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Abstract Shannon entropy and Fisher information are pivotal in the information theory area. The presence of outliers in
data and using an inappropriate model may cause misleading inferential results in the amount of information. Our aim of
this paper is to compute the amount of Shannon entropy and Fisher information that exists in the Pareto distribution in the
presence of multiple outliers. Unlike the existing methods in the literature, we present a good method for the estimation of
Shannon entropy and Fisher information to cope with the allowing for the possibility of outliers. In this regard, we focus on
the Bayesian approach proposed by [32] based on the contaminated Pareto distribution. We implement the Gibbs sampler
which is a simple and rational method for computing Bayesian estimation of Shannon entropy and Fisher information under
different loss functions. Some simulation studies are conducted to investigate the performance of the proposed methodology
under various sample sizes and the number of outliers. In the end, two examples of real insurance claim data are studied
to illustrate the superiority of the proposed model in analyzing datasets and computing the amount of Shannon entropy and
Fisher information.
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1. Introduction

Term entropy, is one of the most notable terms in statistics and information theory, which originally goes
back to the works of [8] and [6] in thermodynamics. The idea of information-theoretic entropy was redefined
by [33] and later by [37] in Cybernetics. The concept of entropy in information theory is the uncertainty
involved in predicting the value of a random variable. Several kinds of entropy have been introduced hitherto
and Shannon entropy is the most famous kind of entropy. After [33], a large number of papers, books, and
monographs have been published on its extensions and applications over the past years, which can be mentioned
to [30, 35, 9, 2, 3, 7, 20, 38, 1, 26, 18, 34, 31].

The Shannon entropy of a random variable X assuming its values in Dx with probability density function f(x; θ)
is defined by

En(X) = E
(
− ln

(
f(x; θ)

))
= −

∫
Dx

f(x; θ) ln
(
f(x; θ)

)
dx. (1)
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Fisher information is one of the other forms of information measure which is considered in this paper. The Fisher
information was presented for the first time by [14] which gives a way of measuring the amount of information that
a random variable carries about an unknown parameter. Fisher information in a random variable X is

IX(θ) = E

([
∂

∂θ
ln
(
f(x; θ)

)]2)

= −E

(
∂2

∂θ2
ln
(
f(x; θ)

))
(2)

In some statistical data analyses, there are some conditions where some of the points in a sample data are too
small or too large compared to the rest of the observations which are called outliers ([4]). An important cause of
arising outliers is the contaminations that theoretically do not come from the same distribution that the remaining
observations come from ([28]). One of the most considered methodologies to cope with the allowing for the
possibility of outliers is to use an appropriate model. Interested readers can refer to [11], [32], [19], [29], and
[23] for estimating several distributions in the presence of outliers. In this paper, we will obtain the amount of
information such as Shannon entropy and Fisher information when outliers exist in a sample.

The Pareto distribution was expressed by Pareto in 1897 as a model for the analysis of income. Later, [5] showed
The Pareto distribution has an important role in modeling insurance claims data, especially in automobile insurance
problems. [12, 13] used the famous Dixit model for the analysis of data in the presence of outliers by implementing
the Pareto distribution. The amount of Shannon entropy in the insurance field is important because know that from
the point of insurance managers, the best insurance policy for an insurance company is one that lasts for a long
period of time and has more uncertainty in terms of claims. [22] characterized the insurance demand in terms of
the entropy of the underlying probability distribution for losses. [24] obtained the amount of information such
as Shannon entropy, Tsallis entropy, Fisher information, and Kullback-Leibler distance that exists in the Pareto
distribution in the presence of a small number of outliers. They used the marginal distribution of the famous
Dixit model (not the joint distribution of the Dixit model) for obtained Tsallis entropy, Fisher information, and
Kullback-Leibler distance that may cause misleading inferential conclusions. Also, [17] obtained the maximum
likelihood and Bayesian estimators of entropy under different loss functions in the presence of outliers by the
marginal distribution of the Dixit model. In this paper, we present an appropriate, simple, and without restriction to
the number of outliers and sample size method for obtaining the amount of information such as Shannon entropy
and Fisher information when outliers exist in a Pareto sample. Also unlike [24] and [17], this paper will use the
joint distribution to compute the amount of information in the Pareto sample in the presence of outliers.

