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Abstract In studies that use electronic health record data, imputation of important data
elements such as Glycated hemoglobin (A1c) has become common. However, few studies
have systematically examined the validity of various imputation strategies for missing
A1c values. We derived a complete dataset using an incident diabetes population that
has no missing values in A1c, fasting and random plasma glucose (FPG and RPG),
age, and gender. We then created missing A1c values under two assumptions: missing
completely at random (MCAR) and missing at random (MAR). We then imputed A1c
values, compared the imputed values to the true A1c values, and used these data to assess
the impact of A1c on initiation of antihyperglycemic therapy. Under MCAR, imputation
of A1c based on FPG 1) estimated a continuous A1c within ± 1.88% of the true A1c
68.3% of the time; 2) estimated a categorical A1c within ± one category from the true
A1c about 50% of the time. Including RPG in imputation slightly improved the precision
but did not improve the accuracy. Under MAR, including gender and age in addition
to FPG improved the accuracy of imputed continuous A1c but not categorical A1c.
Moreover, imputation of up to 33% of missing A1c values did not change the accuracy
and precision and did not alter the impact of A1c on initiation of antihyperglycemic
therapy. When using A1c values as a predictor variable, a simple imputation algorithm
based only on age, sex, and fasting plasma glucose gave acceptable results.
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1. Introduction

Large electronic health records (EHR) data now enable health care researchers to
conduct comparative effectiveness studies, monitor post-market safety of medical
products, and carry out pharmacoepidemiological studies. However, as these data
are collected in the process of delivering health care, and not collected specially for
research purposes, data relating to important risk factors may be missing. One such
large EHR database is SUrveillance PREvention and ManagEment of Diabetes
Mellitus (SUPREME-DM), a consortium of 11 U.S. health care systems, including
approximately 1.1 million diabetes patients. Within SUPREME-DM, we collect
patient demographic, health care utilization, diagnosis, procedure, medication, and
laboratory results data from EHR and other clinical and administrative databases
[1].

In a recent study using SUPREME-DM data, the association between initial
antihyperglycemic therapy and patient-level baseline characteristics was examined
among 241,327 adults with newly identified diabetes between 2005 and 2010
[2]. Initial results suggested that glycated hemoglobin A1c (A1c), a measure of
a patient’s average blood glucose level during the past 2-3 months [3], was a
key predictor of antihyperglycemic initiation. However about 33% of patients
had no A1c available at the time of or within the two years preceding diabetes
identification.

The importance of A1c as an objective and reliable measure of long term
glucose control and its utility in diabetes diagnosis and care is well established
[4, 5]. Clinical trials, such as the Diabetes Control and Complications Trial
(DCCT) and the United Kingdom Prospective Diabetes Study (UKPDS) have
shown that improving A1c measures decreased the development and progression
of eye, kidney and nerve complications in both type 1 and type 2 diabetes [6, 7].
Whereas A1c reflects average glucose over a 2-3 month period, measures for
fasting plasma glucose (FPG) or random plasma glucose (RPG) reflect glucose
values at a single point in time. Because glucose values vary with eating patterns,
exercise, stress, and other factors within a single day or even hour, A1c provides a
better estimate of glucose control that FPG or RPG does. In the SUPREME-DM
antihyperglycemic initiation study, the large proportion of missing A1c values
could be problematic. Because A1c is an important risk factor, it is crucial to
handle missing A1c values appropriately in diabetic research using EHR data.
Simply excluding a third of the patients with missing A1c values could result in
biased results. This simulation study focuses on the situation where A1c is an
independent variable used for predicting clinical outcomes.

Imputation of important risk factors has become a common practice in clinical
trials studies [8, 9] and observational studies using EHR data [10, 11]. However,
few studies have systematically examined the validity of various imputation
strategies for A1c. Using the diabetic cohort compiled for the antihyperglycemic
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drug initiation study, we explored the implications of using auxiliary variables
(FPG and RPG) and other covariates (age and gender) for imputation of missing
A1c values for use as a predictor (independent) variable under two assumptions:
missing completely at random (MCAR) and missing at random (MAR) [12].

