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of QQP, e.g., convex programs and trust region subproblems, SDP relaxation provides
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In this paper, we consider a certain QQP where the variable is neither vector nor
matrix but a third-order tensor. This problem can be viewed as a generalization of the
ordinary QQP with vector or matrix as it’s variable. Under some mild conditions, we
first show that SDP relaxation provides exact optimal solutions for the original problem.
Then we focus on two classes of homogeneous quadratic tensor programming problems
which have no requirements on the constraints number. For one, we provide an easily
implemental polynomial time algorithm to approximately solve the problem and discuss
the approximation ratio. For the other, we show there is no gap between the SDP
relaxation and itself.
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1. Introduction

A tensor is a multidimensional array. More formally, an N -way or N th-order
tensor is an element of the tensor product of N vector spaces, each of which has
its own coordinate system. A first-order tensor is a vector, a second-order tensor is
a matrix, a third-order tensor has three indices and tensors of order three or higher
are called higher-order tensors. Tensors have been widely utilized in Electrical
Engineering since the nineties [16], and in particular in Antenna Array Processing
[4] or Telecommunications [9] [13].

In this paper, we mainly consider the following nonconvex quadratic
optimization problem of the form

min f0(X ) =

n1∑
i,j=1

n2∑
k=1

n3∑
l=1

A0
ijXiklXjkl + 2

n1∑
i=1

n2∑
k=1

n3∑
l=1

B0
ikXikl + c0

s.t. fp(X ) =

n1∑
i,j=1

n2∑
k=1

n3∑
l=1

Ap
ijXiklXjkl + 2

n1∑
i=1

n2∑
k=1

n3∑
l=1

Bp
ikXikl + cp ≤ 0, (1.1)

p = 1, · · · ,m,

where Ap = (Ap)T ∈ Rn1×n1 , Bp ∈ Rn1×n2 , cp ∈ R, p = 0, 1, · · · ,m and X ∈
Rn1×n2×n3 is a third-order tensor. Problem of the above type is actually an
extension of the quadratic matrix programming (QMP) problem [6, 2] and
quadratically constrained quadratic programs (QQPs) [5, 15, 3] if we let n3 = 1
and n2, n3 = 1 respectively. We call problem (1.1) a quadratic third-order tensor
programming (QTTP) problem.

Tight semidefinite programming (SDP) relaxation is known to hold for only a
few classes of nonconvex QQPs such as trust region problem [5]. Many extensions
of this problem were considered in [12, 15] while these results cannot be extended
to QQPs involving two constraints [17]. As a generalization of QQPs with vector
variables, Beck [2] proved stronger results to QMP problems. Now after extending
”matrix” to the ”third-order tensor” situation, we will establish the same tight SDP
relaxation results for QTTP problems with at most n2 constraints (see section 2).
However if QTTP problem (1.1) is homogeneous, still we can get the tightness
result in spite of the constraints number under some conditions (see section 4).

Tensors can be multiplied together, though obviously the notation and symbols
for this are much more complex than for matrices. For a full treatment of tensor
multiplication see, e.g., Bader and Kolda [1]. In [8], they consider the tensor n-
mode product, i.e., multiplying a tensor by a matrix (or a vector) in mode n:

(X ×n U)i1···in−1jin+1···N =

In∑
in=1

Xi1···iNUjin ,
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132 L. YANG, Q. YANG AND X. ZHAO

here tensor X ∈ RI1×···×IN and matrix U ∈ RJ×In . Using this definition, we seek
to find a third-order tensor X which solves the following optimization problem:

min ∥X ×1 A− B∥2 (1.2)

where A ∈ Rn1×n1 and X ,B ∈ Rn1×n2×n3 are two third-order tensors. The norm
of a tensor X is the square root of the sum of the squares of all its elements, i.e.,

∥X∥ =

√√√√ n1∑
i=1

n2∑
j=1

n3∑
k=1

X 2
ijk.

This is analogous to the matrix Frobenius norm, which is denoted ∥A∥ for a matrix
A. If tensor B satisfies Bijk = Bij for 1 ≤ k ≤ n3, problem (1.2) can be rewritten
as a nonconstraint QTTP problem:

min

n1∑
i,j=1

n2∑
k=1

n3∑
l=1

(ATA)ijXiklXjkl − 2

n1∑
i=1

n2∑
k=1

n3∑
l=1

(

n1∑
s=1

AsiBsk)Xikl

+ n3

n1∑
i=1

n2∑
k=1

B2
ik.