[32] assumed a Pareto sample in the presence of upper outliers and presented a Bayesian approach based on
the contaminated Pareto (CP) model using the Gibbs sampler. Following [32], [29] considered the contaminated
exponential distribution and extended a Bayesian methodology using the Gibbs sampler for positive-valued
insurance data when outliers exist in the sample. They discussed that the Bayesian analysis can be simplified
by using Markov chain Monte Carlo such as the Gibbs sampler. Our aim in this paper, compute the amount
of information such as Shannon entropy and Fisher information in the presence of outliers with a focus on the
proposed Bayesian approach by [32]. In this regard, we obtained the amount of Shannon entropy and Fisher
information for the CP model with a focus on the Bayesian approach under different loss functions when the
outliers exist in the sample. Numerical studies demonstrate that the proposed method can be utilized with a small,
moderate, or large sample size and various numbers of outliers. Furthermore, we obtain a preferable loss function
in our study.

The rest of the paper is outlined as follows. Section 2 presents the formulation of the CP model and obtains
Shannon entropy and Fisher information on all parameters of the proposed CP model. The results and analysis of
the simulation studies with different numbers of outliers and sample sizes (small, moderate, and large) are exhibited
in Section 3. In Section 4, we present two examples of real insurance claim datasets to illustrate the outperformance
of the proposed methodology. Finally, a brief conclusion of the article is discussed in Section 5.
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2. Theory information

According to [32], we start with a definition and notation of the CP model with a focus on the Bayesian
methodology in this section. Suppose X = (X1, X2, . . . , Xn)

⊤ be a random sample from CP (α, θ, β, ϵ). The
probability density function of Xi is

fCP (xi;α, θ, β, ϵ) = ϵfP (xi;α, θβ) + (1− ϵ)fP (xi;α, θ), i = 1, 2, . . . , n , (3)

where fP (α, β) denotes the probability density function of the Pareto distribution with the shape α and scale β
parameters. Scollnik (2015) [32] re-expressed the CP model (3) to the following form

fCP (xi;α, θ, β, δi) =
αθαβαδi

xα+1
i

I
(
xi − θβδi

)
, i = 1, 2, . . . , n , (4)

where α, θ and β are shape, scale and contaminated parameters, respectively. Also, I is the indicator function and
δ = (δ1, δ2, . . . , δn)

⊤ are independent Bernoulli random variables with an identical probability of success given by
ϵ. In other words, we have

Xi|δ ∼ Pa
(
α, θβδi

)
, i = 1, 2, . . . , n , (5)

where Pa(., .) denotes the Pareto distribution. Thus, the conditional likelihood is given by

L(x|α, θ, β, δ, ϵ) = αnθnαβα
∑n

i=1 δi∏n
i=1 x

α+1
i

n∏
i=1

I
(
xi − θβδi

)
. (6)

Furthermore, Scollnik [32] presented the full conditional posterior density of ϵ, δ, α, θ and β are given by

(ϵ|x, α, θ, β, δ) ∼ Beta
(
b1 +

n∑
i=1

δi, n+ b2 −
n∑

i=1

δi

)
, (7)

(δi|x, α, θ, β, ϵ) ∼ Ber
( ϵβα

1− ϵ+ ϵβα

)
, βθ < xi, i = 1, 2, . . . , n, (8)

(α|x, θ, β, δ) ∼ Gamma
(
n+ a1, a2 +

n∑
i=1

lnxi − n ln(θ)−
n∑

i=1

δi ln(β)
)
, α > 2, (9)

(θ|x, α, β, δ) ∼ Gamma
(
t1 + nα, t2)

)
, θ < mini(

xi

βδi
), i = 1, 2, . . . , n, (10)

and

(β|x, α, θ, δ) ∼ Gamma
(
α

n∑
i=1

δi, λ
)
, 1 < β∗ < β <

mini∋δi=1(xi)

θ
, (11)

respectively. Keep in mind that Ber(., .) and Gamma(., .) indicate the Bernoulli and gamma distribution,
respectively, and a1, a2, b1, b2, t1, t2 and λ are the hyperparameter values (see Scollnik (2015) [32] for details).