Key contributions of this papaer: 1) Imputed categorical A1c is within ±
one category 50% of the time. This is not very precise when considered from a
clinical standpoint, but it may still be useful in research where the alternative is
to exclude those individuals with missing A1c and possibly introduce substantial
bias. 2) For categorical A1c, the accuracy did not improve by including RPG, age
and gender in imputation. 3) The accuracy of imputation did not vary much as a
function of the proportion of A1c values that were imputed. 4) An analysis of A1c
as a predictor of medication initiation in these newly diagnosed diabetes patients
showed that results were not altered by up to 33% of A1c values being imputed
using this simple method.

2. Methods

2.1. Study population

For this imputation study, we utilized a subset of the SUPREME-DM study
population that was analyzed by Raebel et al [2] in examining associations
between initial antihyperglycemic therapy and patient baseline characteristics.
The study population selection methods are detailed elsewhere [2]. Briefly,
nonpregnant adults were required to meet either diagnosis or laboratory criteria.
Incident diabetes cases were those who first met the study diabetes criteria after at
least two years of health system membership with no indication of diabetes and no
antihyperglycemic dispensed during those two years. The initial study population
included 241,327 subjects, but for our imputation comparisons we selected 62,458
patients who had no missing data on key variables of interest within two years prior
to diabetes diagnosis: A1c, FPG, RPG, age, and gender. We designate this dataset
as the complete dataset.

2.2. Covariates

While A1c measurement is a continuous variable, in clinical and research
uses, categorical values of A1c based on known cutpoints are often used
[13, 14, 15]. We assessed imputation methods for both continuous A1c and a
categorical classification that categorized A1c measures into six groups: A1c≤6%,
6%<A1c≤7%, 7%<A1c≤8%, 8%<A1c≤9%, 9%<A1c≤10%, and A1c>10%.
Age was a categorical variable with six groups: <39 years, 40-49, 50-59, 60-69,
70-79, and 80. FPG and RPG were used as continuous variables in imputing A1c.
Gender was included in the analyses as a binary covariate.
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Hemoglobin A1c is commonly used in clinical practice as a measurement of
chronic glycemia, represents the proportion of hemoglobin A1c molecules that
are glycated, and is a function of average plasma glucose levels and red blood
cell turnover [16]. It is therefore reasonable to expect that A1c, FPG, and RPG
would be correlated. Several studies have looked at the correlation between A1c
and average glucose, including the Diabetes Control and Complications Trial [17]
and the A1c-Derived Average Glucose (ADAG) study [18]. The ADAG study
derived a commonly used conversion equation between A1c values and average
plasma glucose values (AGmg/dl = 28.7 x A1C – 46.7, R2 = 0.84), using data from
continuous glucose monitoring and seven-point daily self-monitoring capillary
glucose on 507 subjects [18, 19]. The ADA and the American Association for
Clinical Chemistry have determined that the correlation (Pearson correlation
coefficient=0.92) is strong enough to justify reporting both an A1C result and an
estimated average glucose result when a clinician orders the A1C test [19].

Due to the short-term variation in plasma glucose values, one would expect
the correlation between a single FPG or RPG value and A1c to be less than the
correlation between a comprehensive assessment of average glucose and A1c
[17, 20]. We found that only 6.5% of individuals in our cohort did not have
any baseline measure of glucose (A1c, FPG, or RPG). The Pearson correlation
coefficients were 0.76 between A1c and FPG, 0.64 between A1c and RPG, and
-0.30 between A1c and age. Due to the high correlation between A1c, FPG, and
RPG, we could not include FPG and RPG as covariates in outcome analyses
with A1c due to collinearity. Instead, we were able to use FPG and RPG as
auxiliary variables. Auxiliary variables are variables that are highly correlated
to the variable of interest (i.e. A1c) but cannot be included as a covariate in the
outcome model. We therefore explored the possibility of using FPG and RPG as
auxiliary variables for imputing missing A1c [21, 22, 23, 24].

2.3. Generate missing A1c under two assumptions

We used the complete dataset to create datasets with different proportions of
missing A1c under two mechanisms: 1) MCAR; and 2) MAR as detailed below.

MCAR: If the probability of an observation being missing does not depend
on observed or unobserved measurements (e.g., age, gender, FPG, and RPG) in
studies with A1c as a covariate, then the missing observation is classified as
MCAR [12, 25]. Different proportions of missing A1c values (10%, 20%, and
33%) were generated completely at random in the complete dataset.

