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Abstract Branching structures are gaining popularity in the field of advanced structures and building design; they
offer high performance in terms of strength and lightweight design, along with the flexibility and precision enabled by
modern processing technologies like Additive Manufacturing. This paper provides a concise overview of a geometric design
procedure for a novel ribbed class of structures which was previously developed by the authors as a biomimetic optimal
Micro-architected dome. Hereinafter, linear lattice models are suggested to carry out structural calculations using the finite
element method (FEM). The objective is to examine discretization thresholding and strain energy convergence criteria.
Results show that convergence is reached for numbers of elements per leg, ranging from 2 to 6, depending on the geometrical
configuration of the dome being studied. The strain energy balance also exposes the influence of each internal force on the
total mechanical response of the structure, pinpointing bending moment and axial force as the main decisive factors. As a
perspective, the study will focus on limit state design calculations and Analysis of how the local geometry influences the
overall stability and strength of this new design.
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1. Introduction

Branching structures, as encountered in nature, particularly trees, are an interesting example of biomimicry in
civil engineering. These structures offer a remarkable combination of lightness and high mechanical strength.
Inspired by nature, engineers seek to replicate these characteristics to optimize the structural efficiency of buildings
and achieve significant material savings. By imitating the ramifications of a tree, branching structures effectively
distribute loads and optimize stress resistance. This approach, emphasizing lightness with no strength loss, offers
vast potential for the construction of more sustainable buildings, while drawing inspiration from the millions of
years of evolution that have shaped nature’s perfection.

Several numerical methods are available in the literature for designing such branched structures; The double-
element method was invented and implemented by Zhao et al. [1, 2] to simulate the elements of branching systems,
and a similar process was adopted by Chen, Z et al. for door-type modular steel scaffolds applications [3]. Also,
the length penalization method (PLM) and the ground structure modification method (MGSM) are two techniques
that were investigated by Cai, Qi et al. [4] to produce diverse lattice configurations. Fengcheng Liu [5] suggests
an improved form optimization technique that considers the sensitivity to structural flaws. The result is a strong
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construction with a low tolerance to imperfections and improved buckling load capability, similarly to the ”GE-
SEZ” structure proposed by EL JAI et al. [19]. These techniques are typically embedded in mechanical optimization
loops that make use of genetic optimization algorithms and finite elements method for mechanical computations
[2, 6, 7, 8, 9, 10, 11]. Other researchers make use of plant growth modeling algorithms such as the L-system method,
invent-ed by Lindenmayer in 1989 [12]. This approach is capable of modeling both plant growth and simple cell
evolution, and has also been applied in number of papers to design dendriform-like structures [13, 14, 15, 16]. The
”Grasshopper” environment also enabled numerous designers to create sophisticated branching structures using a
parametric design workflow.

The use of additive manufacturing is transforming the design and production of branch-shaped structures.
This revolutionary technology enables to push back the limits of geometric complexity and offers a new level
of design flexibility. In the context of branched structures, additive manufacturing facilitates the production
of complicated, interconnected components that resemble natural elements [8, 16, 17]. This method optimizes
lightness and mechanical strength by eliminating unnecessary weight while maintaining structural integrity [18].
On the one hand, additive manufacturing reduces material waste, contributing to material efficiency [16, 18],
and on the other hand, optimizing scanning strategies can also reduce the energy cost of manufacturing [20]. By
combining parametric design, shape generation algorithms and additive manufacturing, it is possible to push back
the boundaries of structural efficiency and create branch-like structures that are lightweight, robust and durable,
paving the way for a new era of environmentally-friendly engineering and construction [18].

The Finite Element Method (FEM) is a powerful numerical technique employed in mechanical computations
to analyze and simulate complex engineering systems such as branching structures. It is based on the concept
of subdividing a complex domain into smaller, finite elements, allowing for approximation of behavior within
each element. There are two approaches to discretize lattices and branch structures: using volume finite elements
to represent the entire branch volume, or using beam finite elements to represent the average branch fiber. The
second strategy helps for minimizing the number of nodes and elements in the structure, as well as the overall
problem dimension and the corresponding computation costs. According to Galarreta et al. [22], It is preferable to
employ volumetric FE analysis for thick-branched structures with a diameter-to-length ratio greater than 0.1, and
recommends the use of finite beam elements otherwise for good results accuracy.

