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Abstract This study examines the utilization of periodic exponential autoregressive (PEXPAR) models in
analyzing rainfall time series data from Algeria. The method of Gaussian quasi maximum likelihood for
parameter estimation is used. By comparing its forecasting performance with SARIMA models, we observe
a slight improvement with PEXPAR12(1), suggesting its potential efficacy in capturing seasonal variations and
nonlinear behavior in precipitation data.
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1. Introduction

This paper explores the application of Periodic Exponential Autoregressive models to analyze rainfall
time series data from Algeria. Traditionally, hydro-climatic time series, such as rainfall, have been
modeled using Seasonal Autoregressive Integrated Moving Average (SARIMA) models due to their
ability to capture seasonal characteristics. However, rainfall time series often exhibit nonlinear behavior,
prompting the exploration of alternative models like the Exponential Autoregressive (EXPAR) model,
as demonstrated in previous research, [13] and related references. Understanding rainfall patterns in
Algeria is crucial due to their profound implications for agriculture, water resource management, and
environmental sustainability. The variability and complexity of rainfall data demand sophisticated
modeling approaches to accurately capture its dynamics. There is a growing interest in EXPAR models
[17], [9], [18]). Recent work by [5] highlighted the suitability of EXPAR models for modeling and
forecasting sunspot annual numbers, showcasing the broader applicability of such models beyond
hydro-climatic data. Moreover, the periodicity phenomenon in time series modeling has a rich history,
dating back to [11], who introduced new models leveraging periodicity. This approach has been
successfully applied in various fields, as evidenced by [15], [10] [14], [12], among others. PEXPAR
models represent a significant advancement, offering a generalization of EXPAR models by allowing
parameters to vary periodically with time, see [16]. This flexibility is particularly advantageous for
modeling seasonal data characterized by nonlinear features and periodic autocovariance structures.
In this study, we employ the quasi maximum likelihood estimation (QMLE)method to estimate
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PEXPAR models, extending the approach from classical EXPAR models, [6]. The use of QMLE ensures
consistent and asymptotically normal estimators, aligning with the nonlinear least square estimator
(NLS) principles, [7].
The paper is organized as follows. Section 2 describes the PEXPAR model and defines the QMLE
estimator. Section 3 presents a concise simulation study to assess the performance of the proposed
methodology. Finally, the application of PEXPAR models for analyzing rainfall data in Algeria is
discussed in Section 4. Section 5 concludes the paper by summarizing key findings and outlining
directions for future research.

2. QML Estimation of the PEXPARS(1) Model

The process {Yt; t ∈ Z} is said to follow a Periodic Exponential Autoregressive PEXPARS (1), with
period S (S ≥ 2), if it satisfies:

Yt =
(

αt,1 + αt,2 exp
(
−γtY2

t−1

))
Yt−1 + εt, t ∈ Z, (1)

where {εt; t ∈ Z} is an independent and periodically distributed (i.p.d.) process with mean 0 and
finite variance σ2

t with a probability density f (.) which is not specified and γt > 0. The autoregressive
parameters αt,1, αt,2 ∀t ∈ Z, the nonlinear parameter γt and the innovation variance σ2

t are periodic, in
time, with period S , i.e,

αt+kS,1 = αt,1 , αt+kS,2 = αt,2, γt+kS = γt and σ2
t+kS = σ2

t , ∀k, t ∈ Z.

We define the conditional mean and conditional variance of the model. Let

µt = E (Yt/Ft−1) ,

and
∆2

t = Var (Yt/Ft−1) ,

where Ft−1 = σ {Yt−s, s ≥ 1} is the σ-algebra generated by the past of Yt up to t − 1. Then

µt =
(

αt,1 + αt,2 exp
(
−γtY2

t−1

))
Yt−1,

∆2
t = E

(
(Yt − µt)

2 /Ft−1

)
= σ2

t .