Now in the next subsections, we obtain the amount of information such as Shannon entropy and Fisher
information based on the proposed model and by implementing Gibbs sampler.

2.1. Shannon entropy

Shannon entropy of the CP model is obtained in the following theorem based on the Bayesian methodology. This
quantity is derived for both forms, marginal and joint posterior distributions of the contaminated Pareto in the
presence of outliers.
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Theorem 1
Let random variable Xi follow a the CP model (4), so the Shannon entropy of Xi is

En(Xi) = ln
(θβδi

α
e

α+1
α

)
. (12)

Proof
See A.

Theorem 2
Suppose X = (X1, X2, . . . , Xn)

⊤ be a random sample from CP (α, θβδi), i = 1, 2, . . . , n, then the Shannon
entropy for the joint distribution of the contaminated Pareto in the presence of outliers is

En(X) = ln
(θnβ∑n

i=1 δi

αn
en+

n
α

)
. (13)

Proof
Based on Shannon entropy Eq. (1) and the form of the conditional likelihood (6), we have

En(X) = E

(
− ln

(
f(x, α, θ, β, δ, ϵ

))
= E

(
− ln

( n∏
i=1

f(xi, α, θ, β, δi, ϵ
))

=

n∑
i=1

En(Xi).

Using Theorem 1, therefore we have

En(X) =

n∑
i=1

ln
(θβδi

α
e

α+1
α

)
= ln

(θnβ∑n
i=1 δi

αn
en+

n
α

)
.

The next subsection allocated to computing the Fisher information for the CP distribution.

2.2. Fisher information

The following theorem describe Fisher information of all parameters of the proposed CP model.

Theorem 3
Let X = (X1, X2, . . . , Xn) be a random sample from the proposed CP model (4), so the amount of Fisher
information there exist in X about parameters α, θ and β are

IX(α) =
n

α2
, (14)

IX(θ) =
nα

θ2
, (15)

and

IX(β) =
α
∑n

i=1 δi
β2

, (16)

respectively.
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Proof
See B.

In order to compute Bayesian estimates of the Shannon entropy and Fisher information, samples are generated
from the full conditional posterior distribution by implementing the Gibbs sampler ([15, 27, 16]). Refer to the C
for details on the Gibbs algorithm.

3. Simulation study

In this section, we investigate the performance of the proposed CP model for computing Shannon entropy and
Fisher information via simulation for small, moderate, and large samples and various numbers of outliers. In this
regard, we take n = 15, 20, 25, 50, 100, 1000 aiming to have the small, moderate, and large samples and various
numbers of outliers ranging from 1 to 5, i.e.

∑n
i=1 δi = 1, 2, 3, 4, 5. In addition, we take the presumed parameters

α = 3, θ = 50, 000, β = 7 and N = 10, 000 with a burn-in period of 2000 during each replication of 1000 trials.
Also, the assumed hyperparameter values are a1 = 10, t1 = 3, λ = 1, β∗ = 1.1, b1 = 0.18 and b2 = 3.5 whereas a2
and t2 are calculated the conditional prior mean is close to the maximum likelihood estimate. In order to monitor the
convergence of the MCMC simulations, we employ the scale reduction factor estimate, recommended by Gelman
et al. (2013). The scale factors for all MCMC chains for the sequences of ϵ, α, θ and β are within 1.0000− 1.00001,
indicating their convergence.