However, the FE results can be inaccurate if the mesh quality is not verified, which can bias the convergence
of the model. According to Burkhart et al., 39% of papers using FEM do not validate the convergence of the
calculations, and 95% do not evaluate the quality of the mesh used in their models [21]. There are various
outputs from FEA that can be evaluated to meet convergence criteria, including dis-placement convergence, stress
convergence, and stiffness convergence [22, 23, 24]. For regular lattices, these strategies are effective. However,
when dealing with a geometrically non-linear structure, it is more appropriate to utilize potential strain energy as a
convergence criterion [21, 25, 26].

The aim of this paper is to briefly present the parameterized design of a family of micro-architected domes
(MAD), following a biomimetic approach proposed by Nadir et al. [27]. Next, a finite element method (FEM)
calculation model is presented. Due to the lack of mesh quality indicators for beam elements in the literature,
convergence of potential strain energy is considered here as a validation criterion for mesh quality; an optimization
of computational costs has been carried out based on this criterion. Finally, the obtained minimum members are
reported, and the corresponding length-to-dome’s radius ratios are statistically discussed to serve as mesh quality
indicators for the MAD structure. Last but not least, the impact of internal forces on the MAD structure’s response
is investigated by breaking down the global strain energy and analyzing the contribution of each force.

2. Methods

In this section, the global methods used to study this family of domes are outlined; subsection 2.1 briefly presents
the design of the family of structures studied, while subsection 2.2 focuses on the analytical formulation of the
family’s mechanical problem. Subsection 2.3 covers the strain energy convergence criteria, and 2.4 explains the
numerical calculation steps adopted to solve the problem, as well as the overall data workflow.
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2.1. Presentation of the MAD family design

The MAD family of structures investigated in this paper is a family of ribbed domes with dendriform geometry
proposed by Nadir et al. [27]; the design principle of these structures was based on a biomimetic approach. The
parametric design of these structures is established by first duplicating a tetrapod unit cell end-to-end until a
pyramidal skeleton is completely filled. Then, a series of three mappings are applied to the intermediate pyramid
to achieve the targeted spherical geometry (see Fig.1); these transformations, formulated analytically by Nadir et
al. [27], include biomimetic concepts such as the decreasing series of the golden ratio. The macroscale parameters
of the MAD structure are the outer radius of the dome Rext, the number of levels n, which governs the density of
legs in the structure, and the number of quarters q in the dome, that determine the azimuth angular decomposition
(see Fig.2).

Figure 1. MAD design steps [27]

Figure 2. Parametrization of MAD quarter.
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2.2. Formal analysis

This section is dedicated to the problem formulation; it includes a brief introduction to elastic beam theory
regarding continuum mechanics in terms of constitutive models and potential strain energy formulation.

Theory of elasticity as Mathematical formal framework

The theory of elasticity is a fundamental discipline in continuum mechanics, playing an essential role in
understanding the behavior of materials under the influence of external solicitations; when a solid is subjected
to deformation, an internal state of stress results, aiming at ensuring the cohesion of the material. The governing
equations of the theory are based on fundamental principles of mass conservation and equilibrium reflecting
Newton’s second law in equation (1). Strain tensor ϵ is expressed in equation (2) as a function of displacement
field u. This theory is based on the assumption that most materials can be recovered to their original state once the
forces that deformed them are removed, as long as the strains do not exceed a specified state limit. The stresses σ
are related to the strains by a linear relationship (3) also known as Hooke’s law [28].

∇.σ + f = ρü (1)

ϵ =
1

2
[∇.u+ (∇.u)t] (2)

σ = C : ϵ (3)

Where:

• ∇ is the differential operator;
• σ the Cauchy stress tensor;
• ϵ the strain-tensor;
• f the body force per unit volume;
• C the elasticity matrix of the material;
• ρ the material density;

Note that ρü is negligible for static equilibrium problem.

Beam theory

In beam theory, internal forces are determined by means of the cohesion torsor; the 3D components of this torsor
expressed in the beam’s local reference frame are : The normal force Fx, the shear force in the y direction Fy, the
shear force in the z direction Fz , the bending moment in the y direction My, the bending moment in the z direction
Mz and the torque Mx (see Fig. 3). In the case of an Euler Bernoulli’s beam of length L and cross-section A, the
internal forces can be expressed according to the Cauchy tensor σ as indicated in systems (4 and5) [29].

