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Abstract In this paper, a new weighted short-step primal-dual interior point algorithm
for convex quadratic optimization (CQO) problems is presented. The algorithm uses at
each interior point iteration only full-Newton steps and the strategy of the central path to
obtain an e-approximate solution of CQO. This algorithm yields the best currently well-
known theoretical iteration bound, namely, O(y/nlog 2) which is as good as the bound
for the linear optimization analogue.

Keywords Convex quadratic optimization; weighted interior point methods;
short-step primal-dual algorithms; complexity of algorithms

DOI: 10.19139/so0ic.v2i1.21

1. Introduction

Consider the quadratic optimization (QO) problem in standard format:
. T L
(P) mln{c x+§:1: Qr :Azb,xZO}
and its dual problem

(D) max {bTy leQ:r ATy 4+ 2—-Qr=c,z> O},

T, Y, 2 2
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22 M. ACHACHE

where @ is a given (n x n) real symmetric matrix, A is a given (m X n) real matrix
with rank (4) =m,ce R", b e R™, 2z € R", z€ R"and y € R™.

The QO problems have many important applications in optimization and
mathematical programming problems.

There are a variety of solution approaches for CQO which have been studied
intensively. Among them, the interior-point methods (IPMs) gained more attention
than others methods. Feasible primal-dual path-following methods are the most
attractive methods of IPMs [7, 9]. Their derived algorithms achieved important
results such as polynomial complexity and numerical efficiency. These algorithms
trace approximately the so-called central-path which is a curve that lies in the
feasible region of the considered problem and they reach an optimal solution
of it. However, in practice these methods don’t always find a strictly feasible
centered point to starting their derived algorithms. So, it is worth analyzing other
cases when the starting points are not centered. Thus leads to the concept of
Target-Following IPMs introduced by Jansen et al.,[6] as a generalization of the
classical path-following methods. These methods are based on the observation
that with every algorithm which follows the central-path we associate a target
sequence on the central-path. Weighted path-following methods can be viewed as
a particular case of it. These methods were studied extensively by many authors
[3, 4,5, 7, 8] for Linear optimization (LO) and linear complementarity problem
(LCP). Recently, Achache and Khebchache [1], introduced a new weighted
method for monotone LCP where the complexity of the corresponding short-step
algorithm is O(y/nlog 2). Motivated by their work, we propose a new weighted
primal-dual path-following algorithm for solving CQO. The algorithm uses at each
interior point iteration only weighted full-Newton steps and the strategy of the
central path to get an e—approximate solution of CQO. We prove that the short-
step algorithm has the following iteration bound O(+/nlog %) which is as good as
the bound for LO [3, 7, 8], CQO [1, 3] and LCP [2, 7], analogue. The algorithm has
advantages that no line searches is needed and it can start with a suitable starting
point not necessarily centered.

The rest of the paper is built as follows. In Section 2, the weighted-path and the
search direction are presented. The generic weighted primal-dual path-following
algorithm for CQO is also stated. In Section 3, the analysis of the algorithm and
the iteration bound with short-step method are presented. Finally, a conclusion and
future remarks follow in Section 4.

The notation used in this paper is as follows. R™ denotes the space of n-
dimensional real vectors and R"} | is the set of all positive vectors of R".
Given z,z € R, their Hadamard product is zz = (z121,... ,Tn2zn)T. The
expressions || ul| = VuTu and | ul|, = max; |u;| denote the Euclidean and
the maximum norms for a vectoru,respectively. Let z,z € R%}, ,r =
(VZ1, /@) 27 = (27t 2 t) T and £ = (T, %)T Let g(z) and
f(z), be two positive real valued functions, then g(z) = O(f(x)) < g(x) <
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k f(z) for some positive constant k. Finally, the vector of all ones and the identity
matrix are denoted by e and I, respectively.

2. The weighted-path and the search direction

Throughout the paper, we make the following assumptions for QO.
Assumption 1. Interior Point Condition (IPC). There exists a triplet of vectors
(20,40, 29) such that:

Az =b,2°>0, ATy 42" —Qa" =¢, 2° > 0.

Assumption 2. Positive semidefiniteness. The matrix () is positive semidefinite,
ie., forallv € R, vTQu > 0.

Finding an approximate solution of (P) and (D) is equivalent to solving the
following system of optimality conditions for (P) and (D):

AI’ - b, T Z 07
ATy4+2—-Qx = ¢, 2>0, (D)
Tz = 0.

