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A weighted full-Newton step primal-dual interior
point algorithm for convex quadratic optimization
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Abstract In this paper, a new weighted short-step primal-dual interior point algorithm
for convex quadratic optimization (CQO) problems is presented. The algorithm uses at
each interior point iteration only full-Newton steps and the strategy of the central path to
obtain an ϵ-approximate solution of CQO. This algorithm yields the best currently well-
known theoretical iteration bound, namely, O(

√
n log n

ϵ ) which is as good as the bound
for the linear optimization analogue.
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1. Introduction

Consider the quadratic optimization (QO) problem in standard format:

(P ) min
x

{
cTx+

1

2
xTQx : Ax = b, x ≥ 0

}
and its dual problem

(D) max
x, y, z

{
bT y − 1

2
xTQx : AT y + z −Qx = c, z ≥ 0

}
,
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22 M. ACHACHE

whereQ is a given (n× n) real symmetric matrix,A is a given (m× n) real matrix
with rank (A) = m, c ∈ Rn, b ∈ Rm, x ∈ Rn, z ∈ Rn and y ∈ Rm.
The QO problems have many important applications in optimization and
mathematical programming problems.

There are a variety of solution approaches for CQO which have been studied
intensively. Among them, the interior-point methods (IPMs) gained more attention
than others methods. Feasible primal-dual path-following methods are the most
attractive methods of IPMs [7, 9]. Their derived algorithms achieved important
results such as polynomial complexity and numerical efficiency. These algorithms
trace approximately the so-called central-path which is a curve that lies in the
feasible region of the considered problem and they reach an optimal solution
of it. However, in practice these methods don’t always find a strictly feasible
centered point to starting their derived algorithms. So, it is worth analyzing other
cases when the starting points are not centered. Thus leads to the concept of
Target-Following IPMs introduced by Jansen et al.,[6] as a generalization of the
classical path-following methods. These methods are based on the observation
that with every algorithm which follows the central-path we associate a target
sequence on the central-path. Weighted path-following methods can be viewed as
a particular case of it. These methods were studied extensively by many authors
[3, 4, 5, 7, 8] for Linear optimization (LO) and linear complementarity problem
(LCP). Recently, Achache and Khebchache [1], introduced a new weighted
method for monotone LCP where the complexity of the corresponding short-step
algorithm is O(

√
n log n

ϵ ). Motivated by their work, we propose a new weighted
primal-dual path-following algorithm for solving CQO. The algorithm uses at each
interior point iteration only weighted full-Newton steps and the strategy of the
central path to get an ϵ−approximate solution of CQO. We prove that the short-
step algorithm has the following iteration bound O(

√
n log n

ϵ ) which is as good as
the bound for LO [3, 7, 8], CQO [1, 3] and LCP [2, 7], analogue. The algorithm has
advantages that no line searches is needed and it can start with a suitable starting
point not necessarily centered.

The rest of the paper is built as follows. In Section 2, the weighted-path and the
search direction are presented. The generic weighted primal-dual path-following
algorithm for CQO is also stated. In Section 3, the analysis of the algorithm and
the iteration bound with short-step method are presented. Finally, a conclusion and
future remarks follow in Section 4.

The notation used in this paper is as follows.Rn denotes the space of n-
dimensional real vectors andRn

++ is the set of all positive vectors of Rn.
Given x, z ∈ Rn

++, their Hadamard product is xz = (x1z1, . . . , xnzn)
T . The

expressions ∥u∥ =
√
uTu and ∥u∥∞ = maxi |ui| denote the Euclidean and

the maximum norms for a vectoru, respectively. Let x, z ∈ Rn
++,

√
x =

(
√
x1, . . . ,

√
xn)

T , x−1 = (x−1
1 , . . . , x−1

n )T and x
z = (x1

z1
, . . . , xn

zn
)T . Let g(x) and

f(x), be two positive real valued functions, then g(x) = O(f(x)) ⇔ g(x) ≤
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kf(x) for some positive constant k. Finally, the vector of all ones and the identity
matrix are denoted by e and I , respectively.