Fx =
∫
A
σxxdA

Fy =
∫
A
σxydA

Fz =
∫
A
σxzdA

(4)


Mx =

∫
A
(σxzy − σxyz)dA

My =
∫
A
σxxzdA

Mz = −
∫
A
σxxydA

(5)
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Figure 3. MAD design steps [27]

It is worth mentioning that under elastic conditions, the governing equations for strain and stress in beams can
be analogous to those used in elasticity, showing that beam theory can be seen as a simplification of elasticity
theory for specific situations. In fact, the internal forces are defined in a beam at each cross-section, unlike the
Cauchy tensor, which is defined at every single point of the solid being analyzed so that problem’s dimensionality
can be considerably reduced.

Potential strain energy

Strain energy is an important concept in the mechanics of materials and structures; it represents the amount of
energy conserved in a material or structure during solicitation. This energy, expressed in equation 6, is generally
associated with the material’s ability to resist elastic deformations. In elasticity, this energy is reversible, meaning
that it can be liberated when the deformations are released.

Wtot =

∫
V

W̄dV (6)

W̄ =
1

2

3∑
i,j=1

σijϵij

W̄ is the potential strain energy per unit volume. The hook’s law can be used to replace the Cauchy tensor
components σij by the corresponding expressions of ϵij .

As for beam elements, the total energy Wtot is expressed as a function of the separate internal force torsor
components described in systems (4 and 5) as indicated in equation (7).

Wtot = WAxial +W y
Shear +W z

Shear +W y
Bend +W z

Bend +WTor (7)

Where:

• WAxial =
∫ L

0

F 2
x

2AE dx is the axial (tensile/compression) component of potential strain energy;

• W y
Shear =

∫ L

0

FyV
2

2AG dx is the y-shear component of potential strain energy;
• W z

Shear =
∫ L

0
FzV

2

2AG dx is the z-shear component of potential strain energy;

• W y
Bend =

∫ L

0

M2
y

2EIy
dx is the y-bending component of potential strain energy;

• W z
Bend =

∫ L

0

M2
z

2EIz
dx is the z-bending component of potential strain energy;

• WTor =
∫ L

0

M2
x

2GJ dx is the z-bending component of potential strain energy;
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In above expressions, A refers to the cross-section’s area of the beam member, E to Young’s modulus, and G to
shear modulus. Iy, Iz respectively designates the quadratic moment of inertia along y and z axis and J the polar
momentum depending on the cross-section’s shape.

In finite elements analysis (FEA), number of output values such as strain energy, reaction force, and stress, could
be employed as a convergence criterion. However, previous research, especially in micro-architected structures
field showed that obtaining a convergent result was simple when using the strain energy or the reaction force, but
utilizing stress as the criterion made obtaining a convergent solution challenging [21, 25, 26]. As a result, anytime
stress is utilized as a convergence condition, the findings of finite element analyses should be carefully examined.

2.3. Energy convergence criteria

In this subsection, a mathematical description of structures’ legs discretization Nmin
bar is formulated to ensure

both reliable and economical MAD Finite Element computations. The corresponding convergence criteria are
established based on a multi-parametric strain energy analysis; the first convergence parameter is the number
of integration points of each bar (NIP ) for computing the strain energy per bar, while the second parameter is
the number of bars composing each leg of the quarter Nbar (see Fig. 4). Computation convergence is assessed by
determining the relative strain energy errors between two (NIP ) and (Nbar) increments, as shown in (8) and (9).
The number of integration points converges at NIPmin when the ϵNIP error drops below the 1% threshold, and
the number of beams reaches convergence when the ϵbar error is under 3%.

Convergence stability is considered when 5 consecutive Nbar errors are tempted to be below 3%, similarly to
the iterative schemes outlined in [30]. The mathematical formulation of NIPmin and Nmin

bar are represented by
expressions 10 and 11; the relative errors ϵNIP and ϵbar were expressed following the approach adopted by [31]
for the estimation of errors between the corresponding exact solution and the approximated solution.

ϵNIP =
∣∣∣Wtot(Nbar, NIP + 1)−Wtot(Nbar, NIP )

Wtot(Nbar, NIP )

∣∣∣ (8)

ϵNIP =
∣∣∣Wtot(Nbar + 1, NIP )−Wtot(Nbar, NIP )

Wtot(Nbar, NIP )

∣∣∣ (9)

NIPmin = argmin(ϵNIP ) (10)

Nmin
bar = argmin{ϵbar(NIPmin)} (11)

Finally, the converged strain energy of the whole structure Wtot is analyzed according to the contribution of each
member force presented in expression 7.
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2.4. Stepwise computing presentation

In this work, the cross-section of the MAD family of beams is assumed to be hollow circular with external diameter
d and thickness e; the ratio of beams diameter d to overall macro-scale MAD diameter 2Rext is set at 0.5%, and
the ratio of thickness e to diameter set at 2The base nodes are fixed, and an axisymmetric boundary condition
is considered at the top of the dome, allowing only one quarter to be studied in order to simplify calculations.
Horizontal displacements and rotations along x and z directions at the top of the quarter are blocked (see Fig.4).
The structure’s self-weight is the only load modelled.

