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Multi-sensors search for lost moving targets using unrestricted effort
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Abstract This paper addresses the problem of searching for multiple targets using multiple sensors, where targets move
randomly between a limited number of states at each time interval. Due to the potential value or danger of the targets, multiple
sensors are employed to detect them as quickly as possible within a fixed number of search intervals. Each search interval
has an available search effort and an exponential detection function is assumed. The goal is to develop an optimal search
strategy that distributes the search effort across cells in each time interval and calculates the probability of not detecting the
targets throughout the entire search period. The optimal search strategy that minimizes this probability is determined, the
stability of the search is analyzed, and some special cases are considered. Additionally, we introduce the M -cells algorithm.
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1. Introduction

The investigation of search strategies for lost targets, whether stationary or randomly moving, is crucial and has
found numerous applications recently. These include searching for missing persons on roads, cancer cells in the
human body, the black box of a plane crash in the depths of the sea or ocean, underground gold mines, land
and naval mines, and faulty units in extensive linear systems like electrical power lines, telephone lines, and
mining systems (see [1–5]), among others. The process of searching for a randomly located target is also discussed
(see [6, 7]). Often, the objective is to maximize the probability of locating the target while the search effort is
constrained (see [8–10]). Additionally, a generalized search for a randomly moving target is presented (see [11]).
Recently, studies have focused on a lost target acting as a random walker on one of two intersecting real lines, with
the aim of detecting the target as quickly as possible (see [12]). A coordinated search algorithm for a lost target on a
plane has been proposed (see [13]). Furthermore, a quasi-coordinated search technique for a lost target, assumed to
move randomly on one of two disjoint lines according to a random walk motion, has been introduced (see [14]). In
recent years, searches for a randomly moving coronavirus (COVID-19) among a finite set of different states and the
detection of a randomly moving COVID-19 have been conducted (see [15, 16]). Recently, a method for searching
for a randomly located target in a bounded area divided into a finite set of cells has been introduced (see [17]).
Here, targets are assumed to be in one of several cells, which are not necessarily identical regions. Let the number
of cells be m. Our objective is to develop a search strategy that minimizes the probability of not detecting the
targets, where the total effort is unrestricted, and the sensors operate independently at the cell level.

The structure of this paper is as follows: Section 2 introduces the problem, its notations, and the solution. Section
3 examines the stability of the search. Section 4 discusses special cases. Section 5 presents the M -cells algorithm
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for detecting targets moving through a finite set of cells using sensors. Section 6 provides applications, and Section
7 lists the tables. Finally, the conclusion summarizes the work.

2. The search problem

The notations for the problem are summarized in Table 1.

K Set of sensors, K = {1, 2, · · · , L}.
J Set of cells, J = {1, 2, · · · ,m}.
R Set of targets, R = {1, 2, · · · , w}.
I Set of time intervals, I = {1, 2, · · · , n}.
k Sensor index.
j Cell index.
r Target index.
i Time interval index.

P r
ij Probability that target r exist at cell j at time interval i.

li(z) The effort during the ith time interval.
zkrij The allocation of the search effort during interval i at cell j by sensor k to search about target r.

b(i, j, k, r, zkrij ) The conditional probability of detecting the target r at interval i with zkrij effort given that the
target is lcoated in state j by sensor k.

Table 1

For a search about set of targets R which are assumed to be hidden throughout set of cells J , set of sensors
K must disperse their efforts throughout the set of cells during i time interval to decrease the probability of non-
detection of the set of targets, not necessarily identical cells. The probability that the target r exist in state j at time
interval i is represented by prij . Throughout the ith time interval, the effort is made by li(z). The sensors search
activities are denoted by zkrij , the effort put by the sensor k in the cell j during period i to detect target r. We call

Z =

[
w∑

r=1

L∑
k=1

Zkr
ij

]
the search plan. The conditional probability of detecting the target r at time i with zkrij effort

is given by b(i, j, k, r, zkrij ), which is defined by the detection function. Here, it is assumed that the probability of
detection target r in state j at time interval i by sensor k depends simply on the overall effort put out and not on
the manner in which it is directed.

