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Abstract In this paper, we employ generalized order statistics to investigate the moment properties of the Benktander Type
II distribution. Through this approach, we derive precise and explicit formulas for single moment and establish recurrence
relations for single and product moments. Additionally, we present a characterization of the Benktander Type II distribution,
accompanied by further implications regarding moments of record values and ordinary order statistics. We estimate the
unknown parameters of the Benktander Type II distribution using maximum likelihood estimation for generalized order
statistics. Subsequently, we conduct simulation studies encompassing order statistics and record values. The efficacy of
the obtained maximum likelihood estimates is evaluated through comprehensive simulation analyses, focusing on various
moments and their relative mean squared errors. This research contributes to understanding the Benktander Type II
distribution’s properties and provides valuable insights into its parameter estimation using generalized order statistics.
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1. Introduction

Numerous real-world situations can be encountered where ordered random variables (orvs) are applied. For
instance, we might be curious to learn the price trend of any commodity by ordering the prices in rising or falling
order of extent, or we might be interested in learning the lifespan of a specific kind of product made using a variety
of techniques. When data are arranged in ascending or descending order, order statistics are generated. These
statistics can then be used to understand other aspects of the data, such as the maximum and minimum values
as well as the range of the data. [1] was the first to develop the idea of generalized order statistics (gos), which
includes a number of models for random variables (rvs) arranged in ascending order, encompassing order statistics,
record values, k-th record values, the Pfeifer record model, and more. These models are widely utilized in statistical
modeling and inference and are particularly helpful in many statistical applications. The models may be used for
a variety of tasks, including the analysis of reliability and conducting goodness-of-fit tests, outlier identification,
robust estimation, material strength detection, and flood frequency analysis. Generalized order statistics represent
a unifying framework that consolidates multiple models of orvs. By providing joint and marginal densities of gos.
[1] established several distributional characteristics of gos.
The gos formula may be written mathematically as; Let U1, U2, ..., Un be a series of independent and identically
distributed (iid) rvs, with an absolutely continuous cumulative distribution function (cdf ) F (u), and the
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probability density function (pdf ) f(u). Let n ∈ N , n ≥ 2, k ≥ 1, and m̃ = (m1,m2, . . . ,mn−1) ∈ ℜn−1, Mr =∑n−1
j=r mj , 1 ≤ r ≤ n− 1, such that

γr = k + n− r +

n−1∑
j=r

mj > 0, for1 ≤ r ≤ n− 1.

The rvs U(1, n, m̃, k), U(2, n, m̃, k), . . . , U(n, n, m̃, k) are said to be gos from a continuous population with cdf
F (u) and pdf f(u) if their joint pdf is of the form

k

(
n−1∏
j=1

γj

)(
n−1∏
i=1

[
F̄ (ui)

]mi
f (ui)

)[
F̄ (un)

]k−1
f (un) . (1)

defined on the cone F−1(0+) < u1 ≤ u2 ≤ . . . ≤ un < F−1(1) of Rn, where F̄ (u) = 1− F (u). The different
variants of gos are specified in the following table through suitable parameter selections.

Table 1. Variants of the gos.

γn = k γr mr

1. Sequential Order Statistics 1 1 -1
2. Record Values 1 (n-r+1) 0
3. Order Statistics αn (n-r+1)αr γr − γr+1 − 1

4. Pfeifer’s Record Values Rn + 1 n− r + 1 +

n∑
j=r

Rj Rγ

5. Progressively Type II right censored OS βn βr βr − βr+1 − 1

Marginal and joint distributions
The definition of gos has considered two cases
Case I: m1 = m2 = · · · = mn−1 = m [1].
Case II: γi ̸= γj , i ̸= j, i, j = 1, 2, . . . , n− 1 [2].
Here we have considered only Case I.
The pdf of r-th gos U(r, n,m, k), is provided by

fU(r,n,m,k)(u) =
Cr−1

(r − 1)!
[F̄ (u)]γr−1f(u)gr−1

m (F (u)), (2)

and the joint pdf of U(r, n,m, k) and U(s, n,m, k), 1 ≤ r < s ≤ n, is given by

fU(r,n,m,k),U(s,n,m,k)(u, v) =
Cs−1

(r − 1)!(s− r − 1)!
[F̄ (u)]mgr−1

m (F (u))

× [hm(F (v))− hm(F (u))]
s−r−1

[F̄ (v)]γs−1f(u)f(v), u < v,

(3)

where

Cr−1 =

r∏
i=1

γi, γi = k + (n− i)(m+ 1),

hm(u) =

{
− 1

m+1 (1− u)m+1 , m ̸= −1

− ln(1− u) , m = −1
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and

gm(u) = hm(u)− hm(0) =

∫ u

0

(1− t)mdt, u ∈ [0, 1).