The basic idea behind weighted primal-dual interior-point algorithm is to replace
the third equation (complementarity condition) in (1) by the parametrized equation
xz =w with w is a positive vector in R". Thus, we consider the following
perturbed system:

Ax - ba X 2 Oa
ATy+2—-Qx = ¢ 2>0, 2)
Tz = w

Under Assumption 1 and Assumption 2, the system (2) has a unique solution
denoted by (z(w), y(w), z(w)) for all w > 0 [2]. The set

{(z(w), y(w), 2(w)) : w > 0}

is called the weighted-path of problems (P) and (D). If w goes to zero, then
the limit of the weighted-path exists and since the limit point satisfies the
complementarity condition, the limit yields an optimal solution for CQO. This
limiting property of the weighted-path leads to the main idea of the iterative
primal-dual methods for solving (2).

Remark 2.1
If w = pe with p > 0, then the weighted-path coincides with the classical central-
path.
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Now, we proceed to describe a weighted full-Newton step produced by the
algorithm for a given w > 0. Applying Newton’s method for (2) for a given
feasible point (x,y, z) then the Newton direction (Axz, Ay, Az) at this point is
the unique solution of the following linear system of equations:

A 0 0 Ax 0
—-Q AT I Ay = 0 , 3)
7 0 X Az w— Xz

where X :=diag(x), Z :=diag(z).

Again under our assumptions and the fact that rank(A) = m, the system (3) has
a unique solution (Az, Ay, Az). Hence, a new weighted full-Newton iteration is
constructed according to:

ry i =x+ Ax; yy =y + Ay; and z, = z + Az. 4)
To simplify the matters, we define the vectors:
v:=+/zz and d := Vzz1.
The vector d uses to scale the vectors = and z to the same vector v as
d 'z =dz=v (5)
and as well as for the original directions to the scaling directions:
dy =d 'Azr and d, = dAz.

It follows that:
Az + zAz = v(d, + d), (6)

and
dyd, = AxAz = AzQAx > 0, @)

since () is a semidefinite matrix.
Hence, by using (5), (6) and (7), the system (3) becomes:

A 0 0 dy 0
-Q AT I dy = 0 )
I 0 I d, Dy
where
pp = v Hw —v?) 9)

and A = DAD and Q = DQD with D :=diag(d).
In the next sub-section, we describe the generic feasible weighted primal-dual
path-following algorithm to solve CQO.
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2.1. The Algorithm

Similar to LO case, we define for any positive vector v and in view of (9), a norm-
based proximity measure as follows:

-1 2
lpell  _ o w —v?)]

Slv:w) = = ) 10
(i) 24/min(w) 24/min(w) (10

One can easily verify that
S(vyw) =0& v’ =w e 2z =w.

Hence the value 6(v;w) is to measure the distance of a point (z,y, z)to the
weighted-path (z(w), y(w), z(w)).
Let denote another measure o (w) as follows

max(w)

an

ocw) = min(w)

The role of o (w) is to measure the closeness of w to the central path.
Here,
min(w) = min(w;)
K2

and likewise
max(w) = max(w;).

Note that in (11), o¢(w) > 1, with equality if w is on the central-path.

Now we are ready to describe the generic weighted path-following interior-point
algorithm for CQO as follows.

A generic weighted Primal-Dual Path-Following Algorithm for CQO

Input

A threshold parameter 0 < § < 1( default § = %),

an accuracy parameter € > 0;

a fixed barrier update parameter 0 < 6 < 1 (default § = m),
a starting point (2°,4°, 2%) and w° such that §(x°2%; w?) < %;

begin
Setx =z y :=y% 2 := 20w := w°
while 27z > e do
begin
w = (1 - 0)w;
Solve system (3) to obtain the direction (Az, Ay, Az);
Update z :=z + Az, y :=y + Ay, z := z + Az;
end
end
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Algorithm 2.1
In the next section, we will show that Algorithm 2.1 is well-defined for the defaults

0= m and 6§ < % and can solve CQO in polynomial-time.

3. Complexity analysis

In the next lemma, we state some useful technical results that will be used later in
the analysis of the algorithm.