We assume that the sensors are independent at different time intervals and targets action is unrelated to the sensor
activities. The probability of undetection of the targets over the duration, (see [7]), is given by

H(Z) =

n∏
i=1

m∑
j=1

w∏
r=1

L∏
k=1

P r
ij(1− b(i, j, k, r, zkrij )) (1)

and the effort is

l(Z) =

n∑
i=1

m∑
j=1

w∑
r=1

L∑
k=1

zkrij (2)

we want to minimize

(H(Z), l(Z)) (3)
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Subjected to constraints Zkr
ij ≥ 0 and

m∑
j=1

P r
ij , r = 1, 2, · · · , w, where the problem is called multi-objectives

optimization problem. Let the detection function is exponential then the problem becomes

min(H(Z), l(Z)), where

H(Z) =
n∏

i=1

m∑
j=1

w∏
r=1

L∏
k=1

P r
ije

−zkr
ij /Tkr

j ,

l(Z) =
n∑

i=1

m∑
j=1

w∑
r=1

L∑
k=1

zkrij ,

li(Z) =
m∑
j=1

w∑
r=1

L∑
k=1

zkrij ,

Zkr
ij ≥ 0, k = 1, 2, · · · , L, i = 1, 2, · · · , n, r = 1, 2, · · · , w and j = 1, 2, · · · ,m,

m∑
j=1

P r
ij = 1,



(4)

where T kr
j is the mean effort to detection target r by sensor k in state j. We use the so-called ε constraint approach to

resolve this problem. The ideal resolution of the following problem may be used to describe the effective solutions
to problem (4).

min
n∏

i=1

m∑
j=1

w∏
r=1

L∏
k=1

P r
ije

−zkr
ij /Tkr

j , where

l(Z) =
n∑

i=1

m∑
j=1

w∑
r=1

L∑
k=1

zkrij ≤ ε,

li(Z) =
m∑
j=1

w∑
r=1

L∑
k=1

zkrij ≤ εi, Z
kr
ij ≥ 0, and

m∑
j=1

P r
ij = 1, and for all k = 1, 2, · · · , L, i = 1, 2, · · · , n, r = 1, 2, · · · , w and j = 1, 2, · · · ,m.


(5)

Since Zkr
ij ≥ 0 for all k = 1, 2, · · · , L, i = 1, 2, · · · , n, r = 1, 2, · · · , w and j = 1, 2, · · · ,m,

m∑
j=1

w∑
r=1

L∑
k=1

zkrij ≤ εi

provides the feasible domain εi, which must be εi ≥ 0. Now, any unique solution to problem (5) is now an effective
solution to the problem (4). The assurance of the uniqueness is result to convexity of H(Z), over the following
convex set.
Z(εi) {Z ∈ Dαβ/li(Z) ≤ εi, Zkr

ij ≥ 0, for α = Lw, k = 1, 2, · · · , L, r = 1, 2, · · · , w and β = nm, i =
1, 2, · · · , n, j = 1, 2, · · · ,m}. We can prove that H(Z) is convex function (see [18]) and the unique solution is
guaranteed by the convexity of it. We are able to resolve (6), a nonlinear optimization problem with a set of linear
constraints Z(εi). H(Z) is convex and hence using Kuhn-Tucker theorem,(see [19]) we obtain

∂H(Z)

∂Zsf
qc

+

h∑
q=1

Uq
∂gq(Z)

∂Zsf
qc

,

gq(Z) ≤ 0,

Uqgq(Z) = 0,

Uq ≥ 0,
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gi(Z) = li(Z)− εi ≤ 0, which implies that

−P f
qce

−Zsf
qc /T

sf
e

T sf
c

n∏
i=1
i ̸=q

m∑
j=1

w∏
r=1
r ̸=f

L∏
k=1
k ̸=s

P r
ije

−Zkr
ij /Tkr

j + Uq = 0,

lq(Z)− εq ≤ 0,

Uq(lq(Z)− εq) = 0,

Uq ≥ 0.

where Uq is the Lagrange variable, there are three cases:

1- Uq = 0, i = 1, 2, · · · , n, that is, lq(Z) ≤ εi, and
m∑
j=1

P r
ije

−Zkr
ij /Tkr

j = 0 but P r
ij ≥ 0 then

m∑
j=1

P r
ije

−Zkr
ij /Tkr

j

= 0 is impossible.
2- Uq = 0, i = 1, 2, · · · , s, Uq > 0, i = s+ 1, s+ 2, · · · , n. We can conclude that this case is impossible.
3- Uq > 0, q = 1, 2, · · · , h, we can get