This article also focuses on the relationships between the moments used to calculate higher-order moments.
In the computation of moments of higher orders, the utility and significance of recurrence relations come
to the forefront. They prove advantageous in reducing both the time complexity and the procedural steps
necessary to attain a generalized form for any order of the function under investigation. Additionally, they help
characterize distributions. Characterization stands as a pivotal technique, facilitating the identification of population
distributions through the discernment of sample traits see: for examples; [3] elucidates novel distributional
properties of gos derived from the two-parameter exponential distribution. Present the minimum variance linear
unbiased estimators (MVLUEs) for the distribution parameters, enhancing the precision of statistical inference.
Furthermore, establish a significant characterization of the exponential distribution. [4] elucidates novel recurrence
relations for both moment generating functions and conditional moment generating functions of gos. These
relations are derived from random samples drawn from the doubly truncated class of distributions, thereby
extending the current understanding of distributional properties in truncated scenarios. [5] established recurrence
relations for single and product moments of gos from doubly truncated Weibull distribution which includes
relations for order statistics, k-th record values, sequential order statistics and order statistics with non-integral
sample size. [6] presented explicit expressions for single and product moments of gos from a general class of
distributions. Further, some deductions and particular cases are discussed. [7] obtained the single and product
moments of gos from linear exponential distribution. [8] obtained moments of Erlang-truncated exponential
distribution based on gos. [9] obtained the ratio and inverse moments of gos from Burr distribution. [10]
presented explicit expressions and establishes novel recurrence relations for both marginal and joint moment
generating functions of gos from the extended Type II generalized logistic distribution. The research further
extrapolates these findings to deduce moments of k-th record values and conventional order statistics. [11] presents
novel explicit expressions and recurrence relations for single and product moments of lower gos derived from
the inverse Burr distribution. The formulations are subsequently specialized to encompass order statistics and
record values. Parameter estimation is conducted via maximum likelihood methodology. [12] elucidates concise
explicit expressions and novel recurrence relations for both single and product moments of gos derived from
the exponential-Weibull lifetime distribution. These findings are subsequently extrapolated to moments of order
statistics and upper record values. [13] derives explicit expressions for single, product, and conditional moments of
order statistics and record values from the extended exponential distribution, as well as moments for progressively
Type II censored order statistics. [14] derives explicit expressions for single, product, and conditional moments of
order statistics and record values from the extended exponential distribution, including moments for progressively
Type II censored order statistics. [15] establishes novel recurrence relations for both individual and product
moments of gos derived from the Erlang-truncated exponential distribution. Leveraging these relations, compute
the first four moments for order statistics, record values, and second record values across a range of parameter
values. Additionally, utilize the order statistics results to derive best linear unbiased estimators (BLUEs) for location
and scale parameters, specifically in the context of type-II right-censored samples. This approach provides a robust
framework for statistical inference in truncated exponential distributions, with potential applications in reliability
analysis and survival studies. [16] have derived relations for marginal and joint moment generating function of
Weibull generalized exponential distribution based on gos. These derived relations are further reduced to the sub
models of gos such as order statistics and record values. [17] have elucidated diverse structural characteristics of the
Pareto distribution, encompassing the quantile function, explicit moment expressions, mean deviation, Bonferroni
and Lorenz curves, and Rényi entropy. [18] have derived relations for marginal and joint moment generating
function of Weibull generalized exponential distribution based on gos. These derived relations are further reduced
to the sub models of gos such as order statistics and record values. [19] derives single and product moments of gos
for the generalized inverse Lindley distribution. [20] presented the exact and explicit expressions for single and
product moments of Lindley distribution based on gos in terms of Gauss hypergeometric function and Kampe de
Feriet series.
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These results include the exact expression for the single and product moments of order statistics, progressive Type-
II censoring, record values Pfeifer’s record value and sequential order statistics from Lindley distribution. [21] have
derived the explicit expressions for single and product moments of gos from Pareto-Rayleigh distribution using
hypergeometric functions. [22] investigates the moments of gos using the power linear hazard rate distribution,
deriving explicit formulations and relations between moments and provides characterization results through various
techniques. [23] have investigated the Bass diffusion model in order to determine a few recurrence relations for
the product and single moments within the context of gos. For details on the method of recurrence relations and
characterization on various statistical distributions, these relations are further reduced in the particular cases of
gos. [24] derive explicit expressions and recurrence relations for the single and product moments of gos from the
log-extended exponential–geometric distribution, applying these results to obtain the BLUEs for location and scale
parameters using progressively Type-II right censored samples. [25] derived and provided exact mathematical
formulas for calculating the single, product, triple, and quadruple moments of order statistics arising from
the Pareto-Weibull distribution. [26] developed K−th-order equilibrium Weibull distribution (KEWD) a model
incorporating three parameters, utilizing the method of weighted probabilities extending the traditional Weibull
distribution. The study explores various statistical properties of (KEWD), including moments, entropy, and order
statistics. It also presents parameter estimation using maximum likelihood, conducts simulation studies, and
demonstrates the model’s superior fit to real-life data compared to other Weibull extensions.

The purpose of this study is grounded in the examination of the Benktander Type II distribution, a significant
distribution in size modeling, particularly within the domains of actuarial science and risk management. The
Benktander Type II distribution is essential for simulating heavy-tailed losses commonly observed in non-
life/casualty insurance. This distribution was introduced by Gunnar Benktander in 1970 and is characterized
by its unique asymptotic resemblance to the mean excess function of the Weibull distribution, distinguishing
it from other distributions like the Pareto or lognormal. The empirical mean excess functions that lead to the
Benktander distributions effectively bridge the gap between Pareto and exponential distributions, with the type I
variant approximating the lognormal distribution.

The reason for selecting the Benktander Type II distribution in the context of gos lies in its flexibility and
applicability to a broad range of statistical behaviors, especially in modeling extreme values. Generalized
order statistics provide a generalized framework that extends traditional order statistics, allowing for more
versatile weighting and spacing schemes. This flexibility is particularly relevant when dealing with heavy-tailed
distributions like Benktander Type II, where classical order statistics might not adequately capture the distribution’s
characteristics. By integrating the Benktander Type II distribution with gos, this study aims to enhance the
theoretical understanding and practical application of these statistical tools, offering more precise methods for
parameter estimation and risk assessment in complex, real-world scenarios; see [27], [28], [29]. [30] studied the
characterization of Benktander Type II distribution via truncated moments and order statistics.

The Benktander Type II distribution’s pdf is denoted by

f(u) = e
a(1−ub)

b ub−2(aub − b+ 1), u ≥ 1, a > 0, 0 < b ≤ 1. (4)

The corresponding cdf is expressed by

F (u) = 1− ub−1e
a(1−ub)

b , u ≥ 1, a > 0, 0 < b ≤ 1. (5)

Therefore, in view of (4) and (5), we have

f(u) =
(aub − b+ 1)

u
F (u). (6)

The reliability function for the Benktander Type II distribution is

R(t) = 1− F (t) = tb−1e
a(1−tb)

b .
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The hazard function for the Benktander Type II distribution is

h(t) =
f(t)

R(t)
=

(atb − b+ 1)

t
.
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(a) The plot of pdf for Benktander type II distribution.
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(b) The plot of cdf for Benktander type II distribution.
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(c) The plot of reliability function for Benktander type II distribution.
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(d) The plot of hazard function for Benktander type II distribution.
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Figure 1. p.d.f., c.d.f., reliability, and hazard function graph at different parameter values.
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Figure (a) and (b) displays various possible forms for the density and distribution functions of the Benktander
Type II distribution. The suggested distribution can be shown in the figure to be capable of capturing various
datasets behaviors. Figures (c) and (d) above show the Benktander Type II distribution’s reliability and hazard rate
functions behavior.
The paper’s structure is as follows. Section 2, presents the derivation of the precise and explicit expression for
the single moment and recurrence relations of gos from the Benktander Type II distribution. In Section 3, we
have shown the characterization of the Benktander Type II distribution. In Section Section 4, we have discussed
maximum likelihood for gos. In Section 5, we have discussed a simulation study for order statistics, and record
values. Results and discussion presented in Section 6. Ultimately, a conclusion is provided within Section 7.

2. Single Moment

Theorem 2.1 For the Benktander Type II distribution as given in (4) for 1 ≤ r ≤ n, k ≥ 1 and p = 1, 2, . . .

E [Up(r, n,m, k)]

=

r−1∑
u1=0

(−1)u1

(
r − 1

u1

)
Cr−1e

aγr−u1
b

(r − 1)!(m+ 1)r−1

[(a
b

)(γr−u1

b

)−p−(b−1)(γr−u1
+1)−b

b

×Γ

(
p+ (b− 1)(γr−u1

+ 1) + b

b
,
aγr−u1

b

)
+

(
1− b

b

)(aγr−u1

b

)−p−(b−1)(γr−u1
+1)

b

×Γ

(
p+ (b− 1)(γr−u1

+ 1)

b
,
aγr−u1

b

)]
, m ̸= −1.