In order to simulate outliers, we consider δi = 1 in the CP model (5) and generate outliers of size
∑n

i=1 δi = k
from Pa

(
α, θβδi

)
. Also to simulate main (without outlier) samples, we consider δi = 0 in the CP model (5) and

generate samples of size n− k from Pa
(
α, θβδi

)
.

3.1. Estimation of Shannon entropy under different loss functions in the presence multiple of outliers

This subsection presents the Bayes estimation of Shannon entropy under different loss functions, to investigate the
performance of the proposed methodology in the presence of multiple outliers. In addition, we compare the Bayes
estimation obtained under different loss functions. In this regard, consider squared error loss function (SELF),
precautionary loss function (PLF), and DeGroot loss function (DLF) presented by [21], [25], and [10], respectively.

Table 1. The Bayes estimation of Shannon entropy under presumed parameters α = 3, θ = 50, 000 and β = 7.

n
∑n

i=1 δi Exact value SELF PLF DLF n
∑n

i=1 δi Exact value SELF PLF DLF
15 1 167.8 220.2 202.9 186.1 50 1 554.7 661.8 650.2 639.2
15 2 169.7 290.0 233.9 197.6 50 2 556.6 701.0 678.6 654.9
15 3 171.7 484.5 291.6 211.5 50 3 558.6 776.9 721.0 656.7
15 4 173.6 1287.7 428.6 229.7 50 4 560.5 923.1 792.4 667.9
15 5 175.5 4611.1 738.1 248.3 50 5 562.5 1174.4 888.4 680.4

20 1 223.0 283.8 267.6 251.8 100 1 1107.4 1303.4 1293.6 1284.9
20 2 225.0 352.9 298.6 252.4 100 2 1109.3 1345.1 1330.5 1315.8
20 3 226.9 514.5 354.4 266.4 100 3 1111.3 1384.9 1363.7 1340.1
20 4 228.9 1004.2 463.4 286.6 100 4 1113.2 1446.5 1411.3 1370.8
20 5 230.8 2817.2 717.0 319.5 100 5 1115.2 1516.2 1461.3 1391.8

25 1 278.3 344.9 329.6 314.8 1000 1 11056.4 12838.1 12829.2 12821.2
25 2 280.3 407.8 362.9 324.6 1000 2 11058.4 12870.5 12861.3 12853.0
25 3 282.2 542.7 408.5 319.2 1000 3 11060.3 12912.8 12903.2 12894.5
25 4 284.1 874.8 500.3 326.5 1000 4 11062.3 12954.7 12944.7 12935.6
25 5 286.1 2134.6 737.4 387.3 1000 5 11064.2 12993.3 12983.0 12973.6

Tables 1 and 2 report the Bayes estimation of Shannon entropy under SELF, PLF and DLF. From the reported
results in Table 1, it can be seen that the exact value of Shannon entropy is an increasing function with respect to
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the sample size and the number of outliers. The Bayes estimation of Shannon entropy under SELF, PLF and DLF
is an increasing function with respect to the sample size. As expected, the Bayes estimation of Shannon entropy
under different loss functions increases by increasing the number of outliers, indicating that the CP model and its
Bayesian method are efficient when outliers are in the sample. Also, the Bayes estimation of Shannon entropy is
large for the outlier sample, indicating that it is interesting for an insurance company. From the reported results in
Table 2, it can be seen that the MSEs of Shannon entropy under the DLF are smaller than the SELF and PLF for
various sample sizes and the number of outliers.