Number of bars (����)

Fixed nodes

Axisymmetric

boundary conditions

�

Figure 4. Quarter’s finite element model.

The mathematical modeling was implemented using Visual Basic for Application (VBA) in Microsoft
environment; Application programming interface (API) allowed connecting the biomimetic method previously
scripted on MATLAB [27] to Robot Structural Analysis (RSA) software of Autodesk (see Fig.5). The model’s
calculations are performed in 7 major steps:

1. Definition of the dome’s geometric parameters (Rext, n, q);
2. Initialization of the leg’s discretization parameter (Nbar);
3. Initialization of the number of integration points (NIP );
4. EF model construction and calculation:

a. Calculation of the nodes and nodal connections of the structure using the successive mapping method
proposed in [27];
b. Definition of loading and boundary conditions;
c. EF calculation;
d. Calculation of partial and total strain energies;

5. Calculation of relative errors and verification of convergence criteria according to (NIP ) and (Nbar);
6. Verification of convergence stability;
7. Incremental discretization parameters;
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MAD geometrical

parameters inputs
MAD data computing :

• Node list

• Element list

• Fixed Nodes

MAD data importation

to VBA

MAD FEA

Post-processing

Automatic

FEA settings

Application

Programming

Interface (API)

Final results :

• ����
���

• Energy balance

Figure 5. Workflow of the computations.

3. Results and discussion

This section reports the mains findings; the first subsection focuses on the convergence results of the strain energy
calculation. Then, the resulting bar lengths are subsequently statistically examined. Finally, the third subsection
covers the results on the relative contribution of the different internal forces to the overall strain energy of the
structure.

3.1. Convergence analysis of the strain energy

This subsection covers the results from calculation steps in subsection 2.4. The purpose of the computation is to
identify the minimum number of bars Nmin

bar in each leg required for convergence of the potential strain energy. As
discussed in 2.4, axisymmetric boundary conditions were adopted to reduce problem size and computation cost.
For values of n and q ranging from 2 to 9 and 10 to 100 respectively, the response surface representing Nmin

bar (n, q)
is plotted (see Fig. 6). It can be observed that the minimal number of discretization of the legs varies between 2
and 6. This parameter is not affected by the quarter parameter q, and instead decreases as the number of levels n
increases. In fact, the larger n is, the shorter the legs and the higher their density, which reduces the number of
legs required for convergence. Convergence stability was achieved at the first attempt, and the respective errors
are less than the 3% threshold (see Fig. 7). Table 1. provides a concise summary of the findings from multiple
studies on structural configurations and validation criteria. Galarreta et al. [22] conducted a study on FCC lattices,
examining both linear and quadratic configurations, with a particular emphasis on the convergence of stiffness. The
first option needed 6 elements per strut, while the second option required 14 elements per strut. In their study, Guo
et al. [23] investigated BBC lattices using different parameters (d = 0.5 and d = 0.75). They conducted experimental
testing and specified 10 and 20 elements per strut for each parameter, respectively. In their study, Uddin et al. [24]
provided valuable insights into a two-layered composite beam. They focused on the importance of displacement
convergence and utilized 6 beam elements in their analysis. Compared to the present results, it is noticeable that the
optimal number of bars in this model is low compared to literature, since the convergence can be quickly reached
when using stain energy as a convergence criterion [21, 25, 26].
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Figure 6. Minimal number of bars needed in each leg for strain energy convergence.

Figure 7. Strain energy error ratio.
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Table 1. Literature benchmark on the minimum number of elements for convergence.

Reference Structure Validation criteria Number of elements

Galarreta et al. [22] FCC lattice (linear) Stiffness convergence 6 per strut
Galarreta et al. [22] FCC lattice (Quadratic) Stiffness convergence 14 per strut
Guo et al. [23] BBC lattice (d = 0.5) Experimental testing 10 per strut
Guo et al. [23] BBC lattice (d = 0.75) Experimental testing 20 per strut
Uddin et al. [24] Two-layered composite beam Displacement conver-gence 6 beam elements
This work MAD quarter Strain energy convergence 3 to 6 RSA frame per legs

Regarding the number of integration points, the trapezoidal numerical integration method was adopted. In this
case, it was found that the minimum number of integration points NIPmin required to reach convergence did not
vary with n and q, and was equal to 3 to 4 calculation points per bar since the change of internal forces along the
members was low enough. Also, the trapezoidal integration method tends to converge quicker than others. In the
following results, integrations are performed through 4 calculation points.

