − 1.
An approximation f (x, y) of the original image can be obtained by:

f (i, j) =

N−1∑
n=0

M−1∑
m=0

CJMnmJ̃ (α,β)
n (xi) J̃

(α,β)
m (yj) (17)

If the Jacobi moments are limited to Nmax < N and Mmax < M , then the image is constructed approximately
as [11]:

f̃ (i, j) =

Nmax−1∑
n=0

Mmax−1∑
m=0

CJMnmJ̃ (α,β)
n (xi) J̃

(α,β)
m (yj) (18)

Figure 1. Image of a galaxy facing forward of size 152 × 152 from Sloan Digital Sky Survey.

(a) n = 70 (b) n = 30

Figure 2. Image reconstruction using Jacobi polynomials using α = β = 20.

2.3. Guidelines and Rules for Controlling the Jacobi Moments-Extracted Features

In this section, we present experimental results to corroborate the theoretical framework developed earlier.
The test image is displayed in Figure 3. Initially, we compute the Jacobi moments up to the specified order
(Nmax,Mmax) = (30, 30) using the parameters (α1, β1, α2, β2) with the following equation:

Stat., Optim. Inf. Comput. Vol. 12, May 2024



664 CELESTIAL OBJECT DETECTION IN ASTRONOMICAL IMAGES USING MSE AND JACOBI MOMENTS

CJMnm =

N−1∑
i=0

M−1∑
j=0

f (i, j) J̃ (α1,β1)
n (xi) J̃

(α2,β2)
m (yj)∆x∆y (19)

and then reconstruct the image from the Jacobi moments with (Nmax,Mmax) = (30, 30) and the calculated
moments using the following equations.

f̃ (i, j) =

Nmax−1∑
n=0

Mmax−1∑
m=0

CJMnmJ̃ (α1,β1)
n (xi) J̃

(α2,β2)
m (yj) (20)

Figure 3. Image of size (278× 278) with a number in each corner.

As we can see from the results in Figure 4, changing α1 and β1 will shift the focus between the upper and lower
halves of the image depending on the larger value; for example, if α1 is greater than β1, the focus will be shifted
to the upper half of the image, and vice versa; similarly, if α2 is greater than β2, the focus of Jacobi moments will
be shifted to the left half of the image. By choosing these values carefully, we can target the location where the
features we want to extract are, reducing the number of moments used because we don’t need to extract global
features, for example, in all four images in Figure 4, we used (Nmax ×Mmax) = (30× 30) while the original size
of the image was (278× 278), resulting in an 89% reduction in image size.

3. Mean Squared Error for Object Detection

Mean Squared Error (MSE) is a widely used metric in statistics and machine learning to quantify the average
squared difference between predicted and observed values [12]. It is commonly employed for assessing the
performance of predictive models, such as regression models.

The formula for calculating MSE is as follows:

MSE =
1

n
×
∑

(yi − ȳi)
2 (21)

where:

• MSE is the Mean Squared Error.
• n is the number of data points in the dataset.
• yi represents the observed (actual) value for the ith data point.
• ȳi represents the predicted value for the ith data point.
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(a) (α1 = 80, β1 = 0) and (α2 = 80, β2 = 0) (b) (α1 = 80, β1 = 0) and (α2 = 0, β2 = 80)

(c) (α1 = 0, β1 = 80) and (α2 = 80, β2 = 0) (d) (α1 = 0, β1 = 80) and (α2 = 0, β2 = 80)

Figure 4. Image reconstruction using (Nmax ×Mmax) = (30× 30) and different α and β values

MSE measures how closely a model’s predictions match the actual data. A lower MSE indicates better alignment,
while a higher MSE suggests larger prediction errors. A perfect match results in an MSE of 0. In image analysis
[13], lower MSE values indicate greater similarity among images, signifying less variation in pixel values.
Conversely, images with higher variability tend to yield higher MSE values. This concept also applies to specific
regions within an image, as illustrated in Figure 5. If we concentrate Jacobi moments in the upper left corner and
assess the reconstructed image using MSE, we can expect a higher value compared to focusing on other corners of
the image.

After reconstructing the image twice using the parameters shown in Figure 6, once focusing on the upper left
corner (Figure 6a) and the other on the upper right corner (Figure 6b), we compared the MSE scores. The first
image had an MSE of 831,672,340,650, while the second had an MSE of 2,930,890,657,171. The higher MSE
for the upper right corner can be attributed to the presence of the object ‘star’, resulting in more information loss
during reconstruction. In contrast, the upper left corner contains less information, appearing as a black background.
Consequently, there isn’t much information to lose. This suggests that we can use high MSE scores to identify
object locations in images with lower variability, such as medical and astronomical images.