Table 2. MSEs of Shannon entropy under presumed parameters α = 3, θ = 50, 000 and β = 7.

n
∑n

i=1 δi SELF PLF DLF n
∑n

i=1 δi SELF PLF DLF
15 1 11273 1350 861 50 1 24034 11036 9647
15 2 156970 4192 1517 50 2 94958 18095 13930
15 3 2008908 14636 2486 50 3 227842 32212 21646
15 4 29256111 57686 3913 50 4 2549096 83261 32693
15 5 15026676590 2428404 6507 50 5 6446234 139050 43479

20 1 11981 2091 1514 100 1 51229 39195 38031
20 2 123340 6018 2778 100 2 74966 53696 51889
20 3 1507755 17844 4361 100 3 113949 70010 65676
20 4 215722476 188473 6871 100 4 179194 92609 85683
20 5 2095917704 1065438 10538 100 5 350339 126516 109197

25 1 26773 3923 2430 1000 1 3265066 3199229 3198396
25 2 117094 7775 4073 1000 2 3374657 3307342 3306622
25 3 723067 18507 6548 1000 3 3522397 3452092 3451432
25 4 10613291 64606 9827 1000 4 3678705 3603766 3603017
25 5 234026620 358367 15294 1000 5 3814124 3735283 3734566

3.2. Estimation of Fisher information under different loss functions in the presence multiple of outliers

This subsection presents the Bayes estimation of Fisher information under different loss functions, to investigate
the performance of the proposed methodology in the presence of multiple outliers. In this regard, we compute the
Bayes estimation of Fisher information of all parameters of the proposed CP model under SELF, PLF and DLF.

Table 3 reports the Bayes estimation of Fisher information of all parameters under different loss functions.
From the reported results in Table 3, it can be seen that the Bayes estimation of Fisher information of α, θ and β
parameters under DLF is closer than the exact value of Fisher information. It is clear that the exact value of Fisher
information of α and θ parameters is an increasing function with respect to the sample size. While, the exact value
of Fisher information of beta parameter increases when the number of outliers increased. As expected, the results
of simulation show that the Bayes estimation of Fisher information of α and θ parameter under SELF, PLF and
DLF is an increasing function with respect to the sample size n. Furthermore by increasing the number of outliers,
the Bayes estimation of Fisher information of α parameter under SELF, PLF and DLF increases, meanwhile the
Bayes estimation of Fisher information of θ parameter under SELF, PLF and DLF decreased.
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Table 3. Fisher information under presumed parameters α = 3, θ = 50, 000 and β = 7.

n
∑ n i=

1
δ i
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e
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4. Real insurance claim data analysis

In this section, we assume two examples of real insurance claim datasets for illustrative purposes. In here, we take
N = 100, 000 with a burn-in period of 20, 000. As it occurs in practice, we assume the values of all parameters of
the CP model are unknown.

4.1. Example 1: medical insurance data

In the first example, we select a medical insurance example which is discussed initially by [13]. This dataset is
related to an insurance company in Iran that offers medical insurance as one of its services. later, [32] fit the CP
outlier model to this example and obtained Bayesian estimation for all parameters. [32] showed that the proposed
CP model is a better fit for the medical insurance data.

In order to use the proposed Bayesian approach, we assume the hyperparameter values a1 = 0.001, t1 =
1000, λ = 1, β∗ = 1.1, b1 = 0.18 and b2 = 3.5 and calculated the hyperparameter values a2 and t2 based on the
same methodology which is discussed in Section 3. Table 4 reports the Bayes estimation of Shannon entropy and
Fisher information of all parameters under different loss functions. The insurance companies are interested in that
there is more uncertainty in terms of claims, particularly in the context of the outlier claim data.

Table 4. Estimation results for the medical insurance data.

SELF PLF DLF
En(X) 291.729 290.623 289.476
IX(α) 2.450 2.292 2.145
IX(θ) 7.908E-09 8.176E-09 8.452E-09
IX(β) 0.207 0.765 2.824

4.2. Example 2: motor insurance data

In the second example, we select a motor insurance example which is discussed initially by Dixit and Jabbari
Nooghabi [12]. This dataset is related to an insurance company in Iran that offers motor insurance as one of its
services. later, Scollnik [32] fit the CP outlier model to this example and obtained Bayesian estimation for all
parameters. Scollnik [32] showed that the proposed CP model is a better fit for the motor insurance data.