The conditional mean is stochastic and depends on the past information. However, the conditional
variance is deterministic and not stochastic. Our model primarily allows for predicting values but
does not incorporate stochastic modeling of their variabilities. It is important to note that other
periodic models exist that encompass both the conditional mean and variance stochastically. Notable
examples include the periodic random coefficient AR (RCA) model, Aknouche and Guerbyenne
(2009a, 2009b), periodic ARMA models with periodic GARCH components, Aknouche and Bibi (2009),
and periodic autoregressive conditional duration models, Aknouche et al. (2022). These models provide
a comprehensive framework by jointly modeling both the conditional mean and variance.
By letting t = i + Sτ, i = 1, 2, ..., S and τ ∈ Z , equation (1) can be rewritten in the equivalent form:

Yi+Sτ =
(

αi,1 + αi,2 exp
(
−γiY2

i+Sτ−1

))
Yi+Sτ−1 + εi+Sτ , i = 1, ..., S, τ ∈ Z. (2)

The vector of parameters

θ =
(
θ′1, ..., θ′S

)′ ∈ R3S where θi = (αi,1, αi,2, γi)
′ , i = 1, ..., S,
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belongs to a parameter space of the form:

ΘS ⊂ (]− 1,+1[×]− 1,+1[×]0, ∞[)S.

The variance σ2
t can be considered as a nuisance parameter. The true value of the parameters is unknown

and denoted by:

θi,0 =
(

α0
i,1, α0

i,2, γ0
i

)′
, i = 1, ..., S , and θ0 =

(
θ′1,0, ..., θ′S,0

)′ ∈ R3S.

We want to estimate the true parameter θ0 from observations Y1, ..., Yn where n = mS. Given the initial
value Y0, the conditional log likelihood of the observations evaluated at θ depends on f which is
unknown. The QML estimator is obtained by replacing f by the N

(
µt, σ2

t
)

:

Ln(θ, Y1, . . . , Yn) = −mS
2

log (2π)− m
2

S

∑
i=1

log
(

σ2
i

)
−

S

∑
i=1

m−1

∑
τ=0

(
Yi+Sτ −

(
αi,1 + αi,2 exp

(
−γiY2

i+Sτ−1
))

Yi+Sτ−1
)

2σ2
i

2

,

assuming σi ̸= 0.
Let θ̂n be the QML estimator, it can be observed that maximizing Ln is equivalent to the following
minimization problem with respect to θ :

θ̂n = arg inf
θ∈ΘS

Qn(θ),

where

Qn(θ) =
1
n

n

∑
t=1

(Yt −
(
αt,1 + αt,2 exp

(
−γtY2

t−1
))

Yt−1)
2

σ2
t

.

We need the following assumptions to show the asymptotic properties of the estimator.
A1: The parameter space ΘS is a compact set.
A2: i) Yt is periodically strictly stationary. A sufficient condition is

max (|αi,1| , |αi,1 + αi,2|) < 1 for i = 1, ..., S.

ii) The periodically white noise is such that E
(
ε2

t
)
< ∞, for any t ∈ Z.

A3: The parameter θi,0 belongs to the interior
◦
Θ of Θ.

A4: E(ε6
t ) < ∞, for any t ∈ Z.

Assumption A3 is standard for asymptotic normality and A4 is necessary for the existence of the
variance of the score vector.
Theorem 1
Under assumptions A1 − A2, the quasi maximum likelihood estimators θ̂i,m are strongly consistent, i.e.
almost surely

θ̂i,m → θi,0 as m → ∞.

And under all the assumptions above,
√

m(θ̂i,m − θi,0)D−→
m−→∞

N(03, 2J−1
i ),

where

Ji = E

(
∂2ℓi,τ(θi)

∂θi∂θ
′
i

)
,

is a positive definite matrix and

ℓi,τ(θi) =
(Yi+Sτ −

(
αi,1 + αi,2 exp

(
−γiY2

i+Sτ−1
))

Yi+Sτ−1)
2

σ2
i

.
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Proof

Since the conditional QML estimator is equivalent to the nonlinear least squares (NLS) estimator, the
proof follows the same approach as detailed in [7]. The consistency is established through an ergodicity
argument, and the normality relies on a central limit theorem applied to martingale differences.

Remark: For fixed i, we obtain the QML estimates of the classical EXPAR(1) model in [6].