A clearer perspective emerges when we set α1 = 80 and β1 = 0 while varying α2 and β2 across all possible
combinations between 20 and 80 with a step size of 5. Figure 7 vividly illustrates that when β2 (horizontal axis)
surpasses α2 (vertical axis), it results in a higher MSE, indicating that the loss of information is more crucial in the
upper right corner of the image, where the star object is located.
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Figure 5. Lower variability image of size (500× 500) with a star in the upper right corner.

(a) (α1 = 80, β1 = 0) and (α2 = 80, β2 = 0) (b) (α1 = 80, β1 = 0) and (α2 = 0, β2 = 80)

Figure 6. Image reconstruction using Jacobi polynomials using (Nmax ×Mmax) = (30 × 30) and different α and β
values.

4. Simulated Annealing for MSE Optimization

In problems where discovering an approximate global optimum is prioritized over pinpointing a precise local
optimum within a fixed time frame, simulated annealing (SA) can be a more suitable choice compared to exact
algorithms like gradient descent [14] or branch and bound [15]. SA enhances the Local Search algorithm by
occasionally permitting moves to less optimal solutions. This seemingly counterintuitive approach allows the
algorithm to escape local optima that may not be the global optimum.

4.1. The Basic Iteration

To apply the simulated annealing algorithm to our specific problem, several parameters need to be specified:

1. State Space: Define the state space relevant to the problem.
2. Energy Function (Score Function): Choose the energy function to maximize, which, in our case, is the Mean

Squared Error (MSE).
3. Candidate Generator Procedure (Neighbor): Determine the procedure for generating candidates, which

involves selecting values for (α1, β1, α2, β2). This has been done using a random number generator between
0 and 80 with a step size of 5.

4. Acceptance Probability Function (P): Define the acceptance probability function.
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Figure 7. Heatmap of MSE scores evaluated on the image in Fig. 6 after reconstruction with Jacobi moments with
(Nmax ×Mmax) = (4× 4) with different (α2, β2) values .

5. Annealing Schedule: Specify the temperature (T) and the initial temperature. Details regarding these will be
presented later in this section.

During each step, the simulated annealing heuristic evaluates neighboring states S∗ of the current state S and
probabilistically decides whether to transition to S∗ or stay in S. These probabilities guide the system towards
states with lower energy, ultimately seeking an optimal solution. Typically, this process is repeated until the system
reaches a satisfactory state for the application or until a predefined computation budget is exhausted.

4.2. Convergencne

The SA algorithm can terminate based on user-defined conditions, which vary depending on the specific problem
and optimization objectives. In our case, termination criteria may include reaching a maximum of 20 iterations,
reaching a target temperature of zero, meeting convergence standards (such as no improvement for a predetermined
number of iterations), or completing the optimization within a given one-minute time frame.

The line graphs in Figure 8 below show two instances of convergence in fewer than 20 iterations using
the following parameters: Jacobi moments up to order (Nmax ×Mmax) = (20× 20) and an initial temperature
of 3. The algorithm computed the maximum MSE values for images (a) and (b), resulting in the coordinates
(α1 = 30, β1 = 50) and (α2 = 55, β2 = 40) for image (a), as well as (α1 = 60, β1 = 60, α2 = 50, β2 = 35) for
image (b). Upon inspecting the images, we observed that these coordinates corresponded accurately to the locations
of the main objects of interest.

5. Celestial Object Detection in Astronomical images

To demonstrate our method, we have chosen the first deep-field image captured by the James Webb Space Telescope
(Figure 9). Since this image is larger than required and contains multiple objects, we segmented it into 81 smaller
500× 500 images to make it more suitable for testing.

In Fig. 10, we demonstrate the utilization of optimal parameters generated by the SA algorithm for locating the
object and calculating Jacobi moments to identify local features of the main object. The importance of parameter
selection becomes evident, as using incorrect parameters can lead to the omission of the main object within the
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(a) (α1 = 30, β1 = 50) and (α2 = 55, β2 = 40) (b) (α1 = 60, β1 = 60) and (α2 = 50, β2 = 35)

Figure 8. Image reconstruction using (Nmax ×Mmax) = (30× 30) and different α and β values

Figure 9. Webb’s First Deep Field.

image, as seen in Figure 10b. In this instance, after applying reconstruction with (Nmax ×Mmax) = (50× 50),
the left regions of the image appear black due to the parameter focus on the right side of the image. The
reconstruction was performed using (Nmax × Mmax) = (50 × 50) and the parameters (α1 = 20, β1 = 55) and
(α2 = 20, β2 = 60) generated by the SA algorithm. Thanks to the optimal parameters, we are now able to utilize
Jacobi moments of size (50× 50) for our image instead of the original (500× 500), which constitutes only 1% of
the original size. We can calculate the size percentage compared to the original size as follows:

50× 50

500× 500
× 100% = 0.01× 100% = 1% (22)

Stat., Optim. Inf. Comput. Vol. 12, May 2024
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(a) (b)

Figure 10. The original image (a) and the reconstructed image (b).