(7)

E [Up(r, n,−1, k)]

= E
[
(U

(k)
U ′

(r)
)p
]
=

∞∑
v1=0

w+r−1∑
i=0

(−1)icw(r − 1)

(
w + r − 1

i

)
kre

a(k+i)
b

(r − 1)!(a(k + i)

b

)−p−(b−1)(k+i+1)−b
b

Γ

(
p+ (b− 1)(k + i+ 1) + b

b
,
a(k + i)

b

)

+(1− b)

(
a(k + i)

b

)−p−(b−1)(k+i+1)
b

Γ

(
p+ (b− 1)(k + i+ 1)

b
,
a(k + i)

b

) , m = −1.

(8)

Proof: For m ̸= -1
From (2), we have

E [Up(r, n,m, k)] =
Cr−1

(r − 1)!

∫ ∞

1

up[F̄ (u)]γr−1f(u)gr−1
m (F (u))du. (9)

On expanding gr−1
m (F (u)) =

[
1

m+1 (1−
[
F (u)

]m+1
)
]r−1

binomially in (9), we get

E [Up(r, n,m, k)] =
Cr−1

(r − 1)!(m+ 1)r−1

r−1∑
u1=0

(−1)u1

(
r − 1

u1

)∫ ∞

1

up[F̄ (u)]γr−u1
−1f(u)du. (10)

using (5), (6) in (10) and after simplification, we get

E [Up(r, n,m, k)] =
Cr−1e

aγr−u1
b

(r − 1)!(m+ 1)r−1

r−1∑
u1=0

(−1)u1

(
r − 1

u1

)
I1. (11)
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where

I1 = a

∫ ∞

1

up+(b−1)(γr−u1
+1)e

−aγr−u1
ub

b du+ (1− b)

∫ ∞

1

up+(b−1)(γr−u1
−1)+b−2e

−aγr−u1
ub

b du.

Setting t = ub and simplifying using generalized exponential function,

En(u) =

∫ ∞

1

e−ut

tn
dt = un−1Γ(1− n, u).

we get,

I1 =

[(a
b

)(aγr−u1

b

)−p−(b−1)γr−u1
−b

b

Γ

(
p+ (b− 1)γr−u1 + b

b
,
aγr−u1

b

)

+

(
1− b

b

)(aγr−u1

b

)−p−(b−1)(γr−u1
−1)+1−b

b

Γ

(
p+ (b− 1)γr−u1

b
,
aγr−u1

b

)]
.

(12)

Substituting (12) in (11), we get (7).
For m = -1 we have

E [Up(r, n,−1, k)] = E
[
(U

(k)
U ′

(r)
)p
]
=

Kr

(r − 1)!

∫ ∞

1

up[F̄ (u)]k−1[−ln(1− F (u))]r−1f(u)du (13)

where E
[
(U

(k)
U ′

(r)
)p
]

denotes the p− th moments of k − th upper record values
Using logarithmic expansion in (13)

[−ln(1− z)]h =

( ∞∑
w=1

zw

w

)h

=

∞∑
w=0

cw(h)z
w+h

where cw(h) is the coefficient of zc+h in the expansion of

( ∞∑
w=1

zw

w

)h

.

E
[
(U

(k)
U ′

(r)
)p
]
=

Kr

(r − 1)!

∞∑
w=0

cw(r − 1)

∫ ∞

1

up[F̄ (u)]k−1[F (u))]w+r−1f(u)du.

Using (5) and (6), we get

E
[
(U

(k)
U ′

(r)
)p
]
=

Kre
a(k+i)

b

(r − 1)!

∞∑
w=0

w+r−1∑
i=0

(−1)icw(r − 1)

(
w + r − 1

i

)
I2 (14)

where

I2 = a

∫ ∞

1

up+(b−1)(k+i+1)e
−a(k+i)ub

b du+ (1− b)

∫ ∞

1

up+(b−1)(k+i−1)+b−2e
−a(k+i)ub

b du.

Setting t = ub and simplifying using generalized exponential function, we get

I2 =

(a
b

)(a(k + i)

b

)−p−(b−1)(k+i)−b
b

Γ

(
p+ (b− 1)(k + i) + b

b
,
a(k + i)

b

)

+

(
1− b

b

)(
a(k + i)

b

)−p−(b−1)(k+i)
b

Γ

(
p+ (b− 1)(k + i)

b
,
a(k + i)

b

) .

(15)

Substituting I2 in (14), we get (8).
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Remarks 2.1
a. We get single moments of order statistics from Benktander Type II distribution when m = 0 and k = 1 in (7),
obtained as

E[Up
r:n] =

r−1∑
u1=0

(−1)u1

(
r − 1

u1

)
Cr:ne

a(n−r+u1+1)
b

(a
b

)(a(n− r + u1 + 1)

b

)−p−(b−1)(n−r+u1+1)−b
b

×Γ

(
p+ (b− 1)(n− r + u1 + 1) + b

b
,
a(n− r + u1 + 1)

b

)

+

(
1− b

b

)(
a(n− r + u1 + 1)

b

)−p−(b−1)(n−r+u1)+1−b
b

Γ

(
p+ (b− 1)(n− r + u1 + 1)

b
,
a(n− r + u1 + 1)

b

)]
.

(16)

b. We get the moments of upper record values from Benktander Type II distribution, when we put k = 1 in (8),
obtained as

E [Up(r, n,−1, 1)] =E
[
(Up

U ′
(r)
)
]
=

∞∑
w=0

w+r−1∑
i=0

(−1)icw(r − 1)

(
w + r − 1

i

)
e

a(i+1)
b

(r − 1)!(a
b

)(a(i+ 1)

b

)−p−(b−1)(i+1)−b
b

Γ

(
p+ (b− 1)(i+ 1) + b

b
,
a(i+ 1)

b

)

+

(
1− b

b

)(
a(i+ 1)

b

)−p−(b−1)(i+1)
b

Γ

(
p+ (b− 1)(i+ 1)

b
,
a(i+ 1)

b

) .

(17)

Table 2. Means and variances of order statistics for the Benktander Type II distribution for

n, r = 1, 2, 3, 4, 5, 6, 7, 8 and (a = 3.5, b = 0.50).

n r 1 2 3 4 5 6 7 8
1 Mean 1.2857

Variance 0.1050
2 Mean 1.1339 1.4376

Variance 0.0205 0.1433
3 Mean 1.0873 1.2271 1.5428

Variance 0.0085 0.0317 0.1659
4 Mean 1.0647 1.1549 1.2992 1.6240

Variance 0.0045 0.0138 0.0392 0.1817
5 Mean 1.0514 1.1179 1.2105 1.3583 1.6904

Variance 0.0028 0.0077 0.0178 0.0448 0.1939
6 Mean 1.0427 1.0952 1.1632 1.2578 1.4087 1.7468

Variance 0.0019 0.0049 0.0102 0.0208 0.0492 0.2038
7 Mean 1.0364 1.0799 1.1335 1.2028 1.2990 1.4525 1.7958

Variance 0.0014 0.0034 0.0066 0.0121 0.0233 0.0528 0.2121
8 Mean 1.0318 1.0689 1.1131 1.1676 1.2379 1.3357 1.4914 1.8393