MAR: Missing at random for a covariate corresponds to the situation where
the missingness depends on other observed covariates in studies with A1c as a
covariate. In this case, whether or not an A1c value is missing has nothing to do
with the missing value itself but this is related to the values of observed covariates
(i.e., age and gender) [25]. For example, older patients may be less likely to have
A1c measured while female patients may be more likely to have A1c measured.
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Missing not at random (MNAR) for a covariate is where missing values of
a covariate are associated with the dependent variable (i..e., antihyperglycemic
initiation). In the study by Raebel et al (2013) [2], the antihyperglycemic initiation
rates do not differ by presence of baseline A1c (39.9% for those with baseline A1c
and 41.2% for those without baseline A1c). Thus we did not study this scenario.

To generate A1c MAR, we used the entire population (N=241,327) to fit a
logistic regression with the dependent variable being “whether A1c was missing”
and age and gender as predictor variables. Coefficients (i.e., θk for age group k
and β for gender) were obtained. The indicator for missing A1c, m, was created
in the complete dataset using the following probabilistic model:

prob (m = 1|α, β, Ik, gender) =
exp(α+ Ikθk + genderβ)

1 + exp(α+ Ikθk + genderβ)

where Ik is an indicator variable for age groups, Ik=1 if age=k, otherwise Ik=0
(age group 3 is the reference); θkwere coefficients for age groups with θ1= -
0.0468, θ2= - 0.0987, θ4= -0.1041, θ5= - 0.0006, and θ6= 0.3713 indicating that the
older patients were more likely to have missing A1c. The coefficient for gender
(gender =1 if female) is β= - 0.0766 indicating that female patients were less likely
to have missing A1c. The intercept was set to -2.40, -1.50 and -0.75 to achieve
10%, 20% and 33% missing values of A1c.

2.4. Imputing continuous and categorical A1c

We used linear regression to impute continuous A1c values, and the logistic
regression to impute categorical A1c values in SAS procedure PROC MI (SAS
9.2) [26]. For each missing A1c, we imputed five A1c to take into account the
uncertainty. We then assessed the performance of different imputation strategies
and their impact on the outcome analyses with A1c as a covariate. Missing A1c
values under MCAR were imputed using: 1) available FPG and 2) both available
FPG and RPG. Missing A1c under MAR was imputed using 1) available FPG and
2) available FPG, age and gender.

2.5. Evaluation

For our evaluation of A1c as an independent variable, we analyzed the outcome
variable of antihyperglycemic initiation, defined as a first dispensing of any
antihyperglycemic(s) during the 182 days after cohort inclusion. Imputation
performance was evaluated by 1) calculating the absolute difference between the
imputed and true value and obtaining the distributions of the differences for both
continuous and categorical A1c; 2) analyzing the outcome (antihyperglycemic
initiation) using data with imputed categorical A1c only and comparing it to
an analysis using the complete dataset. Preliminary results showed that 100
simulations were sufficient to obtain stable estimates of the effects of A1c on
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antihyperglycemic initiation and confidence intervals due to large sample size
(the standard deviation of 100 estimates is less than 1.1% of the average of
these estimates). Estimates and confidence intervals were obtained and averaged
across 100 simulations. In addition, we examined the performance of different
imputation strategies with only 10% of the original population. For this smaller
population,1000 simulations were carried out.

3. Results

3.1. Imputation of continuous A1c under MCAR and MAR

Under the assumption of MCAR (Table 1), imputing A1c with either FPG alone
or with FPG and RPG had good accuracy (unbiased A1c values) and similar
precision (standard deviations). Imputation of continuous hemoglobin A1c based
only on FPG can estimate an continuous A1c within about ± 1.8% (one standard
deviation) of the true hemoglobin A1c value about 68.3% of the time. That is, if
true A1c was 6%, the imputed estimate was between 4.2% to 7.8% about 68.3%
of the time. Under the assumption of MAR (Table 2), imputing A1c with FPG
alone resulted in higher values of A1c than the true values on average (by as much
as 0.137%), but imputing A1c with FPG and age and gender improved accuracy
of imputed A1c values (unbiased A1c values) but with similar precision (standard
deviations). Similar results were observed for the smaller population (N=6,245).