3. Simulation results

To assess the asymptotic properties of the QML estimator in finite samples, we conduct a small-scale
simulation study. We generate time series from the PEXPAR2(1) models with sample sizes of n = 300,
600 and 1000 Monte Carlo replications. The mean values, biases and standard deviations of the QML
estimations are reported across these different sample sizes. Additionally, we incorporated estimated
asymptotic standard errors (ASE) derived from the asymptotic variances specified in Theorem 1 into
our analysis. Table 1 presents the parameter estimations for θ = (−0.5, 0.3, 0.9; 0.2,−0.6, 1) ′. In Figure
1 and Figure 2, we display boxplots and Q-Q plots of the estimation errors, respectively, for the model
with 100 replications and n = 500. Our simulation program, implemented in R using the nlm function,
is sensitive to initial values. To mitigate this sensitivity, we introduce a random perturbation on the true

parameter during initialization. Practically, we set γ̂i =
log ϵ

max
0≤τ≤m−1

Y2
Sτ+i−1

, where ϵ is a small number,

and utilize linear least squares estimation for the remaining parameters as initial values. From the
results in Table 1, we observe that the parameters are well estimated, with either the bias or standard
deviation decreasing as n increases, or both, indicating the consistency of the estimates. Moreover,
incorporating the estimated asymptotic standard errors provides additional insights into the precision
of these estimations under asymptotic conditions. The ASE values offer a measure of expected accuracy,
indicating how closely the estimated parameters are likely to approximate the true values as the sample
size increases towards infinity. Additionally, Figures 1 and 2 demonstrate that the estimation errors are
centered around 0 and exhibit a normal distribution.

QMLE α̂1,1 α̂1,2 γ̂1 α̂2,1 α̂2,2 γ̂2
n = 300 −0.4958 0.3026 0.8996 0.2013 −0.5929 1.0023

bias 0.0041 0.0026 −0.0003 0.0013 0.0070 0.0023
sd 0.0323 0.0350 0.0144 0.0337 0.0382 0.0144

ASE 0.0001 0.0001 5e − 07 0.0002 0.0002 2e − 06
n = 600 −0.4969 0.3007 0.8994 0.2013 −0.6009 1.0004

bias 0.0030 0.0007 −0.0005 0.0013 −0.0009 0.0004
sd 0.0294 0.0287 0.0142 0.0325 0.0305 0.0147

ASE 7e − 05 7e − 05 3e − 07 0.0001 0.0001 e − 06
Table1: Estimation results for PEXPAR2(1)
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Figure 1. The boxplots of the errors of estimation for 100 replications and n=500.

Figure 2. The Q-Q plots of the errors of estimation for 100 replications and n=500.

4. Application: Rainfall in Algeria

This section investigates the modeling of monthly rainfall data in Algeria spanning from January 1901
to December 2016. We employ both linear (SARIMA) and nonlinear (PEXPAR12(1)) models to analyze
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Figure 3. Monthly rainfall in Algeria

the dataset, comprising 1392 observations, sourced from the World Bank’s Climate Knowledge Portal.
We left the data for the year 2016 to out-of-sample forecasting validation.

SARIMA modelling

While rainfall exhibits seasonal and nonlinear characteristics, the visual inspection of the time series
(Figure 3) does not conclusively confirm non-stationarity. However, further analysis using monthplot
and boxplot (Figure 4) reveals significant seasonal behavior, characterized by noticeable fluctuations in
the mean across seasons. Additionally, the monthplot suggests that the conditional variance may exhibit
stochastic characteristics, as noted by referee feedback. The correlogram (Figure 5) confirms the presence
of seasonality (multiples of 12), but without a clear decay, indicating non-stationarity. To address this, we
apply a log transformation to stabilize the variance, as depicted in Figure 5. Subsequently, by examining
the correlogram of the seasonal differences series ∆12 log Yt, shown in Figure 6, we identify several
SARIMA models and select SARIMA (0, 0, 1) (0, 1, 1)12 using the [8] methodology,(

1 − L12
)

log Yt =

(
1 − 0.96

(0.0120)
L12
)(

1 + 0.15
(0.0273)

L
)

εt.

where the standard errors are provided in brackets. The resulting residuals are uncorrelated
(p − value = 0.7771, Box-Ljung test) but not Gaussian (p − value < 2.2e − 16, Shapiro-Wilk normality
test), indicating the potential for a nonlinear model. Forecasted values are reported in Table 3 and
visually represented in Figure 8.