Variance 0.0011 0.0025 0.0047 0.0080 0.0139 0.0255 0.0559 0.2193
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Table 3. Means and variances of gos for the Benktander Type II distribution for

n, r = 1, 2, 3, 4, 5, 6, 7, 8 and (m = 1, a = 3.5, b = 0.50, k = 2).

n r 1 2 3 4 5 6 7 8
1 Mean 1.1339

Variance 0.0205
2 Mean 1.0647 1.2030

Variance 0.0045 0.0269
3 Mean 1.0427 1.1088 1.2501

Variance 0.0019 0.0067 0.0303
4 Mean 1.0318 1.0752 1.1425 1.2860

Variance 0.0010 0.0031 0.0081 0.0326
5 Mean 1.0252 1.0576 1.1016 1.1698 1.3151

Variance 0.0007 0.0018 0.0039 0.0091 0.0343
6 Mean 1.0211 1.0467 1.0793 1.1238 1.1927 1.3395

Variance 0.0005 0.0012 0.0023 0.0045 0.0098 0.0355
7 Mean 1.0180 1.0393 1.0652 1.0982 1.1430 1.2126 1.3607

Variance 0.0003 0.0008 0.0015 0.0027 0.0049 0.0104 0.0366
8 Mean 1.0158 1.0340 1.0554 1.0816 1.1148 1.1600 1.2301 1.3793

Variance 0.0003 0.0006 0.0011 0.0018 0.0030 0.0053 0.0109 0.0375

Table 4. Skewness and kurtosis of order statistics for the Benktander Type II distribution for

n, r = 1, 2, 3, 4, 5, 6, 7, 8 and (a = 3.5, b = 0.50).

n r 1 2 3 4 5 6 7 8
1 Skewness 7.8166

Kurtosis 16.8972
2 Skewness 5.8775 5.5075

Kurtosis 12.6863 13.1486
3 Skewness 5.0354 3.5384 4.7246

Kurtosis 12.1118 9.0649 11.8752
4 Skewness 4.8189 2.9561 2.7666 4.3235

Kurtosis 11.4121 7.9099 7.8807 11.2168
5 Skewness 4.4698 2.7061 2.2052 2.3961 4.0716

Kurtosis 12.0599 7.2032 6.8514 7.2554 10.8087
6 Skewness 4.6740 2.8312 1.9604 1.8343 2.1655 3.9046

Kurtosis 9.7888 4.4969 6.3519 6.2733 6.9063 10.5265
7 Skewness 2.3346 2.5359 1.9475 1.6000 1.6009 2.0022 3.7813

Kurtosis 44.1090 6.4948 5.4708 5.8381 5.9768 6.6998 10.3127
8 Skewness 3.9840 2.9446 1.6847 1.4361 1.3830 1.4716 1.8840 3.6842

Kurtosis 12.7204 -0.5053 6.3553 5.5329 5.4389 5.6150 6.5361 10.1511
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Table 5. Skewness and kurtosis of gos for the Benktander Type II distribution for

n, r = 1, 2, 3, 4, 5, 6, 7, 8 and (m = 1, a = 3.5, b = 0.50, k = 2).

n r 1 2 3 4 5 6 7 8
1 Skewness 5.8775

Kurtosis 12.6863
2 Skewness 4.8189 3.9922

Kurtosis 11.4121 10.0422
3 Skewness 4.6740 2.9686 3.4100

Kurtosis 9.7888 7.0865 9.1344
4 Skewness 3.9840 2.5834 2.2330 3.1200

Kurtosis 12.7204 5.5116 6.5111 8.6680
5 Skewness 1.7728 1.2236 2.1157 1.9273 2.9181

Kurtosis 55.4255 26.9262 3.6147 5.8489 8.4801
6 Skewness 20.3629 2.1687 1.0756 1.5376 1.6705 2.8113

Kurtosis -226.4224 7.2306 14.6819 5.7002 5.9964 8.2744
7 Skewness 20.6398 0.3230 1.6518 1.3772 1.3967 1.6562 2.7370

Kurtosis -215.0837 57.3344 5.8316 6.6163 4.8146 4.9989 8.1211
8 Skewness 2.2052 8.3472 2.0395 1.2176 1.2116 1.2247 1.5209 2.6720

Kurtosis 291.3899 -119.0091 -0.4338 7.8961 4.9679 4.6527 5.3703 8.0279

Table 6. Moments and characteristics of the Benktander Type II distribution based on record data.

a = 30, b = 0.25

r E(U) E(U2) E(U3) E(U4) V ariance Skewness Kurtosis

1 1.0333 1.0690 1.1071 1.1480 0.0012 4.6615 9.1566
2 1.0675 1.1420 1.2245 1.3162 0.0025 2.4449 7.4699
3 1.1025 1.2194 1.3532 1.5071 0.0039 1.7578 6.0281
4 1.1384 1.3012 1.4940 1.7235 0.0054 1.4162 5.2448
5 1.1751 1.3879 1.6481 1.9686 0.0071 1.1825 5.1453
6 1.2127 1.4795 1.8166 2.2458 0.0089 1.0519 4.7753
7 1.2512 1.5763 2.0006 2.5590 0.0109 0.9502 4.6675
8 1.2906 1.6786 2.2015 2.9126 0.0131 0.8791 4.5196
9 1.3309 1.7867 2.4206 3.3112 0.0154 0.8216 4.4019
10 1.3722 1.9008 2.6594 3.7602 0.0179 0.7728 4.3641
1 1.0286 1.0588 1.0908 1.1248 0.0008 3.9782 15.0823
2 1.0576 1.1201 1.1884 1.2629 0.0017 2.1466 8.2071
3 1.0869 1.1841 1.2929 1.4154 0.0027 1.5980 5.0840
4 1.1167 1.2507 1.4050 1.5835 0.0037 1.2351 4.5556
5 1.1469 1.3200 1.5250 1.7686 0.0047 1.0062 4.5738
6 1.1775 1.3922 1.6533 1.9722 0.0058 0.8610 4.4298
7 1.2085 1.4673 1.7903 2.1958 0.0069 0.7695 4.1793
8 1.2399 1.5453 1.9366 2.4409 0.0081 0.6843 4.1908
9 1.2716 1.6264 2.0927 2.7095 0.0093 0.6319 4.0245
10 1.3038 1.7106 2.2589 3.0033 0.0106 0.5839 3.9486
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Table 6. (Continued)

a = 40, b = 0.75

r E(U) E(U2) E(U3) E(U4) V ariance Skewness Kurtosis

1 1.0250 1.0513 1.0789 1.1079 0.0006 4.0121 10.0967
2 1.0502 1.1041 1.1622 1.2250 0.0013 2.0073 7.4807
3 1.0755 1.1586 1.2503 1.3517 0.0020 1.3871 5.4539
4 1.1009 1.2146 1.3431 1.4887 0.0026 1.0409 5.4705
5 1.1265 1.2724 1.4410 1.6366 0.0033 0.8596 4.7858
6 1.1523 1.3317 1.5440 1.7960 0.0040 0.7396 4.2586
7 1.1782 1.3928 1.6524 1.9676 0.0048 0.6544 3.9173
8 1.2042 1.4556 1.7663 2.1521 0.0055 0.5615 4.1696
9 1.2304 1.5201 1.8860 2.3502 0.0062 0.5139 3.9095
10 1.2567 1.5863 2.0115 2.5627 0.0070 0.4680 3.8344

2.1. Recursive Formulas for Sigle Moment

Theorem 2.2 Let U be a continuous random variable follows the Benktander Type II distribution as given in (4).
For 1 ≤ r < n, p = 1, 2, . . . the following recurrence relations is satisfied

E [Up(r, n,m, k)]

= γr

{
a

p+ b
E
[
Up+b(r, n,m, k)

]
+

1− b

p
E [Up(r, n,m, k)]

}
− (γr + 1)Cr−1

C
(k+1,m)
r−1{

a

p+ b
E
[
Up+b(r − 1, n,m, k + 1)

]
+

1− b

p
E [Up(r − 1, n,m, k + 1)]

}
.