Zkr
ij = −T kr

j

{
ln

((T kr
j

P r
ij

)(
e−

εi
A

)
·

m∏
j=1

L∏
k=1

w∏
r=1

((
P r
ij

T kr
j

)Tkr
j
A
))}

(6)

then

H(Z) =

n∏
i=1

m∑
j=1

w∏
r=1

L∏
k=1

(T kr
j )
(
e−

εi
A

)
·

m∏
j=1

L∏
k=1

w∏
r=1

((
P r
ij

T kr
j

)Tkr
j
A
)
, where A =

m∑
j=1

L∑
k=1

w∑
r=1

T kr
j . (7)

3. The stability of the search

The set of feasible parameters for problem (5) is described as U = {ε = Z(ε)/Z(ε) ̸= ϕ}.
Definition 1. Suppose that Z∗ be an optimal solution for problem (5) corresponding to εi ∈ Z(εi), then the stability
set of the first kind is defined such that

εi ≥ Amax
j,k,r

ln

(
T kr
j

P r
ij

)
+

m∑
j=1

w∑
r=1

L∑
k=1

T kr
j ln

(
P r
ij

T kr
j

)
, (8)

ε =

n∑
i=1

εi ≥ A

n∑
i=1

max
j,k,r

ln

(
T kr
j

P r
ij

)
+

n∑
i=1

L∑
k=1

m∑
j=1

w∑
r=1

T kr
j ln (P r

ij)− n

m∑
j=1

L∑
k=1

w∑
r=1

T kr
j ln (T kr

j ),

therefore

S(Z∗) =

{
ε ∈ Z(ε)

/ m∑
j=1

w∑
r=1

L∑
k=1

Zkr
ij = εi, εi ≥ Amax

j,k,r
ln

(
T kr
j

P r
ij

)
+

m∑
j=1

w∑
r=1

L∑
k=1

T kr
j ln

(
P r
ij

T kr
j

)
,

for all i = 1, 2, · · · , n (9)

ε =

n∑
i=1

εi ≥ A

n∑
i=1

max
k,j,r

ln

(
T kr
j

P r
ij

)
+

n∑
i=1

m∑
j=1

L∑
k=1

w∑
r=1

T kr
j ln (P r

ij)− n

m∑
j=1

L∑
k=1

w∑
r=1

T kr
j ln (T kr

j )

}
.
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4. Special cases

First case (One sensor-multi moving targets):
We consider search for lost moving targets, by a sensor, and our purpose to obtain the search plan which made the

probability of undetection is minimum, also find the stability of search. We can obtain the probability of undetection
of the targets from equations (1, 2) at k = 1:

Hx(Z) =

n∏
i=1

m∑
j=1

w∏
r=1

P r
ije

−zr
ij/T

r
j , (10)

and the unrestricted effort is given by

lx(Z) =

n∑
i=1

m∑
j=1

w∑
r=1

zrij ,

m∑
j=1

P r
ij = 1.

where Zr
ij give the effort put in state j at time interval i to detect target r. Our aim is to find Z =

[
Zr
ij

]
to

min(Hx(Z), Ix(Z)). For this issue, we can get the problem formulation from equation (5) by put k = 1, then
the corresponding single objective optimization problem becomes.

minHx(Z) =
n∏

i=1

m∑
j=1

w∏
r=1

P r
ije

−zr
ij/T

r
j , where lxi

(Z) =
m∑
j=1

w∑
r=1

Zr
ij ≤ εi,

Zr
ij ≥ 0, i = 1, 2, · · · , n, j = 1, 2, · · · ,m, and r = 1, 2, · · · , w,

m∑
j=1

P r
ij = 1.

