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Abstract Shinmura [12, 13, 14] proposes an optimal linear discriminant function
(OLDF) using integer programming (IP) called as IP-OLDF based on the minimum
number of misclassifications (MNM) criterion. It is defined on the data and discriminant
coefficient spaces. We can understand the relation of a linear discriminant function (LDF)
and NM clearly. This basic knowledge tells us several new facts of the discriminant
theory. If data satisfies the Harr’s condition [1] or general position, IP-OLDF can obtain
true MNM. But if data does not satisfy it, it may not choose the true MNM, because of
the unresolved problem of the discriminant analysis that all LDFs cannot discriminate
the cases xi on the discriminant hyper- plane (f(xi) = 0) correctly.
Therefore, Revised IP-OLDF [15, 16] is developed. However, it requires large elapsed
runtime (CPU) because it is solved by IP. In this paper, we show how to reduce CPU time
by Revised IPLP- OLDF, NMs of which are good estimates of MNMs. It is evaluated
whether NM of Revised IPLP-OLDF almost is as low as MNM by Revised IP-OLDF.
And CPU time of Revised IPLP-OLDF is remarkably improved compared with Revised
IP-OLDF. These results are examined by a total of 149 different discriminant functions
using by real training samples and re-sampling validation samples.
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1. Introduction

In this paper, four linear discriminant functions by mathematical programming
(MP) are introduced. IP-OLDF is defined by IP and looks for the minimum NM
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(MNM) of the training data. Discriminant rule1 is very simple. This simplicity
may hide many problems of discriminant theory. On the contrary, IP-OLDF finds
many new facts about discriminant theory as follows [16]:

1. It is defined on the data and discriminant coefficient spaces. Therefore,
we can understand the relation of discriminant functions and NMs. If
training data consists of n cases and p-features, n linear equations (Hi(b) =
txi ∗ b + 1 = 0) divide p-coefficients space into finite convex polyhedron.
Vector b is discriminant coefficients, and n vectors xi(i = 1, 2, · · · , n)
are n cases on data space. It is very important for us to understand
the relation of discriminant coefficients b and NMs on coefficient space.
Interior points bj of each convex polyhedron correspond to LDF (fj(x) =
tbj ∗ x + 1) on data space, and have unique NM, because interior points
are surrounded by specific k linear equations and NM is decided by the
number of minus half-plane of Hi(b) = 0(i = 1, 2, · · · , n) . We cannot
find the relation of discriminant function and NM until now, because
the constant is treated as free variable and define (p+ 1)-dimensional
coefficient space. Case xi on data space corresponds to linear equation
Hi(b) = 0 on discriminant coefficients space, and point bj on coefficients
space corresponds to discriminant functions fj(x) = tbj ∗ x + 1. This is
clear by fixing the constant of discriminant function.

2. Optimal convex polyhedron is defined as convex polyhedron, NM of which
has MNM. Until now, all discriminant function cannot avoid some cases
on f(x) = 0. We have no rule how to discriminate these cases into class
1/class 2 correctly. This unresolved problem is abandoned until now. This
means that NMs of all discriminant functions may not be correct. If we
judge |f(x)| ≤ 10−6 as zero and the number of cases on f(x) = 0 are ‘m’,
true NM may increase at least m. It is founded that IP-OLDF finds vertex of
OCP, if data is general position2 . Only Revised IP- OLDF can find the
interior point of OCP directly. If data is not general position, IP-OLDF
may not find the vertex of OCP. The point bj on vertex or edge of convex
polyhedron is not free from the unresolved problem, because there are cases
xi on fj(xi) = 0. If LDF finds interior point bj in theoretical, this function
is free from the unresolved problem. This is confirmed by checking that
the number of |f(x)| ≤ 10−6 is zero. Therefore, all discriminant functions
except for Revised IP-OLDF must output NM and this number.

1Let f(x) is a linear discriminant function. If yi ∗ f(xi) > 0, xi is classified into class 1/class
2 correctly. If yi ∗ f(xi) < 0, xi is misclassified into class 1/class 2. We cannot decide how to
discriminate f(xi) = 0 into class 1/class 2. We call this problem as the unresolved problem of
discriminant theory.
2General position means that the design matrix made by features satisfies Harr’s condition [1].
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3. MNM decreases monotonously MNMq ≥ MNMq+1. MNMq is MNM of
q-features, and MNMq+1 is MNM of (q + 1)-features added one feature to
existed q-features. Proof is very simple because OCP in q-coefficients space
is included in (q + 1)- coefficients space. This means an important fact. If
MNMq = 0, MNM of all models including these q-features are zero. Flury
& Rieduyl [4] collect 200 genuine and counterfeit Swiss bank note data
having 6 features and write a textbook about discriminant theory. IP-OLDF
finds MNM of two-features (x4, x6) is zero. Therefore, 16 models including
(x4, x6) are zero. It is concluded that Fisher’s LDF and QDF based on the
variance covariance matrices almost cannot recognize linear separable data
[20].