(18)

Proof: We have, from (9)

E [Up(r, n,m, k)] =
Cr−1

(r − 1)!

∫ ∞

1

up[F̄ (u)]γr−1f(u)gr−1
m (F (u))du.

Using (6), we get

E [Up(r, n,m, k)] =
aCr−1

(r − 1)!
I1(u) +

(1− b)Cr−1

(r − 1)!
I2(u). (19)

where

I1(u) =

∫ ∞

1

up+b−1[F̄ (u)]γrgr−1
m (F (u))du, I2(u) =

∫ ∞

1

up−1[F̄ (u)]γrgr−1
m (F (u))du.

When we integrate in parts, using up+b−1 for integrating and the remaning terms for differentiation, we get

I1(u) =
γr

p+ b

∫ ∞

1

up+b[F̄ (u)]γr−1f(u)gr−1
m (F (u))du

− r − 1

p+ b

∫ ∞

1

up+b[F̄ (u)]γr+mf(u)gr−2
m (F (u))du.

Similarly,

I2(u) =
γr
p

∫ ∞

1

up[F̄ (u)]γr−1f(u)gr−1
m (F (u))du− r − 1

p

∫ ∞

1

up[F̄ (u)]γr+mf(u)gr−2
m (F (u))du.
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Substituting I1(u), I2(u) in (19), we get

E [Up(r, n,m, k)] =
aCr−1γr

(p+ b)(r − 1)!

∫ ∞

1

up+b[F̄ (u)]γr−1f(u)gr−1
m (F (u))du

− aCr−1(r − 1)

(p+ b)(r − 1)!

∫ ∞

1

up+b[F̄ (u)]γr+mf(u)gr−2
m (F (u))du

+
(1− b)Cr−1γr

p(r − 1)!

∫ ∞

1

up[F̄ (u)]γr−1f(u)gr−1
m (F (u))du

− (1− b)Cr−1(r − 1)

p(r − 1)!

∫ ∞

1

up[F̄ (u)]γr+mf(u)gr−2
m (F (u))du.

(20)

After simplification (20), we get (18).

Special Cases
a. Putting m = 0 and k = 1 in equation (18) the recurrence relation is reduces to the recurrence relation for single
moment of order statistics.

E [Up
r:n] =(n− r + 1)

{
a

p+ b
E
[
Up+b
r:n

]
+

1− b

p
E [Up

r:n]

}
− (n− r + 1)(n− r + 2)

n+ 1{
a

p+ b
E
[
Up+b
r−1:n+1

]
+

1− b

p
E
[
Up
r−1:n+1

]}
.

b. The recurrence relation provided in equation (18) becomes the recurrence relation for single moment of the
k − th record values when m = −1

E
[
(U

(k)
U ′

(r)
)p
]
=k

{
a

p+ b
E
[
(U

(k)
U ′

(r)
)p+b

]
+

1− b

p
E
[
(U

(k)
U ′

(r)
)p
]}

− kr

(k + 1)r−1{
a

p+ b
E
[
(U

(k+1)
U ′

(r)
)p+b

]
+

1− b

p
E
[
(U

(k+1)
U ′

(r)
)p
]}

.

2.2. Recursive Formulas for Product Moments

Theorem 3.1.1 Let U be a continuous random variable follows Benktander Type II distribution as given in (4). For
1 ≤ r < s ≤ n− 1 and p, j = 1, 2, . . . the following recurrence relation satisfied

E
[
Up(r, n,m, k)U j(s, n,m, k)

]
= γs

{
a

b+ j
E
[
Up(r, n,m, k)U b+j(s, n,m, k)

]
+

1− b

j

E
[
Up(r, n,m, k)U j(s, n,m, k)

]}
− (γs + 1)Cs−1

C
(k+1,m)
s−1{

a

b+ j
E
[
Up(r − 1, n,m, k + 1)U b+j(r − 1, n,m, k + 1)

]
+
1− b

j
E
[
Up(r − 1, n,m, k + 1)U j(r − 1, n,m, k + 1)

]}
.

(21)

Proof: From (3), we have

E
[
Up(r, n,m, k)U j(s, n,m, k)

]
=

Cs−1

(r − 1)!(s− r − 1)!

∫ ∞

1

∫ ∞

u

upvj [F̄ (u)]mgr−1
m (F (u))

× [hm(F (v))− hm(F (u))]
s−r−1

[F̄ (v)]γs−1f(u)f(v)dvdu.

(22)
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Using (6), we get
E
[
Up(r, n,m, k)U j(s, n,m, k)

]
=

aCs−1

(r − 1)!(s− r − 1)!

∫ ∞

1

up[F̄ (u)]mf(u)gr−1
m (F (u))I1(v)du

+
(1− b)Cs−1

(r − 1)!(s− r − 1)!

∫ ∞

1

up[F̄ (u)]mf(u)gr−1
m (F (u))I2(v)du.

(23)

where

I1(v) =

∫ ∞

u

vb+j−1 [hm(F (v))− hm(F (u))]
s−r−1

[F̄ (v)]γsdv

and

I2(v) =

∫ ∞

u

vj−1 [hm(F (v))− hm(F (u))]
s−r−1

[F̄ (v)]γsdv.

Integrating by parts treating vb+j−1 for integration and rest for differentiation, we get

I1(v) =
γs

b+ j

∫ ∞

u

vb+j [hm(F (v))− hm(F (u))]
s−r−1

[F̄ (v)]γs−1f(v)dv − (s− r − 1)

b+ j

×
∫ ∞

u

vb+j [hm(F (v))− hm(F (u))]
s−r−2

[F̄ (v)]γs+mf(v)dv.

Similarly,

I2(v) =
γs
j

∫ ∞

u

vj [hm(F (v))− hm(F (u))]
s−r−1

[F̄ (v)]γs−1f(v)dv − (s− r − 1)

j

×
∫ ∞

u

vj [hm(F (v))− hm(F (u))]
s−r−1

[F̄ (v)]γs+mf(v)dv.