Periodic EXPAR modelling

The nonlinearity of the data is confirmed by the Keenan test on the log-transformed data p − value =
7.36e − 11. After centering the data by subtracting the seasonal means, parameter estimation results are
presented in Table 2. The estimated residual variances are provided in Table 3, allowing for a comparison
between SARIMA and PEXPAR models. Notably, for SARIMA: σ2

SARIMA = 0.3825 and for PEXPAR:
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Figure 4. Monthplot and Boxplot of the rainfall

Figure 5. Correlogram of the rainfall

σ2
PEXPAR = 0.3608, as the mean of values in Table 4. For the out-of-sample forecast, reported in Table

3, we obtain σ2
SARIMA = 3.9687 and σ2

PEXPAR = 3.5076. The PEXPAR model demonstrates a marginally
lower residual variance compared to SARIMA, further highlighting its potential efficacy in capturing
the complexities of the rainfall data. In conclusion, our analysis suggests that the periodic EXPAR model
holds promise for capturing the seasonal variations and nonlinear behavior inherent in rainfall data,
offering an alternative to traditional linear SARIMA models.
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Figure 6. Correlogram of the seasonal differences rainfall

Figure 7. Correlogram of the residuals
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Figure 8. Comparison between real values and forecasted values

i αi,1 αi,2 γi
1 0.4151 -0.7616 0.9105
2 0.1191 -0.6820 2.3728
3 0.3862 -0.3623 1.7407
4 0.2505 4.8749 65.2184
5 0.1713 4.5140 62.0735
6 -0.4483 0.7883 0.3903
7 0.1934 1.6171 21.6310
8 0.0235 -0.3598 7.3441
9 0.2336 0.4372 3.7746
10 0.3660 -1.1060 30.8242
11 0.3544 -0.5875 1.2350
12 0.1062 -0.8745 49.5967

Table 2: Parameter estimation of PEXPAR12 (1)

Month Real values PEXPAR12 (1) SARIMA
Jan 3.3404 1.5434 4.2472
Feb 5.9697 5.7643 6.8530
Mar 8.0031 7.5117 7.2937
Apr 5.3921 5.8031 5.6884
May 6.6844 4.5539 5.3476
Jun 1.6623 2.3689 2.2397
Jul 1.6439 1.5962 2.0294
Aug 2.9051 3.7706 4.6669
Sep 6.7740 4.9689 5.5177
Oct 2.0406 6.6870 6.4840
Nov 9.3678 8.5109 8.4678
Dec 11.6125 8.9596 7.3785

Table 3: Forecasted values from PEXPAR12 (1) and SARIMA.

Stat., Optim. Inf. Comput. Vol. 13, April 2025
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Month 1 2 3 4 5 6
σ2 0.4677 0.3620 0.2710 0.3680 0.3975 0.4743
Month 7 8 9 10 11 12
σ2 0.3919 0.3506 0.2876 0.3363 0.2608 0.3621

Table 4: Monthly residual variances for PEXPAR12 (1) model.

5. Conclusion

This study focused on modeling the rainfall series of Algeria using a PEXPAR model, allowing
for different coefficients in each season. The estimation of PEXPAR12(1) was addressed using the
Gaussian quasi maximum likelihood method, and the consistency and asymptotic normality of the
estimators were confirmed through simulated series. Comparing the forecasts generated by SARIMA
and PEXPAR12(1) models revealed a slight superiority of the latter over the former. These findings
underscore the potential of PEXPAR models in capturing the seasonal variations and nonlinear behavior
of rainfall data, offering valuable insights for forecasting and decision making in hydro-climatic studies.
To extend this research, future investigations could focus on developing a periodic EXPAR − GARCH
model. This expanded framework would incorporate both the periodic autoregressive structure of
PEXPAR models and the stochastic modeling of conditional variance inherent in GARCH (Generalized
Autoregressive Conditional Heteroskedasticity) models. By integrating these elements, the periodic
EXPAR − GARCH model could provide a more comprehensive approach for capturing the complex
dynamics and variability of rainfall data, thereby enhancing predictive accuracy and decision support
in hydro-climatic studies.