In this research, two comparisons are tried. First, Revised IP- OLDF resolves
problems of discriminant theory. But, this requires more CPU time, because this
is solved by IP. Therefore, Revised IPLP-OLDF that looks for good estimate
of MNM is developed. The CPU times and NMs of Revised IPLP-OLDF are
compared with Revised IP-OLDF. It is concluded that the CPU time of Revised
IPLP-OLDF is faster than Revised IP-OLDF, and error rates of Revised IPLP-
OLDF are less than equal those of Revised IP-OLDF in the validation sample.
Secondly, Revised IPLP-OLDF is compared with Fisher’s LDF and logistic
regression by 100-fold cross validations using 100 re-sampling samples [18, 19].

2. Linear Discriminant Functions (LDF)

2.1. Fisher’s LDF and logistic regression

Fisher [3] introduces Fisher’s LDF based on the maximization of ratio (between
classes / within class). If we admit Fisher’s assumption that the distributions of
two classes are normal distributions such as F1(x : m1,Σ1) and F1(x : m2,Σ2),
and variance covariance matrices are same(Σ1 = Σ2), the same Fisher’s LDF
is derived by the plug in rule such as log(F1/F2) = 0. If variance covariance
matrices of two classes are not same (Σ1 ̸= Σ2), QDF is introduced. Multi-class
discrimination and MT (Mahalanobis - Taguchi) theory [22] in QC are defined
by Mahalanobis distance. Variance covariance matrix plays an important role in
the discrimination theory. Model selection technique is achieved by the sweep
operator [5]. But several serious problems are found as follows.

1. In general, NMs or error rates3 of Fisher’s LDF and QDF are worse
than logistic regression. Therefore, users in medical and economic field
use logistic regression instead of Fisher’s LDF and QDF. This is reason

3See [24] about the relation of sample and population error rates under Fisher’s assumption.
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why logistic regression is free from specific distribution such as normal
distribution.

2. NMs of LDF and QDF are not zero for linear separable data such as Swiss
bank note data and 18 pass/fail determinations of exams [17]. Latter results
are as follows. Error rates of Fisher’s LDF are from 2.2% to 16.7%. Error
rate of QDF is from 0.8% to 10.8% [20]. These problems are caused by the
reason why real data does not satisfy Fisher’s assumption.

2.2. IP-OLDF

IP-OLDF is defined in (1). Vector b is p-discriminant coefficients. From n cases,
we obtain the optimal coefficients b that minimizes

∑
ei by IP. The constant of

linear equation (Hi(b) = txi ∗ b + 1) is fixed to 1 for i = 1, . . . , n. This notation
can show the relation of LDFs and NMs. Decision variable ei is 0/1 integer
variable for xi. If xi is classified into class 1/class 2 correctly, ei = 0 and
yi ∗ (txi ∗ b + 1) ≥ 0. But, if there are cases on the discriminant hyper-plane
(txi ∗ b + 1) = 0, IP-OLDF treats ei = 0 and yi ∗ (txi ∗ b + 1) ≥ 0 nevertheless
we cannot judge which classes these cases belong to. For misclassified case xi,
ei = 1 and yi ∗ (txi ∗ b + 1) ≥ −10000. This means that binary integer variable
choose (txi ∗ b + 1) = 0 or (txi ∗ b + 1) = −10000 as the linear discriminant
hyper- planes for classified /misclassified cases. Therefore, we get MNM as
optimal solution if data is general position. If data is not general position, object
function may not be true MNM4.

MIN = Σei; yi ∗ (txi ∗ b + 1) ≥ −M ∗ ei. (1)

where
i = 1, 2, · · · , n (n is the sample size);
yi = 1/− 1 for xi = (xi1, xi2, · · · , xip) ∈ class 1/class 2;
ei : 0/1, the decision variable corresponding to each xi;
b: p-discriminant coefficients vector;
M : Big M constant such as 10000.
This model in (1) is very important that the constant is fixed to be 1. We can
exchange b and x, and obtain Hi(b) = txi ∗ b + 1 = tb ∗ xi + 1 = f(xi). Case xi

on data space corresponds to linear equation Hi(b). Point bj on discriminant
coefficient space corresponds to linear discriminant function fj(x) = tbj ∗ x + 1.
Therefore, this model is considered on both data and discriminant coefficient
spaces. The linear hyper-plane Hi(b) divides the p-coefficients space into two
half planes. If bj is included in the plus half plane of Hi(b)(yi ∗ (txi ∗ bj +
1) > 0), it means that yi ∗ (txi ∗ bj + 1) = yi ∗ (tbj ∗ xi + 1) = yi ∗ fj(xi) > 0.