Substituting I1(v) and I2(v) in (23), we get

E
[
Up(r, n,m, k)U j(s, n,m, k)

]
=

aCs−1γs
(b+ j)(r − 1)!(s− r − 1)!

∫ ∞

1

∫ ∞

u

upvb+j [F̄ (u)]mgr−1
m (F (u))

× [hm(F (v))− hm(F (u))]
s−r−1

[F̄ (v)]γs−1f(u)f(u)dvdu

− aCs−1(s− r − 1)

(b+ j)(r − 1)!(s− r − 1)!

∫ ∞

1

∫ ∞

u

upvb+j [F̄ (u)]mgr−1
m (F (u))

× [hm(F (v))− hm(F (u))]
s−r−2

[F̄ (v)]γs+mf(u)f(v)dvdu

+
(1− b)Cs−1γs

j(r − 1)!(s− r − 1)!

∫ ∞

1

∫ ∞

u

upvj [F̄ (u)]mgr−1
m (F (u))

× [hm(F (v))− hm(F (u))]
s−r−1

[F̄ (v)]γs−1f(u)f(v)dvdu

− (1− b)Cs−1γs
j(r − 1)!(s− r − 1)!

∫ ∞

1

∫ ∞

u

upvj [F̄ (u)]mgr−1
m (F (u))

× [hm(F (v))− hm(F (u))]
s−r−2

[F̄ (v)]γs+mf(u)f(v)dvdu.

(24)

After simplification (24), we get (21).

Stat., Optim. Inf. Comput. Vol. 13, March 2025



1312 MOMENTS AND INFERENCES BASED ON GENERALIZED ORDER STATISTICS

Special cases:
a. The derivation of the recurrence relation for product moments of order statistics is achieved by establishing
m = 0 and k = 1 in equation (21) instead

E
[
Up
r:nU

j
s:n

]
= (n− s+ 1)

{
a

b+ j
E
[
Up
r:nU

b+j
s:n

]
+

1− b

j
E
[
Up
r:nU

j
s:n

]}
− (n− s+ 1)(n− s+ 2)

n+ 1

×
{

a

b+ j
E
[
Up
r:n+1U

b+j
s−1:n+1

]
+

1− b

j
E
[
Up
r:n+1U

j
s−1:n+1

]}
.

b. Recurrence relation described in (21) is reduces to recurrence relation for product moments of k − th record
values when m = −1 is used

E
[
(U

(k)
U ′

(r)
)p(U

(k)
U ′

(s)
)j
]

= k

{
a

b+ j
E
[
(U

(k)
U ′

(r)
)p(U

(k)
U ′

(s)
)b+j

]
+

1− b

j
E
[
(U

(k)
U ′

(r)
)p(U

(k)
U ′

(s)
)j
]}

− ks

(k + 1)s−1

×
{

a

b+ j
E
[
(U

(k+1)
U ′

(r)
)p(U

(k+1)
U ′

(s−1)
)b+j

]
+

1− b

j
E
[
(U

(k+1)
U ′

(r)
)p(U

(k+1)
U ′

(s−1)
)j
]}

.

3. Characterization

Theorem 4.1 Let U be a continuous random variable as given in (4) and (5) then the following relation is satisfied

E [Up(r, n,m, k)]

= γr

{
a

p+ b
E
[
Up+b(r, n,m, k)

]
+

1− b

p
E [Up(r, n,m, k)]

}
− (γr + 1)Cr−1

C
(k+1,m)
r−1{

a

p+ b
E
[
Up+b(r − 1, n,m, k + 1)

]
+

1− b

p
E [Up(r − 1, n,m, k + 1)]

}
,

(25)

If and only if

F (u) = 1− U b−1e
a(1−ub)

b , u ≥ 1, a > 0, 0 < b ≤ 1.

Proof: From Theorem 2.1, the necessary part immediately follows. Now, if relation in (25) is satisfied, then using
(2) in (25), we get

Cr−1

(r − 1)!

∫ ∞

1

up[F̄ (u)]γr−1f(u)gr−1
m (F (u))du

=
aCr−1γr

(p+ b)(r − 1)!

∫ ∞

1

up+b[F̄ (u)]γr−1f(u)gr−1
m (F (u))du

− aCr−1(r − 1)

(p+ b)(r − 1)!

∫ ∞

1

up+b[F̄ (u)]γr+mf(u)gr−2
m (F (u))du

+
(1− b)Cr−1γr

p(r − 1)!

∫ ∞

1

up[F̄ (u)]γr−1f(u)gr−1
m (F (u))du

− (1− b)Cr−1(r − 1)

p(r − 1)!

∫ ∞

1

up[F̄ (u)]γr+mf(u)gr−2
m (F (u))du.

(26)
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Equation (26) can be written as

Cr−1

(r − 1)!

∫ ∞

1

up[F̄ (u)]γr−1f(u)gr−1
m (F (u))du

=
aCr−1

(p+ b)(r − 1)!

∫ ∞

1

up+bgr−1
m (F (u))

(
− d

du
[F̄ (u)]γr

)
du

− aCr−1(r − 1)

(p+ b)(r − 1)!

∫ ∞

1

up+b[F̄ (u)]γr+mf(u)gr−2
m (F (u))du

+
(1− b)Cr−1

p(r − 1)!

∫ ∞

1

upgr−1
m (F (u))

(
− d

du
[F̄ (u)]γr

)
du

− (1− b)Cr−1(r − 1)

p(r − 1)!

∫ ∞

1

up[F̄ (u)]γr+mf(u)gr−2
m (F (u))du.

(27)

Now, integrating first and third term of R.H.S of (27) and after simplification, we get

Cr−1

(r − 1)!

∫ ∞

1

up[F̄ (u)]γr−1gr−1
m (F (u))

(
f(u)− aub−1F (u)− (1− b)F (u)

u

)
du = 0. (28)

Subsequently, employing a generalized form of the Muntz-Szasz theorem [31] in (28), we get

f(u)− aub−1F (u)− (1− b)F (u)

u
= 0

f(u) = aub−1F (u) +
(1− b)F (u)

u

f(u)

F (u)
=

aub − b+ 1

u

which prove that,

F (u) = 1− ub−1e
a(1−ub)

b , u ≥ 1, a > 0, 0 < b ≤ 1.

4. Parameter Estimation

4.1. MLEs based on Generalized Order Statistics

In this segment, we derive maximum likelihood estimators (MLEs) for the parameters that are not known. Let
U(1, n,m, k), U(2, n,m, k), . . . , U(n, n,m, k) be the m-gos. In view of (1), the likelihood function is expressed as

L(a, b/u) =k

(
n−1∏
j=1

γj

)(
n−1∏
i=1

(
ub−1
i e

a(1−ub
i )

b

)m

e
a(1−ub

i )

b ub−2
i (aub

i − b+ 1)

)

×

((
ub−1
n e

a(1−ub
n)

b

)k−1

e
a(1−ub

n)

b ub−2
n (aub

n − b+ 1)

)
After simplification, applying a logarithmic transformation to both sides, the resulting expression is

lnL(a, b/u) = ln k +

n−1∑
j=1

ln γj + (m(b− 1) + b− 2)

n−1∑
i=1

lnui +
a(m+ 1)(n− 1)

b
− a(m+ 1)

b

n−1∑
i=1

ub
i

+

n∑
i=1

ln(aub
i − b+ 1) + (bk − k − 1) lnun +

ka

b
− kaub

n

b
.