Table 1. Mean and standard deviation of differences between imputed A1c and
true A1c when A1c is MCAR.

entire population
(N=62,458)+

10% of population
(N=6,245)++

Missing
%

Imputation Mean standard
deviation

mean standard
deviation

10 FPG <0.001 1.883 0.005 1.886
FPG and RPG 0.005 1.703 0.019 1.705

20 FPG 0.002 1.880 0.017 1.877
FPG and RPG 0.004 1.701 -0.003 1.691

33 FPG 0.003 1.882 0.014 1.880
FPG and RPG 0.006 1.701 0.011 1.692

MCAR, missing completely at random; FPG, fasting plasma glucose; RPG, random plasma
glucose. + 100 replicates; ++ 1000 replicates.
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Table 2. Mean and standard deviation of differences between imputed A1c and
true A1c when A1c is MAR.

entire population
(N=62,458)+

10% of population
(N=6,245)++

Missing
%

Imputation mean standard
deviation

mean standard
deviation

10 FPG 0.129 1.813 0.151 1.818
FPG and age and gender -0.002 1.775 0.025 1.779

20 FPG 0.103 1.844 0.112 1.843
FPG and age and gender -0.0001 1.810 0.014 1.807

33 FPG 0.077 1.869 0.087 1.871
FPG and age and gender 0.0003 1.836 0.013 1.837

MAR, missing at random; FPG, fasting plasma glucose; RPG, random plasma glucose;+ 100
replicates; ++ 1000 replicates.

3.2. Imputation of categorical A1c under MCAR and effects of A1c on
initiation of antihyperglycemic therapy

Table 3 shows that when categorical A1c was MCAR, imputation with FPG alone
yielded 19% of imputed A1c categories the same as the observed, and 31% of
imputed A1c values only one category from the true categorical A1c. Inclusion
of RPG in imputation only improved the imputation slightly: percentage of exact
imputation increased 0.5% and the percentage of one category from the true
increased less than 1.0%.

Table 3. Distribution of difference between imputed categorical hemoglobin A1c
and true based on 100 replicates when hemoglobin A1c is MCAR using the entire
original population (N=62,458).

Percent of imputed A1c categories
from their true values

Missing
%

Imputation 0 ± 1 ± 2 ± 3 ± 4 ± 5

10 FPG 18.5 30.6 20.7 18.1 9.3 2.7
FPG and RPG 18.9 31.3 20.8 18.5 8.4 2.1

20 FPG 18.5 30.6 20.6 18.1 9.4 2.8
FPG and RPG 19.0 31.1 20.8 18.5 8.5 2.1

33 FPG 18.5 30.6 20.6 18.2 9.4 2.8
FPG and RPG 18.9 31.2 20.8 18.6 8.4 2.1

MCAR, missing completely at random; FPG, fasting plasma glucose; RPG, random plasma glucose.

Table 4 shows that when A1c was missing completely at random, there
were slight differences in the relative risks of A1c categories on risk of
antihyperglycemic initiation between using FPG alone vs. FPG and RPG for
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the A1c imputations. Compared to the relative risks (RRs) without missing
A1c (3rd row in Table 4), the effects of those lower A1c categories (e.g.,
A1c ≤ 6% and 6%< A1c≤7%) increased and the effects of those higher A1c
categories decreased. The difference increased when the percentage of missing
A1c increased. For examples, the true RR for the group of A1c ≤6% is 0.239
comparing to the group of 7%<A1c ≤8%, the RR increased to 0.261 when 10%
of A1c values were missing, the RR increased to 0.293 when 20% of A1c values
were missing, the RR increased to 0.337 when 33% of A1c values were missing.
For the group of 8%< A1c ≤9%, the true RR is 1.492 comparing to the group of
7%<A1c ≤8%, the RR decreased to 1.404 when 10% of A1c were missing, the
RR decreased to 1.331 when 20% of A1c were missing, to 1.223 when 33% of
A1c were missing. Similar results were observed for the smaller population.

Table 4. Comparison of relative risks (95% confidence intervals) of hemoglobin
A1c categories with different percentages of missing hemoglobin A1c based
on 100 replicates when hemoglobin A1c is MCAR using the entire original
population (N=62,458).