4Liitschwager & Wang [6] proposes LDF based on MNM criteria, but their model could not find
the true MNM because the constraints are inaccurate.
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Linear discriminant function fj(x) discriminates xi correctly on data space. If
bi is included in the minus half plane of Hi(b)(yi ∗ (txi ∗ bj + 1) < 0), fj(x)
misclassifies xi on data space. N linear hyper-planes divide the discriminant
coefficients space into a finite number of convex polyhedrons. Interior points
of this convex polyhedron are included in the plus or minus half plane of each
Hi(b) = 0. Therefore, the interior points of same convex polyhedron have a
unique NM. LDFs corresponding to these interior points classify the same cases
correctly and misclassify others. If we choose LDF corresponding to the interior
points, those are free from the unresolved problems. If data is general position,
IP– OLDF stops the optimization by choosing just p constraints that become
Hi(b) = 0 out of n constraints. Interior points bj of OCP are located in the plus
side of Hi(b) = 0 that composes OCP. If data is not general position, IP-OLDF
may choose over (p+ 1) constraints. We cannot discriminate these (p+ 1) cases
in class 1/class 2 theoretically. Until now, this important recognition is disregard.

2.3. Revised IP-OLDF and Revised LP-OLDF

Revised IP-OLDF is defined in (2). The constant of this discriminant function is
a free variable b0. The right-hand constant of the constraints are changed to (1−
M ∗ ei). If ei = 0, xi is classified by SVs (yi ∗ (txi ∗ b + b0) ≥ 1). If ei = 1 for the
misclassified cases, the constraints are relaxed (yi ∗ (txi ∗ b + b0) ≥ −9999). The
Big M constant is very important to prevent cases from being on the discriminant
hyper-plane, because the misclassified cases by SVs are extracted to alternative SV
(yi ∗ (txi ∗ b + b0) = −9999) and there are no cases in |yi ∗ (txi ∗ b + b0)| ≤ 1.

MIN =
∑

ei; yi ∗ (txi ∗ b + b0) ≥ 1−M ∗ ei. (2)

where b0: constant term (free variable).
Revised LP-OLDF is defined by changing ei from 0/1 decision variable to real

nonnegative variable. This method is one of the L1- norm methods [7, 21]. The
object function is the summation of the distances from the discriminant hyper-
plane of the misclassified cases, because ei = 0 for the classified cases. It is as
same as S-SVM5 if penalty c is large positive number.

2.4. Revised IPLP-OLDF

Revised IPLP-OLDF is defined in two phases as follows: In the first phase,
Revised LP-OLDF is applied to all cases, and these cases are categorized in two
groups: cases that are classified correctly (ei = 0) and cases that are not classified
(ei = 1) by SVs. In the second phase, Revised IP-OLDF is applied to latter cases.

5S-SVM has two objects as same as the portfolio model [23].
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The CPU time may be reduced because Revised IP-OLDF analyzes restricted
cases. This method is called as Revised IPLP-OLDF.

3. Comparison of Revised IP-OLDF and Revised IPLP-OLDF

In this study, four kinds of real data are used as the training samples: The
student data [16] consists of 40 students with five features. The object variable
consists of two classes: 25 students who pass the exam and 15 students who
fail. All combinations of features (31 = 25 − 1) are investigated. Iris data [2]
consists of 100 cases with 4 features. The object variable consisted of two species:
50 versicolor and 50 virginica. All combinations of features (15 = 24 − 1) are
investigated. CPD data [11] consists of 240 patients with 19 features. The object
variable consists of two classes: 180 pregnant women whose babies are born by
natural delivery and 60 pregnant women whose babies are born by Caesarian
section. Forty models selected by forward and backward stepwise methods are
investigated, because there are (219 − 1) models by all combinations of features.
The Swiss bank notes data [4] consists of 200 cases with 6 features. The object
variable consists of two kinds of bills: 100 genuine and 100 counterfeit bills. A
total of (63 = 26 − 1) models are investigated. Four kinds of re-sampling data
are generated by Speakeasy. These samples consisted of 20,000 cases and those
are used as the validation samples. Revised IP-OLDF and Revised IPLP-OLDF
are applied to both the training and validation samples by LINGO (Optimization
Modeling Software for Linear, Nonlinear, and Integer Programming) Ver.10 [10]
developed by LINDO Systems Inc. in 2008. And, both CPU times are compared
from Table1 to Table4. In addition to this results, the NMs of 135 models by
Revised IPLP-OLDF are compared with 135 NMs of LDF and logistic regression
by 100-folf cross validation in Table5 by LINGO Ver.14 in 2014.

3.1. Swiss Bank Notes Data

Table 1 shows the result of the Swiss bank note data (bank data). The first column
(Var.) shows the 63 models from 6-features (p=6) to 1-feature (p=1). In the same
number of features (p), those are arranged in descending order of R-squares.
Here, x1 is length of bill (mm); x2 and x3 are width of left and right edges
(mm); x4 and x5 are bottom and top margin widths (mm); x6 is length of image
diagonal (mm). Variable name is shown by only suffix number in the table. The
third column (IP) shows MNM by Revised IP-OLDF. IP-OLDF finds that MNM
of(x4, x6) is zero. Therefore, 16 models including (x4, x6) are linear separable.
The fourth column (EC1) shows NM of the re- sampling data (or validation data)
obtained by 63 discriminant functions of Revised IP-OLDF. The fifth column (%)
shows the difference of two error rates as defined by the formula (EC1/20000
- IP/200)∗100. This column means one of “generalization ability index of each
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Revised IP-OLDF”. Six differences are greater than 4%. We had better considered
about generalization ability of each model in addition to whole models.

