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Abstract This paper presents a class of proximal point algorithms (PPA) with nonlinear
proximal terms. Proximal minimization algorithm using Bregman distance for convex
minimization is extended for solving monotonic variational inequalities. Under suitable
conditions, the convergence and O(1/N) computing complexity/convergence rate of the
proposed algorithm is obtained. Further more, connections to some existing popular
methods are given, which shows that the presented algorithm can include metric proximal
point algorithm and projection method within a general form.
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1. Introduction

Variational inequality (VI) has received a lot of attention due to its various
applications in operation research, economic equilibrium, engineering design, and
other fields [5, 6].

In this paper, we will study iterative algorithms for monotonic VI problems,
which can be summarized in a form as follows: find a point u∗ in Ω such that

⟨u− u∗,F(u∗)⟩ ≥ 0,∀u ∈ Ω, (1)
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where F : Rd → Rd is a mapping from a Euclidian space Rd to itself, and Ω a
convex subset in Rd.

VI has an important application in optimization. Let F : Rd → R be a
differentiable convex function on Ω. Then any minimum point x∗ of F on Ω
satisfies the inequality

⟨x− x∗,∇F (x∗)⟩ ≥ 0, ∀x ∈ Ω, (2)

which means that the VI problem (1) includes as a subproblem the following
optimization problem

min
x∈Ω

F (x).

In this paper we are interested in a class of so-called monotonic VIs in the sense
of

⟨u− v,F(u)−F(v)⟩ ≥ 0, ∀u,v ∈ Ω, (3)

for two considerations. Firstly this class of VIs has a nice property that its solution
set is nonempty; secondly, it responds to the convex program in the optimization
field.

There is extensive literature on numerical algorithms for VIs [1, 2, 4, 7, 10].
Among these solvers, a classical algorithm widely known as proximal point
algorithm (PPA) (or proximal minimization algorithm specially for minimization
problems [3]) is first proposed in [8] and then developed in [9]. PPA solves the
main problem (1) by successive approximation, or in another word, solves in every
iteration a subproblem proximal to the main problem. Say⟨

u− un+1,F(un+1) +M(un+1 − un)
⟩
≥ 0,∀u ∈ Ω, (4)

or
xn+1 = argmin

x∈Ω
F (x) +

1

2
∥x− xn∥2M , (5)

where M is a symmetric and positive-definite matrix, and the proximal term in (5)
is known as Mahalanobis distance defined as

1

2
∥x− y∥2M :=

1

2
⟨x− y,M(x− y)⟩ .

All aforementioned PPAs so far are using a linear proximal term, and the main
aim of this paper is to present a class of PPAs using nonlinear proximal terms, and
to provide a theoretic justification of its convergence and computing complexity.

The rest of this paper is organized as follow: Section 2 is devoted to present the
algorithm, and the proof of its convergence and complexity analysis are given in
Section 3. Section 4 makes several connections between the proposed algorithm
and other popular methods. Finally, we have a concluding remark.
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2. Motivation and Proposed Algorithm

Suppose f is a strongly function on X , the Bregman distance induced by f is
defined as below:

Df (x,y) = f(x)− f(y)− ⟨x− y,∇f(y)⟩ , ∀x,y ∈ X,

where ∇f(y) is a subgradient of f at x.
Bregman distance is an extension of traditional Euclidian or Mahalanobis

distance, this point can be seen more clearly thorough some special cases of
Bregman distance:

1. Df (x,y) =
1
2∥x− y∥2, when f(·) = 1

2∥ · ∥
2;

2. Df (x,y) =
1
2∥x− y∥2M , when f(·) = 1

2∥ · ∥
2
M ;

3. Df (x,y) = −
∑d

j=1 xj

(
log

xj

yj
− 1

)
+
∑d

j=1 yj , when f(x) =∑d
j=1 xj log

xj

aj
.