Relative risks and 95% confidence intervals
Missing % Imputation A1c≤6% 6%<A1c≤7% Ref 8%<A1c≤9% 9%<A1c≤10% A1c>10%

0 none 0.239
(0.226 0.252)

0.373
(0.359 0.387)

1 1.492
(1.423 1.565)

1.647
(1.563 1.735)

1.772
(1.704 1.843)

10 FPG 0.261
(0.247 0.277)

0.397
(0.382 0.413)

1 1.404
(1.336 1.476)

1.554
(1.471 1.642)

1.682
(1.613 1.753)

FPG and RPG 0.256
(0.242 0.271)

0.393
(0.378 0.409)

1 1.395
(1.327 1.467)

1.545
(1.463 1.632)

1.677
(1.609 1.747)

20 FPG 0.293
(0.277 0.310)

0.423
(0.406 0.440)

1 1.331
(1.262 1.402)

1.469
(1.384 1.558)

1.599
(1.531 1.670)

FPG and RPG 0.281
(0.266 0.298)

0.416
(0.399 0.433)

1 1.315
(1.248 1.385)

1.452
(1.370 1.539)

1.592
(1.525 1.662)

33 FPG 0.337
(0.317 0.358)

0.459
(0.440 0.478)

1 1.223
(1.155 1.296)

1.346
(1.265 1.433)

1.473
(1.406 1.544)

FPG and RPG 0.315
(0.297 0.334)

0.445
(0.428 0.464)

1 1.201
(1.136 1.269)

1.323
(1.242 1.408)

1.456
(1.400 1.534)

MCAR, missing completely at random; FPG, fasting plasma glucose; RPG, random plasma glucose;
Ref: reference group, 7%<A1c≤8%.

3.3. Imputation of categorical A1c under MAR and effects of A1c on initiation
of antihyperglycemic therapy

Table 5 shows that when categorical A1c was MAR, imputation with FPG alone
yielded 19% of A1c categories the same as the actual category, and 31% of A1c
one category away from the true A1c category. Inclusion of age and gender in
imputation only improved the imputation slightly, since the percentage of exact
imputation increased about 1% and percentage of one category from the true
increased about 0.4%.

Table 6 shows that when categorical A1c was MAR, there were no differences
in the estimates of the effects of antihyperglycemic medication initiation between
using FPG alone vs. FPG, age, and gender for A1c imputation. Compared to the
RRs without missing A1c, in general, the effects of those lower A1c categories
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(e.g., A1c≤ 6% and 6%< A1c ≤ 7%) increased and the effects of those higher
A1c categories decreased. The difference increased when the percentage of
missing A1c increased. For examples, the true RR for the group of A1c ≤6% is
0.239 comparing to the group of 7%<A1c ≤8%, the RR increased to 0.262 when
10% of A1c values were missing, the RR increased to 0.293 when 20% of A1c
values were missing, and the RR increased to 0.334 1when 33% of A1c values
were missing. For the group of 8%< A1c ≤9%, the true RR is 1.492 comparing
to the group of 7%<A1c ≤8%, the RR decreased to 1.402 when 10% of A1c were
missing, the RR decreased to 1.327 when 20% of A1c were missing, to 1.232
when 33% of A1c were missing. Similar results were observed for the smaller
population.

Table 5. Distribution of difference between imputed categorical A1c and true
based on 100 replicates when A1c is MAR using the entire original population
(N=62,458).

Percent of imputed A1c categories from their true values
Missing % Imputation 0 ± 1 ± 2 ± 3 ± 4 ± 5
10 FPG 18.6 30.7 20.6 18.1 9.3 2.8

FPG and age
and gender

19.5 30.9 20.4 17.7 9.0 2.4

20 FPG 18.5 30.7 20.6 18.1 9.3 2.8
FPG and age
and gender

19.5 31.0 20.4 17.8 9.0 2.4

33 FPG 18.5 30.6 20.7 18.1 9.3 2.8
FPG and age
and gender

19.4 31.0 20.4 17.8 9.0 2.4

MAR, missing at random; FPG, fasting plasma glucose; RPG, random plasma glucose.

Table 6. Comparison of relative risks (95% confidence intervals) of A1c categories
with different percentages of missing A1c based on 100 replicates when A1c is
MAR using the entire original population (N=62,458).