2. The weighted-path and the search direction

Throughout the paper, we make the following assumptions for QO.
Assumption 1. Interior Point Condition (IPC). There exists a triplet of vectors
(x0, y0, z0) such that:

Ax0 = b, x0 > 0, AT y + z0 −Qx0 = c, z0 > 0.

Assumption 2. Positive semidefiniteness. The matrix Q is positive semidefinite,
i.e., for all v ∈ Rn, vTQv ≥ 0.
Finding an approximate solution of (P) and (D) is equivalent to solving the
following system of optimality conditions for (P) and (D): Ax = b, x ≥ 0,

AT y + z −Qx = c, z ≥ 0,
xz = 0.

(1)

The basic idea behind weighted primal-dual interior-point algorithm is to replace
the third equation (complementarity condition) in (1) by the parametrized equation
xz = w with w is a positive vector in Rn. Thus, we consider the following
perturbed system:  Ax = b, x ≥ 0,

AT y + z −Qx = c, z ≥ 0,
xz = w.

(2)

Under Assumption 1 and Assumption 2, the system (2) has a unique solution
denoted by (x(w), y(w), z(w)) for all w > 0 [2]. The set

{(x(w), y(w), z(w)) : w > 0}

is called the weighted-path of problems (P) and (D). If w goes to zero, then
the limit of the weighted-path exists and since the limit point satisfies the
complementarity condition, the limit yields an optimal solution for CQO. This
limiting property of the weighted-path leads to the main idea of the iterative
primal-dual methods for solving (2).

Remark 2.1
If w = µe with µ > 0, then the weighted-path coincides with the classical central-
path.
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Now, we proceed to describe a weighted full-Newton step produced by the
algorithm for a given w > 0. Applying Newton’s method for (2) for a given
feasible point (x, y, z) then the Newton direction (∆x,∆y,∆z) at this point is
the unique solution of the following linear system of equations: A 0 0

−Q AT I
Z 0 X

 ∆x
∆y
∆z

 =

 0
0

w −Xz

 , (3)

where X :=diag(x), Z :=diag(z).
Again under our assumptions and the fact that rank(A) = m, the system (3) has
a unique solution (∆x,∆y,∆z). Hence, a new weighted full-Newton iteration is
constructed according to:

x+ := x+∆x; y+ := y +∆y; and z+ = z +∆z. (4)

To simplify the matters, we define the vectors:

v :=
√
xz and d :=

√
xz−1.

The vector d uses to scale the vectors x and z to the same vector v as

d−1x = dz = v (5)

and as well as for the original directions to the scaling directions:

dx = d−1∆x and dz = d∆z.

It follows that:
x∆z + z∆x = v(dx + dz), (6)

and
dxdz = ∆x∆z = ∆xQ∆x ≥ 0, (7)

since Q is a semidefinite matrix.
Hence, by using (5), (6) and (7), the system (3) becomes: Ā 0 0

−Q̄ ĀT I
I 0 I

 dx
dy
dz

 =

 0
0
pv

 (8)

where
pv = v−1(w − v2) (9)

and Ā = DAD and Q̄ = DQD with D :=diag(d).
In the next sub-section, we describe the generic feasible weighted primal-dual
path-following algorithm to solve CQO.
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2.1. The Algorithm

Similar to LO case, we define for any positive vector v and in view of (9), a norm-
based proximity measure as follows:

δ(v;w) =
∥pv∥

2
√

min(w)
=

∥∥v−1(w − v2)
∥∥

2
√

min(w)
. (10)

One can easily verify that

δ(v;w) = 0 ⇔ v2 = w ⇔ xz = w.

Hence the value δ(v;w) is to measure the distance of a point (x, y, z) to the
weighted-path (x(w), y(w), z(w)).
Let denote another measure σC(w) as follows

σC(w) =
max(w)

min(w)
. (11)

The role of σC(w) is to measure the closeness of w to the central path.
Here,

min(w) = min
i
(wi)

and likewise
max(w) = max

i
(wi).

Note that in (11), σC(w) ≥ 1, with equality if w is on the central-path.

Now we are ready to describe the generic weighted path-following interior-point
algorithm for CQO as follows.