Lemma 3.1
Let (d;, d.) be a solution of (8) and suppose w > 0. If § := §(v; w). Then, one has

0 < dfd, < 26%min(w), (12)
and
|ded. |, < 6*min(w)and ||dd.| < v26%min(w). (13)
Proof: Since 0 < dZd,, the statement in (12) follows immediately from the
following equality:
lda® + lld=\1* + 2d7 dz = [[do + d2||* = [[po]® = 46% min(w).
For (13), (see Lemma C.4 in [7]), since

1 2 1 2
dmdz S n v and dzdz S P~ v .
ol < 7 ol and sl < o o]

This completes the proof. |

The following lemma shows that the feasibility of the weighted full-Newton step
under the condition § := §(v;w) < 1.

Lemma 3.2
Let (z,z) be a strictly feasible primal-dual point. Then z, = x + Az > 0 and
zy =y+ Az > 0if and only if w + d,d, > 0.

Proof: For the first statement we have,
21z = (x4 Azx)(z+ Az)
= zz+x2Az+ zAx + AxAz
= zz+ (w—2x2)+ AzAz
= w+ AzAz.
Then from equation in (7), we have,
Tyzy = w4+ AzAz

= w+dgd,.
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If the full-Newton step is strictly feasible ;. > 0 and z; > 0 then z; 2z > 0 and
sow + d,d, > 0.
To show that z and z, are positive, we introduce a step length « € [0, 1] and we
define

8 =x+alAzx, z2%=z+alAz.

! = x_ and similar notations for z, hence °2° = zz > 0. We have,

Soz’ =,z
1%2% = (v + alAz)(z + aAz) = vz + a(zAz + zAz) + o*ArAz.
Now by using (6), we get

2% = x2 + a(w — x2) + o*AzAz.

We assume that w + d,d, > 0, we deduce that w + AxzAz > 0 which equivalent
to AzAz > —w. Substitution we obtain

2% > zz+a(w—1z2) —w

= (I1-a)rz+ (a—a®)w

(1-a)xz+ a(l — a)w.

Since xzz and w are positive it follows that z*z* > 0 for a € [0, 1] . Hence, none
of the entries of +* and z® vanish for « € [0,1] . Since z° and 2° are positive, this
implies that z® > 0 and 2 > 0 for « € [0, 1]. Hence, by continuity argument, the
vectors * and z® must be positive which proves that x and z, are positive. This
completes the proof. |

Lemma 3.3
If § := §(v; w) < 1. Then, the primal-dual full-Newton step is strictly feasible,i.e.,
Ty > Oandz+ > 0.

Proof: In Lemma 3.2, we have seen that:
ryzy > 0if w+dyd, > 0.
So w + d,d, > 0 holds if
w; + (dg)i(d:); > 0, for all .
We have
w; + (dz)i(d2)i > w; — |(dg)i(dz);] > min(w) — ||dzd.|| ., for alli.
Now, according to (13), Lemma 3.1, it follows that:
min(w) — ||dyd. | ., > min(w)(1 — §2).
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Thus w + d,d, > 0 holds if § < 1. This completes the proof. a

For convenience, we may write

Vi = /T4 24.
Lemma 3.4
If § < 1. Then
1 1
o] <

min(w)(1 — 62)
Proof: It follows straightforwardly from Lemma 3.3 and since

I ¢
+ w+dyd,
In the next lemma, we show the influence of a weighted full-Newton step on the
proximity measure.

Lemma 3.5
If 6 < 1. Then
52

V201 =62)

0y = 0(vy;w) <
Proof: By definition, we have,
5. = _
+ 2\/ﬁ ||11 U-i— ||
s I o =2

Butw — v+ = —d,d, and v+ = \/ﬁ, then by Lemmas 3.1 and 3.4, we have,
= ]
2\/min(w) Vw +dgd,
_ L ]
2\/min(w) H\/w + dardzH
< 1 \[min( )62
T 2y/min(w) /min(w) — [[dyd. ||
< 1 \[mln( )62
~ 2y/min(w) /min(w)(1 — §2)
52
<
2(1 - 42)
This completes the proof. |
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Corollary 3.1
If § < 1.Then 6, < &2 which indicates the convergence quadratic of the proximity
when iterations are closed to the path. In addition if § < %, then §; < %

In the next lemma, we discuss the influence on the proximity measure of
the update barrier parameter w; = (1 — 6) w on the Newton process along the
weighted-path.