 (11)

We can get the solution of this problem from equation (6-8) by put k = 1, we get:

Zr
ij = −T r

j

{
ln

(
T r
j

P r
ij

)(
e−

εi
A

)
·

m∏
j=1

w∏
r=1

((
P r
ij

T r
j

) Tr
j

Ax
))}

(12)

and then

Hx(Z) =

n∏
i=1

m∑
j=1

w∏
r=1

(T r
j )
(
e−

εi
Ax

)( m∏
j=1

w∏
r=1

(
P r
ij

T r
j

) Tr
j

Ax
)
, where Ax =

m∑
j=1

w∑
r=1

T r
j . (13)

The stability set becomes

Sx(Z
∗) =

{
εi ∈ Z(εi)

/
m∑
j=1

w∑
r=1

zrij = εi,

εi ≥ Ax max
j,r

ln

(
T r
j

P r
ij

)
+

m∑
j=1

w∑
r=1

T r
j ln

(
P r
ij

T r
j

)
for all i = 1, 2, · · · , n

}
(14)

Second case (Multi Sensors-One Moving Target):
We consider search for a lost moving target, by set of sensors, and our purpose to obtain the search plan which

made the probability of undetection is minimum, also find the stability of search. We can obtain the probability of
undetection of the target from equations (1, 2) at r = 1:

Hy(Z) =

n∏
i=1

m∑
j=1

L∏
k=1

Pije
−zk

ij/T
k
j (15)
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and the unrestricted effort is given by ly(Z) =
n∑

i=1

m∑
j=1

L∑
k=1

zkij ,
m∑
j=1

Pij = 1,

where Zk
ij give the effort put in state j at time interval i to detect the target by searcher k. Our aim is to find z = [zkij ]

to min(Hy(Z), ly(Z)). For this issue, we can get the problem formulation from equation (5) by put r = 1, then the
corresponding single objective optimization problem becomes.

minHy(Z) =
n∏

i=1

m∑
j=1

L∏
k=1

Pije
−zk

ij/T
k
j , where lyi

(Z) =
m∑
j=1

L∑
k=1

Zk
ij ≤ εi,

Zk
ij ≥ 0, i = 1, 2, · · · , n, j = 1, 2, · · · ,m, and k = 1, 2, · · · , L,

m∑
j=1

Pij = 1.

 (16)

We can get the solution of this problem from equations (6-8) by put r = 1, we get:

Zk
ij = −T k

j · ln

((
T k
j

Pij

)(
e
− εi

Ay

)( L∏
k=1

m∏
j=1

(
Pij

T k
j

) Tk
j

Ay
))

(17)

and then

H(Z) =

n∏
i=1

m∑
j=1

L∏
k=1

(T k
j )
(
e
− εi

Ay

)( L∏
k=1

m∏
j=1

(
Pij

T k
j

) Tk
j

Ay
)

where Ay =

L∑
k=1

m∑
j=1

T k
j . (18)

The stability set becomes

Sy(Z
∗) =

{
ε ∈ Z∗(ε)

/
m∑
j=1

L∑
k=1

Zk
ij = εi,

εi ≥ Ay max
j,k

ln

(
T k
j

Pij

)
+

m∑
j=1

L∑
k=1

T k
j ln

(
Pij

T k
j

)
, for all i = 1, 2, · · · , n

}
. (19)

Third case (One sensor-one moving target):
We consider search for a lost moving target, by a sensor and our purpose to obtain the search plan which made

the probability of undetection is minimum, also find the stability of search, this case is studied (see [1]). We can
obtain the probability of undetection of the target from equations (1, 2) at r = 1 and k = 1:

Hb(Z) =

n∏
i=1

m∑
j=1

Pije
−Zij/Tj (20)

and the unrestricted effort is given by lb(Z) =
n∑

i=1

m∑
j=1

zij ,
m∑
j=1

Pij = 1,

where Zij give the effort put in state j at time interval i. Our aim is to find Z = [Zij ] to min(Hb(Z), lb(Z)). For
this issue, we can get the problem formulation from equation (5) by put r = 1 and k = 1, then the corresponding
single objective optimization problem becomes

minHb(Z) =
n∏

i=1

m∑
j=1

Pije
−zij/Tj , where lbi(Z) =

m∑
j=1

Zij ≤ εi,

Zij ≥ 0, i = 1, 2, · · · , n, and j = 1, 2, · · · ,m,
m∑
j=1

Pij = 1.