In order to use the proposed Bayesian approach, we assume the hyperparameter values a1 = 10, t1 = 1000, λ =
1, β∗ = 1.1, b1 = 2.17 and b2 = 19.57 and calculated the hyperparameter values a2 and t2 based on the same
methodology which is discussed in Section 3. Table 5 reports the Bayes estimation of Shannon entropy and Fisher
information of all parameters under different loss functions.

Table 5. Estimation results for the motor insurance data.

SELF PLF DLF
En(X) 357.174 342.060 328.035
IX(α) 138.853 92.056 61.031
IX(θ) 1.901E-11 2.333E-11 2.863E-11
IX(β) 512.230 814.095 1293.852
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5. Conclusion

[24] and [17] used the marginal distribution of the famous Dixit model (not the joint distribution of the Dixit model)
for obtained the amount of information in the Pareto sample with the presence of outliers that may cause misleading
inferential conclusions. In this paper, an appropriate and new method without restriction to the number of outliers
and sample size for computing the amount of information such as Shannon entropy and Fisher information has been
proposed when outliers exist in a Pareto sample. We focused on the Bayesian approach proposed by [32] based on
the contaminated Pareto distribution. We implemented the Gibbs sampler which is a simple and rational method for
computing Bayesian estimation of Shannon entropy and Fisher information under different loss functions. Some
simulation studies are conducted to showed the performance of the proposed methodology under various sample
sizes and the number of outliers. The results of simulation exhibited that that the CP model and its Bayesian method
are efficient when outliers are in the sample. Also, the DLF is a preferable loss function for the Bayesian approach
based on the CP model. In the end, two examples of real insurance claim data are studied to illustrate the superiority
of the CP model in analyzing datasets and computing the amount of Shannon entropy and Fisher information. It
may be point out that the proposed approach can be extended for other distributions and obtained the other forms
of information measure sach as Renyi entropy, Tsallis entropy and Kullback-Leibler divergence.

Appendix

A.

Proof of Theorem 1. Based on Shannon entropy Eq. (1) and the form of CP model (4), we have

En(Xi) = −
∫ ∞

θβδi

αθαβαδi

xα+1
i

ln
(αθαβαδi

xα+1
i

)
dxi

= − ln
(
αθαβαδi

)
+ (α+ 1)αθαβαδi

∫ ∞

θβδi

ln(xi)

xα+1
i

dxi.

Using the method of integral part by part, we have

En(Xi) = − ln
(
αθαβαδi

)
+ (α+ 1)

(
ln
(
θβδi

)
+

1

α

)
= ln

(θβδi

α

)
+

α+ 1

α

= ln
(θβδi

α
e

α+1
α

)
.

B.

Proof of Theorem 3. Based on the conditional likelihood (6), we have

ln
(
L(x|α, θ, β, δ, ϵ)

)
∝ n ln(α) + nα ln(θ) + α

n∑
i=1

δi ln(β)− (α+ 1)

n∑
i=1

ln(xi).
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Therefore

∂2

∂α2
ln
(
L(x|α, θ, β, δ, ϵ)

)
= − n

α2
,

∂2

∂θ2
ln
(
L(x|α, θ, β, δ, ϵ)

)
= −nα

θ2
,

∂2

∂β2
ln
(
L(x|α, θ, β, δ, ϵ)

)
= −

α
∑n

i=1 δi
β2

.

Using Eq. (2), we have

IX(α) =
n

α2
,

IX(θ) =
nα

θ2
,

IX(β) =
α
∑n

i=1 δi
β2

.

C.

The number of iterations is initially set to r=0, and then, based on the appropriate initial parameter values, the
following steps are repeated (N times).

(i) Generate samples for ϵr+1, αr+1, θr+1, βr+1, and δr+1,i, i = 1, 2, . . . , n from Eq. (7) to (11), respectively.
(ii) Compute the value of Shannon entropy from Eq. (13).

(iii) Compute the value of Fisher information there exist in X about parameters α, θ and β from Eq. (14) to (16),
respectively.
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