Table 1. Result of Bank Data (Only 6 models are shown in p = 4, 3, 2)
Var. p IP EC1 % LP IPLP EC2 %
1,2,3,4,5,6 6 0 0 0.0 0 0 0 0.0
2,3,4,5,6 5 0 0 0.0 0 0 0 0.0
1,3,4,5,6 5 0 95 0.5 0 0 0 0.0
1,2,4,5,6 5 0 799 4.0 0 0 0 0.0
1,2,3,4,6 5 0 807 4.0 0 0 531 2.7
1,2,3,4,5 5 1 371 1.4 2 1 389 1.4
1,2,3,5,6 5 1 115 0.1 1 1 115 0.1
3,4,5,6 4 0 0 0.0 0 0 0 0.0
2,4,5,6 4 0 0 0.0 0 0 0 0.0
1,4,5,6 4 0 95 0.5 0 0 0 0.0
2,3,4,6 4 0 0 0.0 0 0 0 0.0
1,3,4,6 4 0 1303 6.5 0 0 531 2.7
1,2,4,6 4 0 1303 6.5 0 0 531 2.7
4,5,6 3 0 0 0.0 0 0 0 0.0
3,4,6 3 0 0 0.0 0 0 0 0.0
1,4,6 3 0 1303 6.5 0 0 531 2.7
2,4,6 3 0 0 0.0 0 0 0 0.0
3,4,5 3 2 198 0.0 3 2 198 0.0
2,4,5 3 2 198 0.0 2 2 198 0.0
4,6 2 0 0 0.0 0 0 0 0.0
4,5 2 3 277 -0.1 4 3 282 -0.1
3,6 2 1 115 0.1 1 1 115 0.1
5,6 2 1 115 0.1 1 1 115 0.1
2,6 2 1 115 0.1 1 1 115 0.1
1,6 2 1 115 0.1 1 1 115 0.1
6 1 2 211 0.1 2 2 211 0.1
4 1 16 1589 -0.1 16 16 1589 -0.1
5 1 47 4758 0.3 45 47 4758 0.3
3 1 43 4331 0.2 43 43 4331 0.2
2 1 48 4791 0.0 53 48 4791 0.0
1 1 55 11869 31.8 87 55 11869 31.8

The LP column shows NMs by Revised LP-OLDF in the first phase of Revised
IPLP-OLDF. NM of 1- variable (x5) is 45 and is less than MNM=47. MNM
is the lower limit of NMs of all LDFs. This shows that Revised LP-OLDF is
not free from the unresolved problem. The IPLP column shows the estimates
of MNM by Revised IPLP-OLDF in the second phase. All 63 results of both
functions are same. The EC2 column shows NMs in the validation samples. The
second “%” column shows the difference of the two error rates by the formula
(EC2/20000 - IPLP/200)∗ 100. By comparison of two ‘%’ columns tell us that the
values of Revised IPLP-OLDF are less than those of Revised IP-OLDF. This may
show that generalization ability of Revised IPLP-OLDF is better than Revised IP-
OLDF in the whole models. MP-based models are solved by fixing some cases
on the discriminant hyper-plane or SVs. Therefore, these discriminant functions

Stat., Optim. Inf. Comput. Vol. 2, June 2014.



IMPROVEMENT OF CPU TIME OF LINEAR DISCRIMINANT FUNCTIONS 121

cannot count NM correctly because some cases lie on the discriminant hyper-
plane. In the case of Revised LP-OLDF, some cases are fixed on the SVs. But, if
ei = 1/10000 = 0.0001, xi lies on the discriminant hyper-plane. This is examined
in future research.

The CPU times of Revised IP-OLDF and Revised IPLP-OLDF of 63 models
are 133,399 seconds and 2688 seconds, respectively. Revised IPLP-OLDF is
approximately 50 times faster than Revised IP-OLDF.

3.2. Iris Data

Table 2. Result of Iris Data
Var. p IP EC1 % LP IPLP EC2 %
1,2,3,4 4 1 204 0.0 2 1 204 0.0
2,3,4 3 2 411 0.1 2 2 411 0.1
1,3,4 3 2 414 0.1 2 2 414 0.1
1,2,4 3 4 799 0.0 7 4 799 0.0
1,2,3 3 2 402 0.0 3 2 402 0.0
2,4 2 5 1020 0.1 6 5 1024 0.1
3,4 2 3 622 0.1 6 3 622 0.1
1,3 2 4 817 0.1 5 4 823 0.1
1,4 2 5 1024 0.1 6 5 1024 0.1
2,3 2 6 1209 0.0 6 6 1213 0.1
1,2 2 25 4924 -0.4 27 25 4975 -0.1
4 1 6 1232 0.2 6 6 1232 0.2
3 1 7 1413 0.1 7 7 1408 0.0
1 1 27 5362 0.2 25 27 5362 -0.2
2 1 37 7351 0.2 34 37 7351 -0.2