Lemma 3.6
If §(w;v) <1 and wy = (1 — ) w where 0 < § < 1. Then
0 1
0(vy; < — + 0.
(v45004) Nﬂm\/ﬁm(w 20—0)

In addition, if § < 0 = and n > 3, then we have,

1 1
V2’ 2v/noc(w)

1
(v wy) < —.
( + +) = \/i
Proof: Let 6(vy;wy)andwy = (1 — ) w with 0 < § < 1. Then, by definition
we have,

(5(U+;’U)+) = m H’Ull(w+ - U?I»)H
B 1 v wa — v?
QM\/HT(U))H +( + +)”
1 -1 —w 4w —v?
QM\/HT(W)”UJF (w4 + D
1 -1 —w w—v2
gmm(””* | (s = wl + [Jw =3 [])) -

Now since w — v3 = —d,d, and w; — w = —fw and by Lemmas 3.1 and 3.4 and
with the fact that [|w|| < /n[|w|| ., we get,
1
S(vy;w < Ow|| + ||dzd.
1
< Ow|| + min(w)s?
T 2y/1—Omin(w)v1 — §2 LIl (w)&’]
. A L
T 2y1—0min(w)v1—02  2v/1-—6v1-62
) ool o,
T 2y/1—Omin(w)v1—462  2¢/1—-60V1-62
0y/nmax(w) 52

2v/1 — O min(w)y/1 — 52 * 2/T =01 - 462
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Using Lemma 3.5 and (11), we have,

w 9\/’[;0'0(’[1}) (5+
Oorsw) < I V21 -6)

If = MTlc(w)’ and observe that oc(w) > 1, and for n >3, then 6 <
1. Furthermore, if § < %,then from Corollary 3.1, 6, < i. Finally, the above
inequalities yield §(vy;wy) < % This completes the proof. O

Note that, in all the iterates produced by Algorithm 2.1, we have oc(w) =

oc(w®). Thus, we deduce from Lemma 3.6 that for the default 6 = m,

the conditions z,y >0 and d(vi;wy) < % are maintained during the
algorithm. Thus, confirms that Algorithm 2.1, is well-defined.

The upper bound of the duality gap after a weighted full-Newton step is presented
in the following lemma.

Lemma 3.7
Letd :=§ (v;w) < % andz, =z + Az and 2z, = z + Az. Then the duality gap
satisfies:

2z < (n+ 1) max(w).

Proof: By Lemma 3.2, we have seen that
Tyzy =w+dgd,.
Hence

el(zyzy) = eTw+eld,d,
elw+dld,.
According to (13), Lemma 3.1 and § < %, we deduce that:
el'w + 26% min(w),

xJTerr <
<

el'w 4+ min(w).
Now, since e”'w < nmax(w), we get
2% zp < (n+ 1) max(w).

This completes the proof. |

The following lemma gives an upper bound for the total number of iterations
produced by Algorithm 2.1.
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Lemma 3.8
Let 281 and 25+ be the (k + 1) — th iteration produced by the Algorithm 2.1,
with w := w"* Then
(mk+1)TZk+1 <e
if
1. 2nmax(w?)

> [ =1
k‘_eog .

Proof: By Lemma 3.7, it follows that:
(@D 241 < (4 1) max(w®)
with
wh = (1 - 0w = (1 - 6)ku°.
Then, we have
(2PN T+ < (1 — 0)%(n + 1) max(w®) < (1 — 6)*2n max(w?),

sincen +1 < 2n foralln > 1.
Thus the inequality (zF+1)7 281 < ¢ is satisfied if

(1 —6)*2nmax(u®) < e.
Now taking logarithms, we may write
Elog(1 — 6) < loge — log 2n max(w®)
and since —log(1 — 6) > 6 for 0 < 6 < 1, then the inequality holds if

0
k0 > log 2n max(w )

This completes the proof. d

Theorem 3.1
Suppose that z° and z° are strictly feasible starting point for CQO, w® =
202 7 and such that §(x02%w?) < % forn>3.1f 0 = then,

Algorithm 2.1, requires at most O (\/an(wo) log %) iterations to obtain an e-
approximate solution of CQO.

In particular, if w® = %e, then Algorithm 2.1,requires at most O (\/ﬁ log%)
iterations which is the currently best known iteration bound for short-update
methods.

Proof: By taking the value of § and w® in Lemma 3.8, the result follows
straightforwardly. This completes the proof. ]

Stat., Optim. Inf. Comput. Vol. 2, March 2014.



32

M. ACHACHE

4. Conclusion and future remarks

In this paper, we have presented a weighted full-Newton step path-following
method for CQO. At each interior point iteration, only full-Newton steps are used.
The favorable polynomial complexity bound for the algorithm with short-step
method is deserved, namely, O(+/nlog %) which is as good as LO case. Finally,
the numerical implementation of this algorithm remains to be investigated.
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