A generic weighted Primal-Dual Path-Following Algorithm for CQO

Input
A threshold parameter 0 < δ < 1( default δ = 1√

2
);

an accuracy parameter ϵ > 0;
a fixed barrier update parameter 0 < θ < 1 (default θ = 1

2
√
nσC(w0)

);

a starting point (x0, y0, z0) and w0 such that δ(x0z0;w0) ≤ 1√
2

;
begin

Set x := x0; y := y0; z := z0;w := w0;
while xT z ≥ ϵ do
begin
w := (1− θ)w;
Solve system (3) to obtain the direction (∆x, ∆y, ∆z);
Update x := x+∆x, y := y +∆y, z := z +∆z;

end
end
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Algorithm 2.1

In the next section, we will show that Algorithm 2.1 is well-defined for the defaults
θ = 1

2
√
nσC(w0)

and δ ≤ 1√
2

and can solve CQO in polynomial-time.

3. Complexity analysis

In the next lemma, we state some useful technical results that will be used later in
the analysis of the algorithm.

Lemma 3.1
Let (dx, dz) be a solution of (8) and suppose w > 0. If δ := δ(v;w). Then, one has

0 ≤ dTx dz ≤ 2δ2 min(w), (12)

and
∥dxdz∥∞ ≤ δ2 min(w) and ∥dxdz∥ ≤

√
2δ2 min(w). (13)

Proof: Since 0 ≤ dTx dz, the statement in (12) follows immediately from the
following equality:

∥dx∥2 + ∥dz∥2 + 2dTx dz = ∥dx + dz∥2 = ∥pv∥2 = 4δ2 min(w).

For (13), (see Lemma C.4 in [7]), since

∥dxdz∥∞ ≤ 1

4
∥pv∥2 and ∥dxdz∥ ≤ 1

2
√
2
∥pv∥2 .

This completes the proof. 2

The following lemma shows that the feasibility of the weighted full-Newton step
under the condition δ := δ(v;w) < 1.

Lemma 3.2
Let (x, z) be a strictly feasible primal-dual point. Then x+ = x+∆x > 0 and
z+ = y +∆z > 0 if and only if w + dxdz > 0.

Proof: For the first statement we have,

x+z+ = (x+∆x)(z +∆z)

= xz + x∆z + z∆x+∆x∆z

= xz + (w − xz) + ∆x∆z

= w +∆x∆z.

Then from equation in (7), we have,

x+z+ = w +∆x∆z

= w + dxdz.
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If the full-Newton step is strictly feasible x+ > 0 and z+ > 0 then x+z+ > 0 and
so w + dxdz > 0.
To show that x+ and z+ are positive, we introduce a step length α ∈ [0, 1] and we
define

xα = x+ α∆x, zα = z + α∆z.

So x0 = x, x1 = x+ and similar notations for z, hence x0z0 = xz > 0. We have,

xαzα = (x+ α∆x)(z + α∆z) = xz + α(x∆z + z∆x) + α2∆x∆z.

Now by using (6), we get

xαzα = xz + α(w − xz) + α2∆x∆z.

We assume that w + dxdz > 0, we deduce that w +∆x∆z > 0 which equivalent
to ∆x∆z > −w. Substitution we obtain

xαzα > xz + α(w − xz)− α2w

= (1− α)xz + (α− α2)w

= (1− α)xz + α(1− α)w.

Since xz and w are positive it follows that xαzα > 0 for α ∈ [0, 1] . Hence, none
of the entries of xα and zα vanish for α ∈ [0, 1] . Since x0 and z0 are positive, this
implies that xα > 0 and zα > 0 for α ∈ [0, 1]. Hence, by continuity argument, the
vectors xα and zα must be positive which proves that x+ and z+ are positive. This
completes the proof. 2

Lemma 3.3
If δ := δ(v;w) < 1. Then, the primal-dual full-Newton step is strictly feasible,i.e.,
x+ > 0 and z+ > 0.

Proof: In Lemma 3.2, we have seen that:

x+z+ > 0 if w + dxdz > 0.

So w + dxdz > 0 holds if

wi + (dx)i(dz)i > 0, for all i.