Table 2 shows the result of the iris data. The first column (Var.) shows the
15 models from p=4 to p=1. x1 through x4 mean sepal length (x1), sepal width
(x2), petal length (x3), petal width (x4), and species (x5). The third column (IP)
shows MNM by Revised IP- OLDF. The fourth column (EC1) shows NM of the
re-sampling data by obtained 31 discriminant functions of Revised IP-OLDF. The
fifth column (%) is defined by the formula (EC1/20000 - IP/100)∗ 100. The LP
column shows NMs by Revised LP-OLDF. NMs of two 1-var models such as (x1)
and (x2) are less than MNMs. The IPLP column shows the estimates of MNM
by Revised IPLP-OLDF in the second phase. All 15 results of both functions are
same. The EC2 column shows NM in the validation samples. The second ‘%’
column is defined by the formula (EC2/20000 - IPLP/100) ∗ 100. All absolute
values of both ‘%’ columns are less than 0.4%. This implies us that both Revised
IP-OLDF and Revised IPLP-OLDF are good generalization ability for iris data.
The CPU times of Revised IP- OLDF and Revised IPLP-OLDF of the 15 models
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are 446 seconds and 30 seconds. Revised IPLP-OLDF is approximately 15 times
faster than Revised IP-OLDF.

3.3. Student Data

Table 3. Result of Student Data
Var. p IP EC1 % LP IPLP EC2 %
1,2,3,4,5 5 3 2004 3 4 3 2004 3
1,2,3,5 4 3 2004 3 4 3 2004 3
1,2,3,4 4 3 2004 3 5 3 2004 3
1,3,4,5 4 3 2004 3 6 3 2004 3
1,2,4,5 4 4 2099 0 6 4 2099 0
2,3,4,5 4 3 2004 3 6 3 2004 3
1,2,3 3 3 2004 3 4 3 2004 3
1,3,5 3 3 2004 3 4 3 2004 3
1,3,4 3 5 2486 0 7 5 2486 0
1,2,4 3 5 2486 0 7 5 2486 0
1,2,5 3 3 2004 3 6 3 2004 3
2,3,4 3 4 2637 3 7 4 2637 3
2,3,5 3 3 2004 3 4 3 2004 3
3,4,5 3 3 2004 3 4 3 2004 3
1,4,5 3 6 3720 4 8 6 3720 4
2,4,5 3 5 2808 2 7 5 2808 2
1,3 2 5 2831 2 5 5 2831 2
1,2 2 5 2486 0 9 5 2486 0
2,3 2 5 3034 3 7 5 3034 3
3,4 2 5 2808 2 7 5 2808 2
3,5 2 4 2637 3 7 4 2637 3
1,5 2 4 2401 2 6 4 2401 2
1,4 2 7 3587 0 6 7 3587 0
2,4 2 6 3464 2 5 6 3464 2
2,5 2 6 3757 4 3 6 3757 4
4,5 2 13 6290 -1 13 13 6290 -1
3 1 8 4527 3 8 8 4527 3
1 1 7 3587 0 6 7 3587 0
2 1 7 4641 6 3 7 3628 1
4 1 13 6290 -1 13 13 6290 -1
5 1 15 10000 13 15 15 10000 13

Table 3 shows the result of the student data. The first column (Var.) shows the
31 models from p=5 to p=1. x1 through x5 mean the hours of study per day,
number of days drinking per week, spending money per month, sex (0/1 dummy
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variable), and smoking (0/1 dummy variable). The third column (IP) shows MNM
of the student data. The fourth column (EC1) shows NM of the re-sampling data
by Revised IP-OLDF. The fifth column (%) shows the difference of the two
error rates by the formula (EC1/20000 - IP/40) ∗ 100. Three 2-variable models
and two 1-variable models in LP column are less than MNMs in IP column.
The IPLP column shows estimates of MNMs by Revised IPLP-OLDF. All 31
results of both functions are same. The EC2 column shows NM of the re-sampling
data by Revised IPLP-OLDF. The second ‘%’ column is defined by the formula
(EC2/20000 - IPLP/40) ∗ 100. Both values of ‘%’ columns except for 1-variable
(x2) are same. Absolute values of both ‘%’ columns are larger than other data sets.
The CPU times of Revised IP-OLDF and Revised IPLP-OLDF are 20 seconds and
40 seconds. Revised IPLP- OLDF is slower than Revised IP-OLDF, because all
features are integers and many values are overlaps.