It is a natural idea to replace the Mahalanobis distance in (5) with a Bregman
distance, which is the main contribution presented in [3]. Then the proximal
minimization algorithm with a D-function, so called by authors of [3], is proposed
as

xn+1 = argmin
x∈Ω

F (x) +Df (x,x
n). (6)

According the optimality condition of (6), we have⟨
x− xn+1,∇F (xn+1) +∇f(xn+1)−∇f(xn)

⟩
≥ 0, ∀x ∈ Ω,

which can be viewed as a PPA for (2). It is worthy of notice that the proximal term
in the inequality above is not necessarily linear. Enlighten by this, we propose a
nonlinear PPA for the general monotonic VI (1) as follow⟨

u− un+1,F(un+1) + G(un+1)− G(un)
⟩
≥ 0, ∀u ∈ Ω. (7)

A remarkable difference between (6) and (7) is that in (6), ∇F needs to be the
gradient of a convex function, while in (7) F needn’t, which means the later is an
extension of the former.

In another word, (7) can solve variational problems which are not derived from
minimization problems, such as those derived from saddle point problems and
complementary problems. For instance, suppose one is going to solve a saddle
point problem

min
x∈X

max
y∈Y

Φ(x,y). (8)

By transforming it as a variational inequality problem⟨[
x− x∗

y − y∗

]
,

[
∇xΦ(x

∗,y∗)
−∇yΦ(x

∗,y∗)

]⟩
≥ 0, ∀

[
x
y

]
∈ X × Y, (9)
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the proposed algorithm (7) can be applied, while application of algorithm (6) does
not cover (8) or (9).
G in (7) still needs to be gradient/subgradient of a strongly convex function f ,

thus two assumptions upon G are necessary:

A1 G is strongly monotonic (from the strongly convexity of f );

A2 G is continuous.

This work looks similar to that in [4], but some differences are essential. At first,
algorithm presented in [4] takes approximate iterations as⟨

u− un+1,F(un+1) + G(un+1)− G(un) + ϵn+1
⟩
≥ 0, ∀u ∈ Ω,

while in this work, proximal subproblem is solved exactly. Secondly, as we will
see in the coming section, this work provides a complexity analysis result, which
is absent in [4].

3. Convergence and O(1/N) Complexity

In this section, we will thoroughly study the convergence of the proposed
algorithm. The analytic tool used here is similar with that in [8] but is more general
in this paper.

Lemma 1
Let {un} be a sequence generated by the algorithm (7), and u∗ a solution of the
VI (1), then we have ⟨

u∗ − un+1,G(un+1)− G(un)
⟩
≥ 0. (10)

Proof. By setting u = u∗ in (7), we have⟨
u∗ − un+1,G(un+1)− G(un)

⟩
≥

⟨
un+1 − u∗,F(un+1)

⟩
monotonicity of F (3) ≥

⟨
un+1 − u∗,F(u∗)

⟩
VI (1) ≥ 0 2

Lemma 2
Let {un} be a sequence generated by the algorithm (7), and u∗ a solution of the
VI (1), then we have

Df (u
n+1,un) ≤ Df (u

∗,un)−Df (u
∗,un+1) (11)

and⟨
u− un+1,G(un+1)− G(un)

⟩
≤ Df (u,u

n)−Df (u,u
n+1), ∀u ∈ Ω. (12)
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Proof. By direct calculation we have

Df (u,u
n)−Df (u,u

n+1)

= f(u)− f(un)− ⟨u− un,G(un)⟩ − f(u) + f(un+1) +
⟨
u− un+1,G(un+1)

⟩
= f(un+1)− f(un)−

⟨
un+1 − un,G(un)

⟩
+
⟨
u− un+1,G(un+1)− G(un)

⟩
= Df (u

n+1,un) +
⟨
u− un+1,G(un+1)− G(un)

⟩
,

from which immediately we obtain (12). By setting u = u∗ in the equality above,
and using (10) we can easily obtain (11) as well. 2

Lemma 3
Let {un} be a sequence generated by the algorithm (7), then we have

lim
n→∞

∥∥G(un+1)− G(un)
∥∥ = 0 (13)

Proof. From (11) we know that
{
Df (u

∗,un+1)
}

is monotonically non-increase
and bounded below, thus has a limit, say d.

lim
n→∞

Df (u
n+1,un) ≤ lim

n→∞

(
Df (u

∗,un)−Df (u
∗,un+1)

)
= d− d = 0.