(29)
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∂ lnL(a, b/u)

∂a
=
(m+ 1)(n− 1)

b
− (m+ 1)

b

n−1∑
i=1

ub
i +

n∑
i=1

(
ub
i

(aub
i − b+ 1)

)
+

k

b
− kub

n

b
. (30)

∂ lnL(a, b/u)

∂b
=(m+ 1)

n−1∑
i=1

lnui −
a(m+ 1)(n− 1)

b2
+

a(m+ 1)

b2

n−1∑
i=1

ub
i −

a(m+ 1)

b

n−1∑
i=1

ub
i lnui

+ a

n∑
i=1

(
ub
i lnui − 1

(aub
i − b+ 1)

)
+ k lnun − ka

b2
+

kaub
n

b2
− ka

b
ub
n lnun.

(31)

Special Cases
a. For m = 0 and k = 1 the gos reduced to the order statistics. Hence, the equations (29 - 31) can be employed to
compute the MLEs of the parameters within the order statistics framework, expressed as

lnL(a, b/u) =

n−1∑
j=1

ln(n− j + 1) + (b− 2)

n−1∑
i=1

lnui +
a(n− 1)

b
− a

b

n−1∑
i=1

ub
i

+

n∑
i=1

ln(aub
i − b+ 1) + (b− 2)lnun +

a

b
− aub

n

b
.

∂ lnL(a, b/u)

∂a
=

n− 1

b
− 1

b

n−1∑
i=1

ub
i +

n∑
i=1

(
ub
i

(aub
i − b+ 1)

)
+

1

b
− ub

n

b
.

∂ lnL(a, b/u)

∂b
=

n−1∑
i=1

lnui −
a(n− 1)

b2
+

a

b2

n−1∑
i=1

ub
i −

a

b

n−1∑
i=1

ub
i lnui

+

n∑
i=1

(
aub

i lnui − 1

(aub
i − b+ 1)

)
+ lnun − a

b2
+

aub
n

b2
− a

b
ub
n lnun.

b. For m = −1 and k = 1 the gos reduced to k-th upper record values.Therefore, the equations (29 - 31) find
applicability in deriving the MLEs of the parameters through the utilization of upper record values.

lnL(a, b/u) = −
n−1∑
i=1

lnui +

n∑
i=1

ln(aub
i − b+ 1) + (b− 1) lnun +

a

b
− aub

n

b
.

∂ lnL(a, b/u)

∂a
=

n∑
i=1

(
ub
i

(aub
i − b+ 1)

)
+

1

b
− ub

n

b
.

∂ lnL(a, b/u)

∂b
=

n∑
i=1

(
aub

i lnui − 1

(aub
i − b+ 1)

)
+ lnun − a

b2
+

aub
n

b2
− a

b
ub
n lnun.

5. Simulation Study

This section presents a simulation study for all the mathematical findings derived in the preceding section.
Numerical computations of mathematical outcomes are documented for specific cases of gos like order statistics
and record values. To compute numerical outcomes for diverse sample sizes of order statistics and record values
across various parameter configurations.

We calculate and display the moments, variances, skewness, and kurtosis of gos, order statistics, and record values
in Table 2, 3, 4, 5 and 6 respectively. From Table 2 and 3 it can be seen clearly that for large sample size the
variance of distribution is decreasing.

Stat., Optim. Inf. Comput. Vol. 13, March 2025



Z. ANWAR, Z. ALI, M. FAIZAN, I. KHAN 1315

Again, it can be seen from Table 6, variance for large sample size, is increasing in case of record data. The contents
of Table 7 and 8 pertain to the maximum likelihood (M.L.) estimates of unknown parameters in the context of the
Benktander Type II distribution. Specifically, these tables provide information on the estimators employed for the
unknown parameters are evaluated in terms of their average estimate (A.E.), average bias (A.B.) and mean squared
error (M.S.E.). The algorithm utilized to generate the data in Table 7 and 8 are described as follows.
1) We produce a random sample of size ”n” from the Benktander Type II distribution, using a predefined value of
an unknown parameter (referred to as ”a”).
2) The maximum likelihood estimate, denoted as â, for the unknown parameter a is computed using the random
sample generated in step (1) and employing the method described in Section 5.
3) The aforementioned process is iterated 1000 times, resulting in 1000 values of â, denoted as â1, â2, â3,. . . , ˆa1000.
4) The obtained values of âi, where i takes values from 1 to 1000, are utilized to calculate the average estimate
(A.E.), average bias (A.B.), and mean squared error (M.S.E.) using the following equations.

A.E. =
1

1000

1000∑
i=1

âi, A.B. =
1

1000

1000∑
i=1

(âi − a), M.S.E. =
1

1000

1000∑
i=1

(âi − a)2.

where âi is the M.L. estimate of a at i-th repetition.

Table 7 reports A.E., A.B. and M.S.E. of M.L. estimates of unknown parameters based on order statistics
for (a, b) ∈ {(1.5, 0.50), (2.0, 0.5), (2.5, 0.5)} and n ∈ {15, 30, 45, 60, 75, 90, 105, 120, 135, 150}. Table 8
reports A.E., A.B. and M.S.E. of M.L. estimates of unknown parameters based on record data for (a, b) ∈
{(1.0, 0.5), (0.5, 0.5), (0.5, 0.8)} and n ∈ {3, 4, 5, 6, 7, 8}.

Table 7. Estimates of parameters of the Benktander Type II distribution based on order statistics.

n a b

A.E. A.B. M.S.E. A.E. A.B. M.S.E.

(a, b) = (1.5, 0.5)

15 1.68554 0.19904 0.40757 0.66840 0.17290 0.16522

30 1.59092 0.11342 0.17213 0.61949 0.12699 0.13039

45 1.53988 0.07438 0.09814 0.57812 0.08962 0.10673

60 1.50898 0.05848 0.07156 0.56348 0.07998 0.08953

75 1.49075 0.04775 0.05502 0.56263 0.08163 0.07994

90 1.47001 0.03901 0.04393 0.55340 0.07640 0.06720

105 1.45698 0.03648 0.03715 0.54328 0.06978 0.06010

120 1.45382 0.03482 0.03224 0.53692 0.06392 0.05337

135 1.43852 0.03152 0.02706 0.53052 0.06152 0.04934

150 1.42181 0.02831 0.02320 0.51681 0.05231 0.04344
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Table 7. (Continued)

n a b
A.E. A.B. M.S.E. A.E. A.B. M.S.E.