3.2. Bars lengths analysis

The bar lengths of the structures were computed after adopting the minimum discretization already obtained. It
turned out that the statistical distribution of these lengths did not follow a conventional distribution. The results
revealed that the number of levels n had a much stronger influence on the lengths than the quarter parameter q
(see Fig. 8), although some drops in maximum lengths can be observed along the n dimension; this is caused by
the transition between one level of discretization Nmin

bar and another. As a result, the maximum length of the bars
in each structure varies between 8.5% and 15% of the quarter’s overall radius, while the minimum lengths of the
bars vary between 0.13% and 2.5% of the quarter’s outer radius. The average length value varies between 3.5%
and 6.2% of the outer radius, with a standard deviation ranging from 0.04 to 0.0165 (see Fig. 9). These results can
be used as maximum length ratio threshold for the FE model in the design of a unique quarter, since they ensure
strain energy convergence of FE calculations at less than 3% error.

3.3. Contribution of internal forces to total strain energy

This subsection analyses the contribution of each individual internal force introduced in systems 4 and 5 to the
overall strain energy of the structure. This involves understanding the impact of each internal force on the overall
mechanical response of the structure. Such analyses are missing from the literature, although they can be an
interesting approach for engineers and designers to enhance their understanding of lattice behavior and predict
the predominant efforts. Consequently, the analysis focuses on their respective deformation energies in proportion
to the overall energy, as well as the evolution of this ratio in (n, q) space (see Fig. 10). Firstly, it is noticed that
shear forces and bending moment along the beam’s local z axis contribute to less than 5% of the total energy.
They are negligible compared to the other components. The contribution of the bending moment along y is the
most predominant, reaching 90% of the total energy for almost all structures. Except for high values of n and
low values of q, where the contribution of axial energy reaches 40% of the total energy. For low values of q, the
torque contribution exceeds 60% of the total energy. This is due to a concentration of torsional moments at the
intersections of the legs (see Fig. 11), which are not sufficient because of their large disparity; this concentration
is reduced for high values of n, where the number of levels is greater with shorter leg lengths. In order to better
investigate the stress concentrations at legs intersections, a 3D XFEM model can be adopted for local induced
stress concentrations and crack propagation modeling as it was carried out by Montassir et al. [32].
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Figure 8. Bar’s length ratios vs (n,q).

Figure 9. Standard deviations for bar’s length ratios.
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Figure 10. Response surfaces (n, q,Wi/Wtot) for partial strain energies contributions.

(n = 3,q = 10)(n = 8,q = 10)

Figure 11. Torque component concentrations in the quarter for high and low n parameter computed.

4. Conclusion and perspectives

In the present paper, a structural analysis is performed on a family of biomimetic branches forming a dome’s
quarters. Firstly, the analysis focuses on the identification of the minimum threshold for a finite element
discretization of the quarter’s geometry. This threshold is computed following the convergence criterion of the
structure’s total strain energy. Its evolution as a function of the quarter’s geometrical parameters revealed that
branch disparity had no influence on the threshold, and that only branch density varied it. Secondly, the quarter’s
energy response surface was identified and decomposed according to the 6 internal effort components. One can
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therefore detect that the contribution of the axial force and the bending moment is very significant compared
to the transverse bending moment and the shear force. Torsion, on meanwhile, might account for a significant
contribution in a number of scenarios. Understanding the impact of internal efforts on strain energy is crucial in the
field of structural engineering. It helps optimize designs by identifying critical components for refinement, ensuring
improved overall performance. Furthermore, this analysis plays a vital role in material selection, offering valuable
insights into the behavior of various materials under internal forces and aiding in the decision-making process by
considering their mechanical properties. When it comes to additively manufactured structures, which have a natural
tendency to be anisotropic and prone to layer sliding, having a deep understanding the strain energy partitioning
becomes important. It enables the prediction and prevention of failures, which is essential for designing strong
structures that can withstand various types of loads. Further works will focus on Limit States validation for a series
of materials and on the effect of d/Rext ratio on the overall stability and resistance of MAD family structures.
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