Acknowledgement

We would like to extend our heartfelt thanks to the referees, whose comments and suggestions worked
like magic on our article, significantly transforming it. Their invaluable insights illuminated our work
and provided a fresh perspective, enabling us to present more robust and compelling results.

REFERENCES

1. A. Aknouche, B. Almohaimeed, and S. Dimitrakopoulos, Periodic autoregressive conditional duration, Journal of Time
Series Analysis, 43, 5–29, 2022.

2. A. Aknouche, and A. Bibi, Quasi-maximum likelihood estimation of periodic GARCH and periodic ARMA-GARCH processes,
Journal of Time Series Analysis, 28, 19–46, 2009.

3. A. Aknouche, and H. Guerbyenne, On some probabilistic properties of double periodic AR models, Statistics and Probability
Letters, 79, 407–413, 2009a.

4. A. Aknouche, and H. Guerbyenne, Periodic stationarity of random coefficient periodic autoregressions, Statistics and
Probability Letters, 79, 990–996, 2009b.

5. N. Azouagh, and S. El Melhaoui, An Exponential Autoregressive model for the forecasting of annual sunspots number,
Electronic Journal of Mathematical Analysis and Applications, 7, 3, 17–23, 2019.

6. A. Amondela, and C. Francq, Concepts and tools for nonlinear time series modelling, In Handbook of Computational
Econometrics. Edts D. A. Belsley and E. J. Kontoghiorghes, Wiley, 2009.

7. S. Becila, and M. Merzougui, Nonlinear Least Squares estimation of the Periodic EXPAR(1) model, Communications in
Statistics-Theory and Methods, 2020. DOI: 10.1080/03610926.2020.1839099.

8. G. E. P. Box,and G. M. Jenkins, Time Series Analysis, Forecasting and Control, 2nd edi., Holden-Day San Francisco, CA,
1976.

9. G. Y. Chen, M. Gan, and G. L. Chen, Generalized exponential autoregressive models for nonlinear time series: Stationarity,
estimation and applications, Information Sciences 438, 46–57, 2018.

10. P. H. Franses, and M. Ooms, A Periodic Long Memory Model for Quarterly UK Inflation, International Journal of Forecasting,
13, 119–128, 1997.

11. E. G. Gladyshev, Periodically correlated random sequences. Soviet, Soviet. Math., 2, 385–88, 1961.
12. F. Hamdi, and S. Souam, Mixture periodic GARCH models: Applications to exchange rate modeling, 5th International

Conference on Modeling, Simulation and Applied Optimization (ICMSAO).IEEE, 2013.

Stat., Optim. Inf. Comput. Vol. 13, April 2025



S. BECILA AND M. MERZOUGUI 1689

13. A. Lama, K. N. Singh, H. Singh et al, Forecasting monthly rainfall of Sub-Himalayan region of India using parametric and
non-parametric modelling approaches, Model. Earth Syst. Environ, 2021. https://doi.org/10.1007/s40808-021-01124-5.

14. P. A. W. Lewis, and B. K. Ray, Nonlinear modelling of periodic threshold autoregressions using TSMARS, ournal of Time Series
Analysis 23, 4, 459–471, 2002.

15. A. I. McLeod, Diagnostic checking periodic autoregression models with application, Journal of Time Series Analysis 15, 2,
221–233, 1994.

16. M. Merzougui, H. Dridi, and A. Chadli, Test for periodicity in restrictive EXPAR models, Communication in Statistics-
Theory and Methods, 45:9, 2770–2783, 2016.

17. T. Ozaki, Non-linear time series models for non-linear random vibrations, Journal of Applied Probability, 17, 84–93, 1980.
18. H. Xu, F. Ding, and E. Yang, Three-stage multi-innovation parameter estimation for an exponential autoregressive time-series

model with moving average noise by using the data filtering technique, International Journal of Robust and Nonlinear Control;
1–19, 2020.

Stat., Optim. Inf. Comput. Vol. 13, April 2025


	1 Introduction
	2 QML Estimation of the PEXPARS(1) Model
	3 Simulation results
	4 Application: Rainfall in Algeria
	5 Conclusion