(a, b) = (2.0, 0.5)

15 2.23678 0.23878 0.65196 0.67472 0.17522 0.17921
30 2.13305 0.13505 0.27871 0.63079 0.13129 0.14935
45 2.08128 0.08728 0.16158 0.58888 0.09038 0.12824
60 2.05981 0.06581 0.11855 0.57522 0.07672 0.11387
75 2.04806 0.05206 0.09208 0.57664 0.07764 0.10510
90 2.03440 0.04040 0.07448 0.57139 0.07289 0.09323

105 2.02870 0.03670 0.06306 0.56326 0.06526 0.08525
120 2.02914 0.03514 0.05466 0.55878 0.06028 0.07669
135 2.02189 0.02989 0.04662 0.55601 0.05801 0.07215
150 2.01318 0.02518 0.04052 0.54446 0.04746 0.06437

(a, b) = (2.5, 0.5)

15 2.77643 0.28143 0.94524 0.67814 0.17914 0.18735
30 2.65838 0.16088 0.40500 0.63655 0.13705 0.16156
45 2.60226 0.10476 0.23663 0.59334 0.09384 0.14236
60 2.57624 0.07874 0.17312 0.58021 0.08071 0.12925
75 2.55934 0.06184 0.13479 0.58165 0.08215 0.12066
90 2.54791 0.04791 0.10909 0.57771 0.07771 0.11093

105 2.54061 0.04311 0.09244 0.57006 0.07056 0.10250
120 2.54108 0.04108 0.08023 0.56535 0.06535 0.09287
135 2.53412 0.03412 0.06887 0.56377 0.06377 0.08907
150 2.52121 0.02871 0.05987 0.55165 0.05315 0.08005

Table 8. Estimates of parameters of the Benktander Type II distribution based on record values.

n a b
A.E. A.B. M.S.E. A.E. A.B. M.S.E.

(a, b) = (1.0, 0.50)
3 1.59423 3.41775 0.59424 0.83557 0.21125 0.33557
4 1.29301 1.69618 0.29301 0.77653 0.19174 0.27653
5 1.16439 0.88039 0.16439 0.74338 0.17207 0.24338
6 1.09117 0.63812 0.09118 0.70984 0.15481 0.20984
7 1.04939 0.53379 0.04940 0.68195 0.14328 0.18195
8 1.04050 0.50910 0.04050 0.64193 0.13354 0.14193

(a, b) = (0.50, 0.50)
3 0.86711 1.35401 0.36712 0.82396 0.19666 0.32396
4 0.66751 0.63383 0.16752 0.76364 0.17339 0.26364
5 0.58929 0.31196 0.08929 0.72679 0.15142 0.22679
6 0.55193 0.22918 0.05193 0.69508 0.13112 0.19508
7 0.53157 0.19604 0.03157 0.66204 0.11854 0.16204
8 0.53397 0.19266 0.03397 0.62439 0.10708 0.12439

(a, b) = (0.50, 0.80)
3 0.77791 0.70439 0.27791 0.87590 0.0738 0.07590
4 0.66963 0.36367 0.16964 0.84786 0.07712 0.04786
5 0.63124 0.21564 0.13124 0.84571 0.06618 0.04571
6 0.60676 0.17309 0.10676 0.84244 0.06101 0.04244
7 0.59274 0.15562 0.09274 0.83199 0.05917 0.03199
8 0.58574 0.15192 0.08574 0.82053 0.0567 0.02053
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6. Results and Discussion

Our study applied gos to thoroughly investigate the moment properties of the Benktander Type II distribution,
providing a comprehensive analysis through various statistical measures and parameters. We systematically
examined these properties across different sampling methods, as detailed in a series of tables that captured essential
statistical characteristics. Table 1 laid the groundwork by presenting the different variants of gos, offering a
foundational understanding for the subsequent analyses. Table 2 and 3 focused on the mean and variance of order
statistics and gos for the Benktander Type II distribution, respectively, using sample sizes (n) and ranks (r) ranging
from 1 to 8, with parameters a = 3.5 and b = 0.50. Additionally, Table 3 incorporated gos-specific parameters
m = 1 and k = 2. A key observation from these tables was the decreasing trend in variance with increasing sample
size, which aligns with statistical theory and indicates that larger samples yield more precise parameter estimates,
thereby enhancing the reliability of our findings. The analysis was extended to higher-order moments in Table 4
and 5, which presented skewness and kurtosis for order statistics and gos, respectively. These tables utilized the
same parameter values and sample sizes as Table 2 and 3, providing a detailed view of the distribution’s shape
characteristics across different sample sizes and ranks. Table 6 shifted the focus to the moments and characteristics
of the Benktander Type II distribution based on record data. Interestingly, we observed an increasing trend in
variance with larger sample sizes in this context, contrasting with the decreasing variance observed for order
statistics and gos. This divergence underscores the unique properties of record data and highlights the importance
of considering different sampling methods when analyzing distributional properties. Finally, Table 7 provided a
detailed evaluation of the MLEs of the unknown parameters a and b for the Benktander Type II distribution based
on order statistics and record values, respectively. We assessed the estimator’s performance in terms of their A.E.,
A.B., and M.S.E..

The observed trends in variance decreasing for order statistics, and increasing for record data provide valuable
insights into the behavior of the Benktander Type II distribution under various sampling conditions. The results
presented in Table 7 offer practical tools for researchers and practitioners by enabling informed decisions regarding
the most suitable estimation approach for specific applications. This study contributes to a deeper understanding
of the moment properties of the Benktander Type II distribution and establishes a robust framework for parameter
estimation using diverse sampling techniques. Future research could explore the application of these findings in
real-world scenarios, such as risk modeling in insurance or finance, where the Benktander Type II distribution may
prove particularly useful.

7. Conclusions

In this research paper, we have successfully derived explicit expressions for single moments for gos. Specifically,
we have obtained these expressions for the general case as well as for special cases involving order statistics
and record values. Furthermore, we have developed recurrence relations for calculating higher-order moments
of both single and product moments, and these recurrence relations have been explored in the context of order
statistics and record values as well. Additionally, we have presented the mathematical formulation required to
determine the maximum likelihood estimates of the unknown parameters a and b for the aforementioned cases of
order statistics and record values. For the calculation of moments, we employed MATLAB, and for the maximum
likelihood estimation, we used the nleqslv package in R. These tools significantly enhanced the precision and
robustness of our parameter estimates. Furthermore, we have simplified this formulation for the special cases
of interest. Moreover, the paper encompasses diverse findings related to the characterization of the distribution.
Notably, we have conducted a comprehensive simulation study to calculate the maximum likelihood estimates,
biases, mean squared errors of parameters, and moments of the distribution.This study was performed for different
sample sizes and parameter choices. Furthermore, there is an observation that as the sample size increases, the
biases and mean squared errors of parameters decrease.
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7.1. Contributions

Overall, the results presented in this paper contribute to a deeper understanding of the moment properties and
estimation techniques for the Benktander Type II distribution within the context of gos, order statistics, and record
values. These findings have important implications for the statistical analysis and modeling of distributions with
similar characteristics, providing a robust foundation for future research and applications.
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