 (21)
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We can get the solution of this problem from equations (6-8) by put r = 1 and k = 1, we get:

Zij = −Tj

{
ln

(
Tj

Pij

)(
e
− εi

Ab

) m∏
j=1

(
Pij

Tj

) Tj
Ab
)}

(22)

and then

Hb(Z) =

n∏
i=1

m∑
j=1

(Tj)
(
e
− εi

Ab

)( m∏
j=1

(
Pij

Tj

) Tj
Ab
)
, where Ab =

m∑
j=1

Tj , (23)

Sb(Z
∗) =

{
εi ∈ Z(εi)

/
m∑
j=1

Zij ≤ εi,

εi ≥ Ab max
j

ln

(
Tj

Pij

)
+

m∑
j=1

Tj ln

(
Pij

Tj

)
, for all i = 1, 2, · · · , n

}
. (24)

Forth case (Multi sensors-multi located targets):
We consider search for lost targets, which are located throughout a limited number of states and the object is to

detect the targets as quickly as possible, by multi-sensors, through one interval. Let the targets are located in one of
m states with probabilitym Pj , j = 1, 2, · · · ,m.. We can obtain the probability of undetection of the targets from
equations (1, 2) at i = 1:

Ho(Z) =

m∑
j=1

L∏
k=1

w∏
r=1

P r
j e

−Zkr
j /Tkr

j (25)

and the unrestricted effort is given by lo(Z) =
m∑
j=1

w∑
r=1

L∑
k=1

Zkr
j ,

m∑
j=1

Pj = 1, where Zkr
j give the effort put in state

j, by sensor k to detect target r. Our aim is to find Z = [Zkr
j ] to min(Ho(Z), lo(Z)). For this issue, we can get the

problem formulation from equation (5) by put i = 1, then the corresponding single objective optimization problem
becomes.

minHo(Z) =
m∑
j=1

L∏
k=1

w∏
r=1

P r
j e

−Zkr
j /Tkr

j , where lo(Z) =
m∑
j=1

w∑
r=1

L∑
k=1

zkrj ≤ ε0,

Zkr
j ≥ 0, k = 1, 2, · · · , L, r = 1, 2, · · · , w and j = 1, 2, · · · ,m,

m∑
j=1

P r
j = 1.

 (26)

We can get the solution of this problem from equations (6-8) by put i = 1, we get:

Zkr
j = −T kr

j

{
ln

(
T kr
j

P r
j

)(
e−

ε0
Ao

)
·

m∏
j=1

L∏
k=1

w∏
r=1

(
P r
j

T kr
j

)Tkr
j
Ao
}

(27)

and then

Ho(Z) =

m∑
j=1

w∏
r=1

L∏
k=1

(T kr
j )
(
e−

ε0
Ao

)
·

m∏
j=1

L∏
k=1

w∏
r=1

((
P r
j

T kr
j

)Tkr
j
Ao
)
, where Ao =

m∑
j=1

L∑
k=1

w∑
r=1

T kr
j . (28)
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The stability set becomes

So(Z
∗) =

{
ε ∈ Z(ε)

/
m∑
j=1

w∑
r=1

L∑
k=1

Zkr
j = ε0,

ε0 ≥ A0 max
j,k,r

ln

(
T kr
j

P r
j

)
+

m∑
j=1

w∑
r=1

L∑
k=1

T kr
j ln

(
P r
j

T kr
j

)
,

for all j = 1, 2, · · · ,m, k = 1, 2, · · · , L and r = 1, 2, · · · , w.

}
(29)

Fifth case (One sensor-one located target):
We consider search for a lost target, which is located throughout limited number of states, and the object is to

detect the target as quickly as possible, by a sensor, through one interval. Let the target is located in one of m states
with probability Pj , j = 1, 2, · · · ,m. We can obtain the probability of undetection of the target from equations (1,
2) at i = 1, r = 1 and k = 1:

Hθ(Z) =

m∑
j=1

Pje
−Zj/Tj (30)

and the unrestricted effort is given by lθ(Z) =
m∑
j=1

zj ,
m∑
j=1

Pj = 1, where Zj give the effort put in state j. Our aim

is to find Z = [Zj ] to min(Hθ(Z), lθ(Z)). For this issue, we can get the problem formulation from equation (5) by
put i = 1, r = 1 and k = 1, then the corresponding single objective optimization problem becomes.

minHθ(Z) =
m∑
j=1

Pje
−Zj/Tj where lo(Z) =

m∑
j=1

zj ≤ ε0,

Zj ≥ 0, j = 1, 2, · · · ,m, and
m∑
j=1

Pj = 1.