We have

wi + (dx)i(dz)i ≥ wi − |(dx)i(dz)i| ≥ min(w)− ∥dxdz∥∞ for all i.

Now, according to (13), Lemma 3.1, it follows that:

min(w)− ∥dxdz∥∞ > min(w)(1− δ2).
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Thus w + dxdz > 0 holds if δ < 1. This completes the proof. 2

For convenience, we may write

v+ =
√
x+z+.

Lemma 3.4
If δ < 1. Then ∥∥v−1

+

∥∥ ≤ 1√
min(w)(1− δ2)

.

Proof: It follows straightforwardly from Lemma 3.3 and since

v−2
+ =

e

w + dxdz
.

In the next lemma, we show the influence of a weighted full-Newton step on the
proximity measure.

Lemma 3.5
If δ < 1. Then

δ+ := δ(v+;w) ≤
δ2√

2(1− δ2)
.

Proof: By definition, we have,

δ+ =
1

2
√

min(w)

∥∥v−1
+ (w − v2+)

∥∥
≤ 1

2
√

min(w)

∥∥v−1
+

∥∥∥∥w − v2+
∥∥ .

But w − v2+ = −dxdz and v−1
+ = e√

w+dxdz
, then by Lemmas 3.1 and 3.4, we have,

δ+ =
1

2
√

min(w)

∥∥∥∥ dxdz√
w + dxdz

∥∥∥∥
=

1

2
√

min(w)

∥dxdz∥∥∥√w + dxdz
∥∥

≤ 1

2
√

min(w)

√
2min(w)δ2√

min(w)− ∥dxdz∥∞

≤ 1

2
√

min(w)

√
2min(w)δ2√

min(w)(1− δ2)

≤ δ2√
2(1− δ2)

.

This completes the proof. 2
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Corollary 3.1
If δ < 1. Then δ+ ≤ δ2 which indicates the convergence quadratic of the proximity
when iterations are closed to the path. In addition if δ ≤ 1√

2
, then δ+ ≤ 1

2 .

In the next lemma, we discuss the influence on the proximity measure of
the update barrier parameter w+ = (1− θ)w on the Newton process along the
weighted-path.

Lemma 3.6
If δ(w; v) < 1 and w+ = (1− θ)w where 0 < θ < 1. Then

δ(v+;w+) ≤
θ

2
√
1− θ

√
1− δ2

√
nσC(w) +

1√
2(1− θ)

δ+.

In addition, if δ ≤ 1√
2
, θ = 1

2
√
nσC(w)

and n ≥ 3, then we have,

δ(v+;w+) ≤
1√
2
.

Proof: Let δ(v+;w+) andw+ = (1− θ)w with 0 < θ < 1. Then, by definition
we have,

δ(v+;w+) =
1

2
√

min(w+)

∥∥v−1
+ (w+ − v2+)

∥∥
=

1

2
√
1− θ

√
min(w)

∥∥v−1
+ (w+ − v2+)

∥∥
=

1

2
√
1− θ

√
min(w)

∥∥v−1
+ (w+ − w + w − v2+)

∥∥
≤ 1

2
√
1− θ

√
min(w)

(∥∥v−1
+

∥∥ (∥w+ − w∥+
∥∥w − v2+

∥∥)) .
Now since w − v2+ = −dxdz and w+ − w = −θw and by Lemmas 3.1 and 3.4 and
with the fact that ∥w∥ ≤

√
n ∥w∥∞, we get,

δ(v+;w+) ≤ 1

2
√
1− θmin(w)

√
1− δ2

[∥θw∥+ ∥dxdz∥]

≤ 1

2
√
1− θmin(w)

√
1− δ2

[
∥θw∥+min(w)δ2

]
≤ θ ∥w∥

2
√
1− θmin(w)

√
1− δ2

+
δ2

2
√
1− θ

√
1− δ2

≤
θ
√
n ∥w∥∞

2
√
1− θmin(w)

√
1− δ2

+
δ2

2
√
1− θ

√
1− δ2

=
θ
√
nmax(w)

2
√
1− θmin(w)

√
1− δ2

+
δ2

2
√
1− θ

√
1− δ2

.
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Using Lemma 3.5 and (11), we have,

δ(v+;w+) ≤
θ
√
nσC(w)

2
√
1− θ

√
1− δ2

+
δ+√

2(1− θ)
.