3.4. CPD Data

Table 4 shows the result of CPD data. The first column (p) shows the 40 models
from p=1 to p=19. “F, B, f, and b in the column Type” show the forward (F) and
backward (B) models for the full models, and forward (f) and backward (b) models
for the 16-variables model dropped three variables (x4, x7 and x14) that relate
to multicolinearities. The features are as follows. x1: age of a pregnant woman,
x2: number of times of a delivery, x3: number of the sacrum, x4: anteroposterior
distance at the pelvic inlet, x5: anteroposterior distance at the wide pelvis, x6:
anteroposterior distance at the narrow pelvis, x7: the shortest anteroposterior
distance, x8: fetal biparietal diameter, and x9: x7-x8, x10: anteroposterior distance
at the pelvic inlet, x11: biparietal diameter at the pelvic inlet, x12: x13-x14, x13:
area at the pelvic inlet, x14: area of the fetal head, x15: area at the bottom
length of the uterus, x16: abdominal circumference, x17: external conjugate, x18:
interprochanteric diameter, and x19: lateral conjugate. Small random noises are
added to x9 and x12. The fourth column (IP) shows MNM by Revised IP-OLDF.
The fifth column (EC1) shows NM of the re-sampling data by Revised IP-OLDF.
The sixth column (%) is defined by the formula (EC1/20000 - IP/240) ∗100. All
NMs in LP column are greater than equal those in IP column. The IPLP column
shows the estimates of MNM in the second phase. All 40 results of both functions
are same. The EC2 column shows NM of the re-sampling data. The second ‘%’
column is defined by the formula (EC2/20000 - IPLP/240) ∗ 100. Comparison of
two ‘%’ columns are as follows. There are 32 models, both ‘%’ of which are same.
Seven ‘%’ of Revised IP-OLDF are greater than those of Revised IPLP-OLDF.
And only one error rate of Revised IPLP-OLDF is greater than Revised IP-OLDF.
The CPU times of Revised IP-OLDF and Revised IPLP-OLDF of the 40 models
are 38,170 seconds and 380 seconds. Revised IPLP-OLDF is approximately 100
times faster than Revised IP-OLDF. This large difference in CPU time may be
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caused by the multicolinearity, because it may require a long time to check the
convergence.

Table 4. Result of CPD Data
p Type Var. IP EC1 % LP IPLP EC2 % Sign
1 FBfb 12 20 2142 2.4 20 20 2142 2.4 =
2 FBfb 9,12 13 1815 3.7 17 13 1815 3.7 =
3 FBfb 9,12,18 12 1647 3.2 18 12 1524 2.6 >
4 Ffb 9,12,15,18 10 1285 2.3 13 10 1285 2.3 =
4 B 9,12,13,18 11 1468 2.8 19 11 1468 2.8 =
5 Ff 9,12,15,17,18 10 1468 2.8 19 10 1468 2.8 =
5 b 2,9,12,15,18 7 1043 2.3 13 7 1043 2.3 =
5 B 9,1214,18 11 1468 2.8 18 11 1468 2.8 =
6 B 9,1215,18 9 1136 1.9 13 9 1136 1.9 =
6 b 1,2,9,12,15,18 7 1043 2.3 14 7 1043 2.3 =
6 Ff 2,9,12,15,17,18 7 1043 2.3 14 7 1043 2.3 =
6 DOC1 5,9,13,14,17,18 12 1533 2.7 18 12 1533 2.7 =
6 DOC2 7,9,13,14,17,18 11 1361 2.2 17 11 1361 2.2 =
7 B 9,1215,17,18 9 1136 1.9 13 9 1136 1.9 =
7 Ffb 1,2,9,12,15,17,18 6 887 1.9 14 6 887 1.9 =
8 F 1,2,7,9,12,15,17,18 6 887 1.9 12 6 887 1.9 =
8 B 1,9,1215,17,18 8 980 1.6 15 8 980 1.6 =
8 fb 1,2,8,9,12,15,17,18 6 887 1.9 12 6 887 1.9 =
9 B 1,2,9,1215,17,18 6 887 1.9 13 6 887 1.9 =
9 F 1,2,5,7,9,12,15, 17,18 4 408 0.4 8 4 408 0.4 =
9 fb 1,2,5,8,9,12,15,17,18 4 539 1.0 9 4 539 1.0 =
10 B 1,2,7,9,1215,17,18 6 887 1.9 14 6 887 1.9 =
10 F 1,2,5,7,9,12,15,1719 4 539 1.0 7 4 408 0.4 >
10 fb 1,2,5,8,9,12,15,1719 3 370 0.6 8 3 370 0.6 =
11 B 1,2,5,7,9,1215,17,18 4 408 0.4 9 4 408 0.4 =
11 F 1,2,5,7,9,12,13,15,1719 4 539 1.0 9 4 408 0.4 >
11 fb 1,2,5,8,9,12,13,15,1719 3 370 0.6 8 3 370 0.6 =
12 FB 1,2,5,7,9,1215,1719 4 539 1.0 9 4 408 0.4 >
12 fb 1,2,5,8,9,12,13,1519 3 370 0.6 8 3 370 0.6 =
13 FB 1,2,4,5,7,9,1215,1719 3 240 -0.1 8 3 370 0.6 <
13 fb 1,2,5,8,9,1113,1519 3 390 0.7 9 3 390 0.7 =
14 FB 1,2,4,5,7,9,1115,1719 3 370 0.6 7 3 370 0.6 =
14 fb 13,5,8,9,1113,1519 2 214 0.2 7 2 214 0.2 =
15 FB 1,2,4,5,7,9,1119 3 370 0.6 8 3 370 0.6 =
15 fb 13,5,813,1519 2 202 0.2 5 2 202 0.2 =
16 FB 1,2,4,5,79,1119 2 202 0.2 5 2 202 0.2 =
16 fb 13,5,6,813,1519 2 214 0.2 5 2 202 0.2 =
17 FB 1,2,4,5,719 2 334 0.8 8 2 214 0.2 >
18 FB 1,2,419 2 334 0.8 5 2 214 0.2 >
19 FB 119 2 221 0.3 6 2 102 0.3 >