 (31)

We can get the solution of this problem from equations (6-8) by put i = 1, r = 1 and k = 1, we get:

Zj = −Tj

{
ln

(
Tj

Pj

)(
e
− ε0

Aθ

)
·

m∏
j=1

(
Pj

Tj

) Tj
Aθ
}

(32)

and then

Hθ(Z) =

m∑
j=1

Tj

(
e
− ε0

Aθ

)
·

m∏
j=1

(
Pj

Tj

) Tj
Aθ

, where Aθ =

m∑
j=1

Tj . (33)

The stability set becomes

Sθ(Z
∗) =

{
ε ∈ Z(ε)

/
m∑
j=1

Zj = ε0, ε0 ≥ Aθ max
j

ln

(
Tj

Pj

)
+

m∑
j=1

Tj ln

(
Pj

Tj

)
, for all j = 1, 2, · · · ,m

}
.

(34)

5. Algorithm

We update the previously described algorithm (see [20]). The goal of this method is to determine the optimal
allocation of the search effort and the probability of undetection for M -cells.
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The algorithm’s steps may be summed up as follows:

Step 1: Input the values of:

n ≡ the number of time intervals;
m ≡ the number of states (cells);
L ≡ the number of sensors;
w ≡ the number of targets;
P0r ≡ the probability distribution of the initial state, for target r;
Pr ≡ one-step transition probability matrix, for target r;
T kr
j ≡ the factor due to the search about the target r in cell j using sensor k;

Step 2: Compute P r
ij , i = 1, 2, · · · , n, j = 1, 2, · · · ,m, r = 1, 2, · · · , w, which equivalent to the probability

distribution of the moving target r, among the cells during the interval i.

Step 3: Input the arbitrary values of εi and test the stability condition

εi ≥ Amax
j,k,r

ln

(
T kr
j

P r
ij

)
+

m∑
j=1

w∑
r=1

L∑
k=1

T kr
j ln

(
P r
ij

T kr
j

)
,

if this condition is satisfied go to step 4 elsewhere go to step 3.
Step 4: Compute Zkr

ij and H(Z) from equations (6) and (7), respectively and then go to step 5.

Step 5: End (Stop).

6. Applications

6.1. Multi sensors-multi moving targets with unrestricted effort:

Suppose the targets move randomly and effort unrestricted, in accordance with three states Markov chain with
transition matrices M1, M2, M3 for them,

M1 =

∣∣∣∣∣∣
1/4 0 3/4
1/2 1/4 1/4
1/3 1/3 1/3

∣∣∣∣∣∣ , M2 =

∣∣∣∣∣∣
2/9 3/9 4/9
3/12 4/12 5/12
4/15 5/15 6/15

∣∣∣∣∣∣ , and M3 =

∣∣∣∣∣∣
1/2 1/4 1/4
0 1/2 1/2
1/3 0 2/3

∣∣∣∣∣∣ ,
the initial probabilities are given by

M0
1 =

∣∣1/3 1/3 1/3
∣∣ , M0

2 =
∣∣1/2 1/4 1/4

∣∣ , and M0
3 =

∣∣1/2 1/3 1/6
∣∣ ,

where i, j = 1, 2, 3, the distribution of the states of the targets P r
ij , is given by M0

1M1, M0
2M2 and M0

3M3, see [21].
The values P r

ij of are

P 1
11 = 0.361, P 1

12 = 0.195, P 1
13 = 0.444, P 1

21 = 0.336, P 1
22 = 0.197, P 1

23 = 0.467,
P 1
31 = 0.338, P 1

32 = 0.205, P 1
33 = 0.457, P 2

11 = 0.240, P 2
12 = 0.333, P 2

13 = 0.427,
P 2
21 = 0.251, P 2

22 = 0.333, P 2
23 = 0.416, P 2

31 = 0.250, P 2
32 = 0.333, P 2

33 = 0.417,
P 3
11 = 0.305, P 3

12 = 0.292, P 3
13 = 0.403, P 3

21 = 0.287, P 3
22 = 0.222, P 3

23 = 0.491,
P 3
31 = 0.307, P 3

32 = 0.183, P 3
33 = 0.510,

Letting T 1
11 = 0.01, T 1

21 = 0.02, T 1
31 = 0.03, T 2

11 = 0.04, T 2
21 = 0.05, T 2

31 = 0.06, T 3
11 = 0.07, T 3

21 = 0.08,
T 3
31 = 0.09, T 1

12 = 0.1, T 1
22 = 0.2, T 1

32 = 0.3, T 2
12 = 0.4, T 2

22 = 0.5, T 2
32 = 0.6, T 3

12 = 0.7, T 3
22 = 0.8, T 3

32 = 0.9, and
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existence k sensors k = 1, 2. For arbitrary values of εi, which must satisfy that li(Z) =
m∑
j=1

w∑
r=1

L∑
k=1

zkrij ≤ εi and

equation of the stability (8), the values of The allocation about the search effort and The probability of undetection
H(Z) are given in Table 2.