Relative risks and 95% confidence intervals
Missing % Imputation A1c≤6% 6%<A1c≤7% Ref 8%<A1c≤9% 9%<A1c≤10% A1c>10%

0 none 0.239
(0.226 0.252)

0.373
(0.359 0.387)

1 1.492
(1.423 1.565)

1.647
(1.563 1.735)

1.772
(1.704 1.843)

10 FPG 0.262
(0.248 0.277)

0.396
(0.380 0.411)

1 1.402
(1.333 1.473)

1.549
(1.465 1.637)

1.682
(1.614 1.752)

FPG and
age and
gender

0.257
(0.243 0.271)

0.392
(0.377 0.408)

1 1.403
(1.335 1.474)

1.554
(1.471 1.641)

1.684
(1.616 1.754)

20 FPG 0.293
(0.276 0.311)

0.421
(0.404 0.438)

1 1.327
(1.259 1.398)

1.464
(1.397 1.553)

1.600
(1.532 1.672)

FPG and
age and
gender

0.282
(0.266 0.299)

0.415
(0.398 0.432)

1 1.328
(1.261 1.400)

1.469
(1.387 1.556)

1.605
(1.537 1.676)

33 FPG 0.334
(0.315 0.355)

0.455
(0.436 0.474)

1 1.232
(1.164 1.303)

1.352
(1.270 1.441)

1.489
(1.422 1.559)

FPG and
age and
gender

0.315
(0.297 0.346)

0.446
(0.427 0.465)

1 1.231
(1.165 1.301)

1.358
(1.276 1.444)

1.493
(1.425 1.563)

MAR, missing at random; FPG, fasting plasma glucose; RPG, random plasma glucose; Ref:
reference group, 7%<A1c≤8%.
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4. Discussions

In clinical databases, A1c information may be missing for several reasons among
individuals with diabetes: not having an A1c measured within a certain time
window, having an A1c measured but not available electronically, or not having
healthcare encounters over a specified timeframe. Results from this study suggest
that under the MCAR assumption imputation of A1c based only on FPG 1)
estimates an continuous A1c within about ± 1.8% of the actual value 68.3% of the
time; 2) estimates a categorical A1c within ± one category 50% of the time. This
is not very precise when considered from a clinical standpoint, but it may still
be useful in research where the alternative is to exclude those individuals with
missing A1c and possibly introduce substantial bias.

For continuous A1c, the accuracy did not improve by including RPG in
imputation under MCAR assumption. However, including gender and age in
imputation under MAR assumption improved the accuracy of imputed continuous
A1c. For categorical A1c, the accuracy did not improve by including RPG, age
and gender in imputation. Adding RPG values in addition to FPG values did not
significantly improve the validity of the imputation, perhaps because RPG are
more widely dispersed depending on hours since eating and other factors, relative
to FPG. In addition, the accuracy of imputation did not vary much as a function
of the proportion of A1c values that were imputed. Similar results were observed
when the size of population decreased nearly ten-fold.

Moreover, it is encouraging that an analysis of A1c as a predictor of medication
initiation in these newly diagnosed diabetes patients showed that results were
not altered by up to 33% of A1c values being imputed using this simple
method. This finding supports the use of the simple A1c imputation model we
evaluated in analyses for applications where A1c is used to predict a different
dependent variable, such as a clinical action by providers. These data neither
support nor refute the use of this simple imputation model for A1c when it is the
dependent variable in an analysis. However, in such a scenario, more sophisticated
imputation models for A1c might be considered.

Limitations to our work include that the validity of multivariable imputation of
A1c can be improved by including additional variables we omitted by design (e.g.,
number of medications, prior A1c values), our analysis included only incident
cases of diabetes mellitus, and the A1c we imputed was the first A1c value at the
time of or within the two years preceding diabetes identification. The distribution
of A1c values at new diagnosis of diabetes is bimodal, which increases the
difficulty of accurate imputation [27].

Several other factors constrain the interpretation of these data. First, while our
study used a large sample of adults with incident diabetes receiving care at one of
11 medical groups in the U.S., generalizability of our findings to other populations,
especially to uninsured patients, is not assured. Second, the precision of A1c
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imputation may be greater in situations where antecedent A1c values, medications,
BMI, and race/ethnicity are also included in the imputation process. Additional
work to assess the impact of these variables on precision of A1c imputation is
needed.

In light of the design of the study and the constraints of the data, we conclude
that imputation of A1c based on FPG, age, and gender is reasonably accurate
for analyses in which A1c is being used as an independent variable to predict
outcomes such as medication initiation or intensification. However, the lack
of precision of imputed A1c values augers poorly for the use of these basic
imputation methods when A1c is a dependent variable. In such a scenario, more
sophisticated methods of multivariate imputation may be needed, and when these
include antecedent A1c values, the likelihood of precise A1c imputation may
increase.
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