Since f is strongly convex (A1), limn→∞ Df (u
n+1,un) = 0 implies

lim
n→∞

∥∥un+1 − un
∥∥ = 0.

According to the assumption A2, the assertion (13) is obtained. 2

Theorem 1
Let {un} be a sequence generated by the algorithm (7), then it is bounded and any
cluster point of {un} is a solution point of (1). Further more

sup
u∈Ω

⟨
ūN − u,F(u)

⟩
≤ α

N
(14)

where α = sup
{
Df (u,u

0)|u ∈ Ω
}

and ūN = 1
N

∑N
n=1 u

n.

Proof. At first, the boundedness of {un} can be deduced from (11), hence a
cluster point u∞ of {un} exists. Secondly from (7) we have⟨

u− un+1,F(un+1)
⟩
≥ −

⟨
u− un+1,G(un+1)− G(un)

⟩
≥ −

∥∥u− un+1
∥∥∥∥G(un+1)− G(un)

∥∥ .
Computing lower limits of both sides of the inequality above, we have

lim
n→∞

inf
⟨
u− un+1,F(un+1)

⟩
≥ 0.
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Subsequently we have

⟨u− u∞,F(u∞)⟩ ≥ 0,∀u ∈ Ω.

Hence u∞ is a solution of (1).
Now we move to prove the last part of the theorem. From the monotonicity of

F we have ⟨
un+1 − u,F(u)

⟩
≤

⟨
un+1 − u,F(un+1)

⟩
(7) ≤

⟨
u− un+1,G(un+1)− G(un)

⟩
(12) ≤ Df (u,u

n)−Df (u,u
n+1).

Summarize the inequality above from 0 to N − 1,⟨
1

N

N∑
n=1

un − u,F(u)

⟩
≤ 1

N

(
Df (u,u

0)−Df (u,u
N )

)
≤ Df (u,u

0)

N
.

Finally we get the result (14), which completes the proof. 2

The last assertion of the theorem means that the proposed algorithm has a
complexity of O(1/N).

4. Connection to Other Methods

This section is devoted to make some connections to some existing methods,
which shows that our algorithm could include these methods in a uniformed way.

4.1. Linear Case

It is very obvious that when G is a linear mapping, say a matrix M , then algorithm
(7) become a linear PPA (4). While what needs to be pointed out is that M
must fulfill the assumptions A1, A2. Specially M must be positive-definite and
bounded.

Now we verify that linear mapping G so defined fulfills the assumptions A1,
A2. Assume the maximum and minimum eigenvalue of M respectively be λmax

and λmin, then we have

⟨u− v,G(u)− G(v)⟩ = ⟨u− v,M(u− v)⟩ ≥ λmin∥u− v∥2

and
∥G(u)− G(v)∥ = ∥M(u− v)∥ ≤ λmax∥u− v∥

Hence we see that G is both strongly monotonic and Lipschitz continuous.
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4.2. Entropy Case

It is very natural to present an entropy-like version of the algorithm (7) motivated
by the third case of the D-function listed in Section 2,

Df (u,v) = −
d∑

j=1

uj

(
log

uj

vj
− 1

)
+

d∑
j=1

vj .