If θ = 1
2
√
nσC(w)

, and observe that σC(w) ≥ 1, and for n ≥ 3, then θ ≤
1
4 . Furthermore, if δ ≤ 1√

2
, then from Corollary 3.1, δ+ ≤ 1

2 . Finally, the above
inequalities yield δ(v+;w+) ≤ 1√

2
. This completes the proof. 2

Note that, in all the iterates produced by Algorithm 2.1, we have σC(w) =
σC(w

0). Thus, we deduce from Lemma 3.6 that for the default θ = 1
2
√
nσC(w0)

,
the conditions x, y > 0 and δ(v+;w+) ≤ 1√

2
are maintained during the

algorithm. Thus, confirms that Algorithm 2.1, is well-defined.
The upper bound of the duality gap after a weighted full-Newton step is presented
in the following lemma.

Lemma 3.7
Let δ := δ (v;w) ≤ 1√

2
and x+ = x+∆x and z+ = z +∆z. Then the duality gap

satisfies:
xT
+z+ ≤ (n+ 1)max(w).

Proof: By Lemma 3.2, we have seen that

x+z+ = w + dxdz.

Hence

eT (x+z+) = eTw + eT dxdz

= eTw + dTx dz.

According to (13), Lemma 3.1 and δ ≤ 1√
2

, we deduce that:

xT
+z+ ≤ eTw + 2δ2 min(w),

≤ eTw +min(w).

Now, since eTw ≤ nmax(w), we get

xT
+z+ ≤ (n+ 1)max(w).

This completes the proof. 2

The following lemma gives an upper bound for the total number of iterations
produced by Algorithm 2.1.
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Lemma 3.8
Let xk+1 and zk+1 be the (k + 1)− th iteration produced by the Algorithm 2.1,
with w := wk.Then

(xk+1)T zk+1 ≤ ϵ

if

k ≥
[
1

θ
log

2nmax(w0)

ϵ

]
.

Proof: By Lemma 3.7, it follows that:

(xk+1)T zk+1 ≤ (n+ 1)max(wk)

with
wk = (1− θ)wk−1 = (1− θ)kw0.

Then, we have

(xk+1)T zk+1 ≤ (1− θ)k(n+ 1)max(w0) ≤ (1− θ)k2nmax(w0),

since n+ 1 ≤ 2n for all n ≥ 1.
Thus the inequality (xk+1)T zk+1 ≤ ϵ is satisfied if

(1− θ)k2nmax(w0) ≤ ϵ.

Now taking logarithms, we may write

k log(1− θ) ≤ log ϵ− log 2nmax(w0)

and since − log(1− θ) ≥ θ for 0 < θ < 1, then the inequality holds if

kθ ≥ log
2nmax(w0)

ϵ
.

This completes the proof. 2

Theorem 3.1
Suppose that x0 and z0 are strictly feasible starting point for CQO, w0 =

x0z0

2max(x0z0) , and such that δ(x0z0;w0) ≤ 1√
2

for n ≥ 3. If θ = 1
2
√
nσC(w0)

then,
Algorithm 2.1, requires at most O

(√
nσC(w

0) log n
ϵ

)
iterations to obtain an ϵ-

approximate solution of CQO.
In particular, if w0 = 1

2e, then Algorithm 2.1, requires at most O
(√

n log n
ϵ

)
iterations which is the currently best known iteration bound for short-update
methods.

Proof: By taking the value of θ and w0 in Lemma 3.8, the result follows
straightforwardly. This completes the proof. 2
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4. Conclusion and future remarks

In this paper, we have presented a weighted full-Newton step path-following
method for CQO. At each interior point iteration, only full-Newton steps are used.
The favorable polynomial complexity bound for the algorithm with short-step
method is deserved, namely, O(

√
n log n

ϵ ) which is as good as LO case. Finally,
the numerical implementation of this algorithm remains to be investigated.
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