4. Comparison Revised IPLP-OLDF with Fisher’s LDF and logistic
regression by 100-fold cross validation

One hundred re-sampling samples are generated by four data. NMs of Revised
IPLP-OLDF are compared with those of Fisher’s LDF and logistic regression
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by 100-fold cross validations [18, 19]. The results of Revised IPLP-OLDF are
obtained by LINGO Ver.14 in 2014. The results of Fisher’s LDF and logistic
regression are obtained by JMP Ver.10 [8]. All possible models of Iris (24 − 1 =
15 models), Student (25 − 1 = 31 models), Swiss bank note (26 − 1 = 63 models)
data are computed. There are (219 − 1) models of CPD data. Therefore, only 26
models selected by the forward and backward stepwise methods are computed. At
first, 100 NMs are computed for 135 different models. And, mean of error rates are
computed by 135 models. Next, these 13,500 discriminant functions are applied
for validation samples and computed mean error rates for validation samples. Last,
four differences are computed in Table 5.

Mean error rates of difference of (LDF – Revised IPLP-OLDF) for training
samples are summarized by minimum and maximum values. Minimum and
maximum values of 15 different models of iris training samples are 0.55% and
5.23%. This means that mean of error rates of LDF are from 0.55% to 5.23% worse
than those of Revised IPLP-OLDF. Minimum and maximum values of 15 different
models of iris validation samples are -0.6% and 2.36%. Only two models out of
15 models of LDF are better than Revised IPLP-OLDF in the validation samples.
In the training samples, 135 models of LDF are worse than those of Revised
IPLP-OLDF. Only 15 models of LDF are better than Revised IPLP-OLDF for
validation samples. Mean error rates of difference (logistic regression – Revised
IPLP - OLDF) tell us that only 3 and 33 models of logistic regression are better
than Revised IPLP-OLDF for the training and validation samples, respectively. In
2014, these results are recalculated using LINGO Ver.14. The elapsed runtimes
of Revised IPLP-OLDF are less than 3 minutes. The elapsed runtimes of Fisher’s
LDF and logistic regression by JMP are over 21 minutes. The elapsed runtimes
of Revised IPLP-OLDF in Ver.13 were slower than those of Fisher’s LDF and
logistic regression. Reversals of CPU time have occurred for this time.

Table 5. Comparison of mean of error rates
of Revised IPLP-OLDF vs. (LDF and logistic regression)

LDF-IPLP Logistic regression-IPLP
135 models Training

(0)
Min/Max

Validation
(15)
Min/Max

Training
(3)
Min/Max

Validation
(33)
Min/Max

Iris(15) 0.55/5.23 - 0.6(2)/2.36 0.59/5.31 -0.84(2)/1.85
Bank(63) 0/5.32 -0.33(10)/3.45 0/5.4 -0.3(24)/3.64
Student(31) 1.46/8.61 -1.29(3)/7.11 -2.12 (3)/6.48 -2.89(7)/5.59
CPD(26) 3.05/7.28 2.21/6.15 0.13/3.43 0.29/1.74

5. Conclusion

The CPU times of Revised IPLP-OLDF of bank data, iris data, and CPD data
are 50, 15, and 100 times faster than those of Revised IP-OLDF in 2009. All NMs
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obtained by Revised IPLP-OLDF are the same as the MNMs of Revised IP-OLDF.
Therefore, Revised IPLP- OLDF is useful in analyzing the huge size of data such
as big data. It is compared with Fisher’s LDF and logistic regression in 2014.
It is concluded that only 15 models of LDF are better than Revised IP- OLDF
for the validation samples. And only 3 and 33 models of logistic regression are
better than Revised IPLP-OLDF in the training and validation samples. Most of
statistician said Revised IP-OLDF overestimates for validation samples, because
it over-fits for the training sample and means of error rates are minimum values
among all LDFs in theoretically. On the other hand, most of statistician believes
generalization ability of LDF is good for validation samples because it is derived
from Fisher’s assumption without examination by the real data. But most of real
data doesn’t satisfy Fisher’s assumption. Pass/fail determinations of exams tell us
that LDF and QDF based on variance covariance matrices cannot recognize linear
separable data, nevertheless these data are trivial linear separable data [17, 20].

Appendix: 100-fold cross validation of Revised IPLP-OLDF for Iris data in
Table 5.