And we will observe from the Table 2, that by increasing the arbitrary values of εi, the probability of undedection
decreasing.

6.2. One sensor-multi moving targets with unrestricted effort:

We consider the data in case 6.1 and suppose there exists one sensor. Letting T 1
1 = 1, T 1

2 = 1.2, T 1
3 = 1.4, T 2

1 = 1.6,
T 2
2 = 1.8, T 2

3 = 2, T 3
1 = 2.2, T 3

2 = 2.4, T 3
3 = 2.6 and existence one sensor. For arbitrary values of εi, which must

satisfy that lxi(Z) =
m∑
j=1

w∑
r=1

zrij ≤ εi and equation of the stability (14), the values of the allocation about the search

effort and the probability of undetection Hx(Z) are given in Table 3.
And we will observe from Table 3, that by increasing the arbitrary values of εi, The probability of undetection
decreasing.

6.3. Multi sensors-multi located targets with unrestricted effort:

Assume that the targets are located in one of five states with the following probabilities P 1
1 = 0.10, P 1

2 = 0.15,
P 1
3 = 0.20, P 1

4 = 0.25 and P 1
5 = 0.30, P 2

1 = 0.15, P 2
2 = 0.20, P 2

3 = 0.25, P 2
4 = 0.10 and P 2

5 = 0.30 for all r =
1, 2, j = 1, 2, 3, 4, 5 and k = 1, 2. Letting T 11

1 = 0.01, T 11
2 = 0.02, T 11

3 = 0.03, T 11
4 = 0.04, T 11

5 = 0.05, T 12
1 =

0.06, T 12
2 = 0.07, T 12

3 = 0.08, T 12
4 = 0.09, T 12

5 = 0.1, T 21
1 = 0.2, T 21

2 = 0.3, T 21
3 = 0.4, T 21

4 = 0.5, T 21
5 = 0.6,

T 22
1 = 0.7, T 22

2 = 0.8, T 22
3 = 0.9, T 22

4 = 0.95, T 22
5 = 0.99. The values of Zkr

j and Ho(Z), for arbitrary values of
ε0, which must satisfying condition of stability set So(Z

∗) are given in Table 4.

6.4. Multi sensors-multi moving targets with restricted effort:

We can calculate the previous case 6.1., where the effort is restricted. In state restricted effort, while in this state

we put l(Z) as a fixed value V , for illustration, we used l(Z) =
n∑

i=1

li(Z) = V , as an example, consider the case

in example 6.1. but restricted effort, given by Li(Z) = 15 for i = 1, 2, 3, l(Z) =
3∑

i=1

li(Z) = 90 units of effort, the

values of the allocation about the restricted search effort and The probability of undetection H(Z) are given in
Table 5.

6.5. One sensor-multi moving targets with restricted effort:

We can calculate the previous case 6.2., where the effort is restricted. In state restricted effort, while in this state

we put l(Z) as a fixed value V , for illustration, we used l(Z) =
n∑

i=1

li(Z) = V , as an example, consider the case

in example 6.2 but restricted effort, given by li(Z) = 30, for i = 1, 2, 3, l(Z) =
3∑

i=1

li(Z) = 90 units of effort, the

values of The allocation about the restricted search effort and The probability of undetection H(Z) are given in
Table 6.