By differentiate it over the variable u, we obtain a corresponding nonlinear
proximal term for our algorithm

G(u)− G(v) =
(
log

u1

v1
, · · · , log ud

vd

)T

. (15)

However in this case, we need to restrict the domain to a positive orthant, say

Ω ⊂
{
(u1, · · · , ud)

T ∈ Rd : 0 < uj ≤
1

c
, j = 1, . . . , d

}
,

where c is a sufficiently small positive number.
The continuity of G is derived from its definition, and strongly monotonicity of

G can be seen from following arguments:

⟨u− v,G(u)− G(v)⟩ =
d∑

j=1

(uj − vj)(log uj − log vj) =

d∑
j=1

1

ηj
|uj − vj |2

≥ c

d∑
j=1

|uj − vj |2 = c∥u− v∥2.

In the argument, a mean value theorem

|log uj − log vj | =
1

ηj
|uj − vj |, for some ηj ∈ (uj , vj)

on each component is applied.

4.3. Projection Method: a Special Case

VI problem is closely related to the fixed-point problem. The fixed-point theory
has played an important role in the development of various algorithms for solving
VIs. In fact we have the following well-known result

Lemma 4
u∗ is a solution of VI (1) if and only if

u∗ = PΩ [u∗ − cF(u∗)] , ∀c > 0,
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where the operator PΩ(·), call projection, is defined as

PΩ(v) = argmin {∥u− v∥ : u ∈ Ω} . (16)

The fixed-point formulation in the above lemma suggests the simple iterative
algorithm solving (1)

un+1 = PΩ [un − cnF(un)] . (17)

This algorithm is widely known as projection method, and converges to a solution
point of (1) provided

1. F is Lipschitz continuous with constant L;
2. F is strongly monotonic;
3. stepsize fulfills cn < 1/L.

We now demonstrate how these convergence conditions coincide those of the
proposed algorithm A1, A2. By applying the principle of (2) in the minimization
problem in (16), one has

⟨u− PΩ(v),PΩ(v)− v⟩ ≥ 0,∀u ∈ Ω,

which leads to an important fact that⟨
u− un+1,F(un) +

1

cn
(un+1 − un)

⟩
≥ 0, ∀u ∈ Ω,

or⟨
u− un+1,F(un+1) +

(
1

cn
I − F

)
(un+1)−

(
1

cn
I − F

)
(un)

⟩
≥ 0, ∀u ∈ Ω.

From this point of view, the projection method (17) can be seen as a special case
of (7) where G = 1

cn
I − F .

Now we move to justify that G = 1
cn
I − F is continuous and strongly

monotonic. Assume F is Lipschitz continuous with constant L, immediately we
know the continuity of G from its definition. On the other hand, one has

⟨u− v,G(u)− G(v)⟩ =
⟨
u− v,

(
1

cn
I − F

)
(u)−

(
1

cn
I − F

)
(v)

⟩
=

1

cn
∥u− v∥2 − ⟨u− v,F(u)−F(v)⟩

≥ 1

cn
∥u− v∥2 − ∥u− v∥ ∥F(u)−F(v)∥

≥ 1

cn
∥u− v∥2 − L∥u− v∥2

=

(
1

cn
− L

)
∥u− v∥2.

Hence we know that G is strongly monotonic on the condition of cn < 1/L.
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5. Conclusion

In this work, we proposed a general nonlinear proximal point algorithm which
can unify some popular methods, including metric proximal point algorithm and
projection method. We gave the theoretic proof the convergence and convergence
rate as well.

Although we have more choices to determine the proximal term G(u)− G(v)
according to the special structure of the problem than the existing metric proximal
point algorithm and projection method could do, the choice of G is still subjected
to a strict restriction: it must be gradient/subgradient of a strongly convex function.

One strategy to overcome this shortcoming may be to replace Bregman distance
by other type of distance, for example

D(u,v) = ⟨u− v,G(u)− G(v)⟩,

where G is strongly monotonic so that the restriction on G being a
gradinet/subgradient can be loosen. A second issue worthy further consideration
is that since in our argument only the difference G(u)− G(v) rather than G(·) is
involved, so can we consider a more general form K(u,v) as the proximal term?
Whether these ideas works and if so how they are realized are questions open to
answers.
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