The training samples: (100 cases by 4 features).
The validation sample: (10000 cases by 4 features).

1. Preparation of Excel

Prepare the input- and output- cell array on Excel sheet. Cell array names are used
in LINGO array names.
INPUT Arrays: Two input data (cell names are ES and CHOICE). ES: re-
sampling sample of iris data consists of 10,000 rows by 6 columns (4 features,
yi, sub-group number GN from 1 to 100).
For first class (yi =1), row data = (X1i, X2i, X3i, X4i, yi, GN) for i = 1, . . . , 50
and GN=1 . . . , 100.
For second class (yi =-1), row data = (X1i, X2i, X3i, X4i, yi, GN) for i =
51, . . . , 100 and GN=1 . . . , 100.
CHOICE: all combination of features consists of 15 rows by 5 columns (4 features
and the constant). Full model and model (X4) are described as (1,1,1,1,1) and
(0,0,0,1,1).

2. K-fold cross validation for iris data.

MODEL: !iris data “ !.....; is a comment.” ;
SETS: !Sets defines sets name/dimension/array names. P1 with 5-elements is set
name and VARK with 5-elements is array name;
P/1..4/; P1/1..5/:VARK; P2/1..6/; MS/1..15/:; MS100/1..1500/:;
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N/1..100/: E, SCORE, CONSTANT; N2/1..10000/: SCORE2;
! D2 is two dimensional set with 10000 rows * 6 columns. ES is array stored in re-
sampling sample. MB is two dimensional set with 15 rows * 5 columns. CHOICE
is array stored in the discriminant functions pattern by 0/1 values.VARK100 with
1500 rows * 6 columns is stored in the 15 * 100 discriminant coefficients. IC and
EC with 15 rows * 100 columns are stored in NMs of the training and validation
samples;
D2(N2,P2):ES; MB(MS,P1): CHOIC;
VV(MS100,P2):VARK100; G100/1..100/:;
ERR(MS,G100):IC, EC; D(N,P1):IS;
ENDSETS
DATA: ! ES and CHOICE are input from Excel and are used in LINGO’s array. ;

BIGM=10000; ES, CHOICE=@OLE();
ENDDATA
SUBMODEL LP: !Submodel defines Revised LP-OLDF. If you delete ‘!’ of

“! @FOR(N(I):@BIN(E(I))); ” , this model is changed to Revised IP-OLDF. ;
MIN=@SUM(N(i):E(i));
@FOR(N(i):@SUM(P1(J1):IS(i,J1) * VARK(J1) * CHOICE(k,J1)) > 1-BIGM

* E(i));
@FOR(P1(J1):@FREE(VARK(J1))); ! @FOR(N(I):@BIN(E(I)));

ENDSUBMODEL
SUBMODEL IPLP: !Define Revised IPLP-OLDF. ;

MIN=@SUM(N(i):E(i));
@FOR(N(i):@SUM(P1(J1):IS(i,J1)* VARK(J1)* CHOICE(k,J1) )>1-BIGM *

E(i));
@FOR(P1(J1): @FREE(VARK(J1)));
@FOR(N(I)|CONSTANT(i)#NE#0:@BIN(E(I)));
@FOR(N(I)|CONSTANT(i)#EQ#0:E(I)=0);

ENDSUBMODEL
CALC: ! Calc section controls the complex and continuous optimizing models. ;

@SET(’DEFAULT’);
K=1;Lend=@SIZE(MS);
@WHILE( K#LE#Lend:f=1; !15 different models;
@WHILE( f#LE#100: !100-fold cross validation ;
@FOR(D(i,j): IS(i,j)=ES( @SIZE(N) * (f-1)+i, j) );
@SOLVE(LP); !1500 iterations for Revised LP-OLDF;
@FOR(N(i):
@IFC( E(I)#EQ#0: CONSTANT(i)=0; @ELSE CONSTANT(i)=1;));
NM1=0; NM2=0; ! NMs of the training and the validation samples are stored
in NM1 and NM2;
@SOLVE(IPLP); ! The second step of Revised IPLP-OLDF. ;
@FOR(P1(j):VARK100(100*(k-1)+f,j)=VARK(j)* CHOICE(k,j) );
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VARK100(100 * (k-1)+f, @SIZE(P2))=K;
@FOR(n(l):SCORE(l)=@SUM(P1(j):IS(l,j)* VARK(j)* CHOICE(k,j)));
@FOR(n2(nn):SCORE2(nn)=@SUM(P1(j):ES(NN,j)* VARK(j)*

CHOICE(k,j)));
@FOR(n(l):@IFC(SCORE(l)#LT#0: NM1=NM1+1));
@FOR(n2(nn):@IFC(SCORE2(nn)#LT#0:NM2=NM2+1)); IC(K,f)=NM1;

EC(k,f)=NM2;
f=f+1); K=K+1);

ENDCALC
DATA: ! Output the coefficients, NMs. ;

@OLE( )=VARK100, IC, EC;
ENDDATA
END
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