7. Tables of the search
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Cell 1 Cell 2 Cell 3 Cell 1 Cell 2 Cell 3 Cell 1 Cell 2 Cell 3
ε1 30 45 60

1st

time interval

Target 1 0.8961 0.2753 1.4017 1.8221 1.3864 2.6980 2.7480 2.4975 3.9943
Target 2 0.3298 1.3278 2.3373 1.8112 2.9945 4.1891 3.2927 4.6612 6.0410
Target 3 0.8714 2.1528 4.4952 2.9085 4.3750 6.9026 4.9455 6.5972 9.3100

ε2 35 50 65

2nd

time interval

Target 1 1.1361 0.6647 1.9039 2.0620 1.7758 3.2002 2.9879 2.8869 4.4965
Target 2 0.8902 1.8826 2.9024 2.3717 3.5492 4.7543 3.8532 5.2159 6.6061
Target 3 1.4321 3.0096 5.8507 3.4691 5.2319 8.2581 5.5061 7.4541 10.6655

ε3 40 55 70

3rd

time interval

Target 1 1.4519 1.0804 2.3012 2.3779 2.1915 3.5975 3.3038 3.3026 4.8938
Target 2 1.3810 2.4321 3.5191 2.8624 4.0987 5.3709 4.3439 5.7654 7.2228
Target 3 2.2391 2.6691 6.7845 4.2761 4.8913 9.1919 6.3131 7.1136 11.5993

The probability of
undetection Hx(Z) 6.2484e−8 1.5019e−11 3.6102e−15

Table 3

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5
ε0 10

Sensor 1 Target 1 0.0375 0.0691 0.0999 0.1302 0.1601
Target 2 0.1414 0.1731 0.2033 0.1346 0.2462

Sensor 2 Target 1 0.1550 0.2398 0.3325 0.4355 0.5510
Target 2 0.0534 0.3240 0.6268 0.0710 1.3218

Ho(Z) 0.0002

ε0 12

Sensor 1 Target 1 0.0404 0.0749 0.1086 0.1418 0.1746
Target 2 0.1588 0.1935 0.2265 0.1607 0.2753

Sensor 2 Target 1 0.2131 0.3269 0.4486 0.5806 0.7252
Target 2 0.2566 0.5562 0.8881 0.3468 1.6091

Ho(Z) 0.0001

Table 4
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Cell 1 Cell 2 Cell 3
ε1 15

1st time interval

Sensor 1
Target 1 0.0661 0.1921 0.3123
Target 2 0.1058 0.2439 0.3386
Target 3 0.1708 0.2941 0.3933

Sensor 2
Target 1 0.4281 1.0057 1.6040
Target 2 0.5921 1.3160 1.8138
Target 3 1.0026 1.6041 2.3117

ε2 15

2nd time interval

Sensor 1
Target 1 0.0654 0.1937 0.3080
Target 2 0.1060 0.2439 0.3390
Target 3 0.1723 0.2926 0.4112

Sensor 2
Target 1 0.4209 1.0213 1.5654
Target 2 0.5948 1.3147 1.6405
Target 3 1.0171 1.5879 2.5040

ε3 15

3rd time interval

Sensor 1
Target 1 0.0654 0.1936 0.3126
Target 2 0.1068 0.2438 0.3018
Target 3 0.1716 0.2927 0.4148

Sensor 2
Target 1 0.4217 1.0207 1.6054
Target 2 0.6027 1.3138 1.5025
Target 3 1.0100 1.5884 2.5527

The probability of undetection H(Z) 5.8885e−34

Table 5

Cell 1 Cell 2 Cell 3
ε1 30

1st time interval
Target 1 0.8961 0.2753 1.4017
Target 2 0.3298 1.3278 2.3373
Target 3 0.8714 2.1528 4.4952

ε2 30

2nd time interval
Target 1 0.8274 0.2943 1.4719
Target 2 0.3964 1.3270 2.2851
Target 3 0.7530 2.2689 5.0482

ε3 30

3rd time interval
Target 1 0.8347 0.3397 1.4370
Target 2 0.3933 1.3209 2.2845
Target 3 0.8810 1.1876 5.1795

The probability of undetection H(Z) 1.0049e−06

Table 6
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8. Conclusion

In this paper, we extend previous results concerning the search for randomly moving targets among a finite set of
states, where a fixed number is assigned to the search effort needed to find the targets and the states are equivalent,
with the intention of reducing the probability of detection. We use finite number of sensors, each of them use
any amount of effort to find the targets. Since the targets are valuable or dangerous, the search effort may be
unconstrained, our aim is to minimize the probability that the targets won’t be detect and the search effort also.
We find a search strategy that meets our objectives and observe its algorithm. Finally, we propose for the problem
applications.
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