In addition to utilizing the parameters generated by the SA algorithm for calculating Jacobi moments, we can
also use these parameters as coordinates to crop the image. For example, for the image in Figure 10a the algorithm
returned α1 < β1, which indicates that the object is situated in the bottom half of the image. Furthermore, α2 < β2,
indicates that the object is situated within the right half of the image.

(a) (b)

Figure 11. (a) Original image, (b) cropped image using the parameters generated by the SA.

After cropping the image using the provided parameters, we achieved a significant size reduction of up to
80%. For instance, in Figure 11, we followed the instructions to crop the image, resulting in a final image size
of (215× 215), which represents only 18% of the original size (500× 500).

Figure 12 presents additional examples of reconstruction using the parameters generated by the SA algorithm,
employing various (Nmax ×Mmax). Utilizing the optimal parameters generated by the SA algorithm, we can
calculate the local Jacobi moments and reduce the order. Depending on the object’s size, we can achieve significant
size reductions, such as up to 99.84%, as demonstrated in Figure 12d. In this case, we used (Nmax ×Mmax) =
(20× 20), which means we utilized only 0.16% of the original size (500× 500).

20× 20

500× 500
× 100 % = 0.0016 × 100 % = 0.16 % (23)

resulting in a remarkable 99.84% size reduction. And the object, the star, remains clear and recognizable.
8pt
Table 1 offers a concise overview of the reconstruction results achieved through the parameters generated by the

Simulated Annealing algorithm.
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(a) (α1 = 20, β1 = 45) and (α2 = 25, β2 = 30) (b) (Nmax × Mmax) = (30 × 30)

(c) (α1 = 50, β1 = 10) and (α2 = 25, β2 = 40) (d) (Nmax × Mmax) = (20 × 20)

(e) (α1 = 10, β1 = 60) and (α2 = 60, β2 = 5) (f) (Nmax × Mmax) = (50 × 50)

Figure 12. Images cropped from Webb’s Deep field and the main object coordinates

Figure Parameters (Object coordinates) Reconstruction order Size reduction percentage
Figure 10a (α1 = 10, β1 = 10, α2 = 20, β2 = 45) (Nmax × Mmax) = (50 × 50) 99.00%

Figure 12a (α1 = 20, β1 = 45, α2 = 25, β2 = 30) (Nmax × Mmax) = (30 × 30) 99.64%

Figure 12c (α1 = 50, β1 = 10, α2 = 25, β2 = 40) (Nmax × Mmax) = (20 × 20) 99.84%

Figure 12e (α1 = 10, β1 = 60, α2 = 60, β2 = 5) (Nmax × Mmax) = (50 × 50) 99.00%
Table 1. Size reduction percentage
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6. Conclusion

We have presented a novel approach to object detection. Our method focuses on maximizing the mean squared
error of the reconstructed image using the computed Jacobi moments of that image. This involves the utilization
of low-order moments across various image regions, where control over the regions is achieved through Jacobi
polynomials parameters. The mean squared error was then used as the score function for the simulated annealing
to find the optimal parameters. The reduction in moments order leads to information loss, which is particularly
high in specific image regions where the object is located, and this loss is quantified using the mean squared error.
In low-variability images such as astronomical images, these regions of information loss align with the coordinates
of the main object and optimal Jacobi polynomials parameters. The key advantage of this technique over others
lies in its capacity to detect objects without the need for training the model. This efficiency in object detection
without the requirement for extensive training or complex optimization processes makes the approach particularly
advantageous for applications where real-time or computationally efficient solutions are critical.

Furthermore, by investigating alternative image quality metrics such as peak signal-to-noise ratio, our research
may expand its horizons. We try to adapt and transform diverse image categories by covering a broader range of
image types beyond those with lower variability. Exploration of various filters and transformation techniques may
potentially make these images suitable for our method, extending its applicability to a wider range of domains and
imaging scenarios.
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