The remaining of the paper is organized as follows: In section 2, we homogenize
the QTTP problem and change it to a separable QMP problem and show that the
optimal values can be obtained exactly by its SDP relaxation under some mild
conditions. In section 3, we concentrate on the homogeneous QTTP problem.
Although it is still NP-hard, we can approximately solve it in polynomial time.
In section 4, we present a special class of homogeneous QTTP problems with
nonpositive off-diagonal elements and show that their optimal values can be
obtained exactly by SDP relaxations and more precisely be solved without gap.

Throughout this paper, we use the following notations: Vectors are denoted by
lowercase letters, e.g., x, matrices by uppercase letters, e.g., X , and third-order
tensors by calligraphic capitals, e.g., X . Let xi, Xij and Xijk denote the ith, ijth
and ijkth component of x, X and X respectively. For matrix A and B, A ≽ 0
means that A is a positive semidefinite matrix, rank(A) denotes the rank of A,
TrA denotes the trace of A, AT denotes the transpose matrix of A, and A •B
stands for the standard matrix inner product, i.e., A •B = TrATB. For random
variable ξ, Eξ denotes the expectation of ξ. Sn(Sn

+) is the set of all real symmetric
n× n matrices(positive semidefinite matrices). 0n1×n2 is the n1 × n2 matrix of
zeros, Ir is the r × r identity matrix, and Er

st is the r × r matrix with 1 at the
stth component and 0 elsewhere. The value of the optimal objective function of
an optimization problem

(P ) min{f(x) : x ∈ C}

is denoted by vmin(P ).
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2. Semidefinite relaxations of the QTTP problem and tightness results

We construct a similar scheme provided by A. Beck [2] to obtain a SDP relaxation
for (QTTP). By solving the relaxed problem, in this section, we will show
that under some mild conditions, tightness of (QTTP) is hold with at most n2

constraints.
As the method used to homogenize a quadratic vector function, we consider the

following homogenization procedure to QTT function: Let

f(X ) =

n1∑
i,j=1

n2∑
k=1

n3∑
l=1

AijXiklXjkl + 2

n1∑
i=1

n2∑
k=1

n3∑
l=1

BikXikl + c,

like (QTTP). The homogenized QTT function is denoted by fH :
R(n1+n2)×n2×n3 → R and given by

fH(X ;Z) =

n1∑
i,j=1

n2∑
k=1

n3∑
l=1

AijXiklXjkl + 2

n1∑
i=1

n2∑
s,k=1

n3∑
l=1

BisXiklZskl

+
c

n2n3

n2∑
s,k=1

n3∑
l=1

Z2
skl. (2.1)

The homogenous function fH satisfies the following easily verifiable properties,
which will become useful in what follows

Property 2.1
Let matrices {Zl}n3

l=1 ∈ Rn2×n2 satisfy

Zl
sk = Zskl

for s, k = 1, · · · , n2 and l = 1, · · · , n3.
(1). If Z1, · · · , Zn3 = In2 , we call Z ∈ Rn2×n2×n3 the identity three order tensor
and denote it by I, then f(X ) = fH(X , I);
(2). If Z1(Z1)T , · · · , Zn3(Zn3)T = In2 , set

Disl =

n2∑
k=1

XiklZskl (2.2)

for i = 1, · · · , n1, s = 1, · · · , n2 and l = 1, · · · , n3, then f(D) = fH(X ;Z).

Using the above homogenization procedure for QTT functions, we are able to
prove (see Proposition 2.1 below) that (QTTP) is equivalent to some homogeneous
QTTP problem.
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Proposition 2.1
Consider the following homogenized version of (QTTP):

(HQTP ) min fH
0 (X ;Z)

s.t. fH
p (X ;Z) ≤ 0, p = 1, · · · ,m,

gstl(X ;Z) = δst, 1 ≤ s ≤ t ≤ n2, l = 1, · · · , n3,

X ∈ Rn1×n2×n3 , Z ∈ Rn2×n2×n3 ,

where gstl =
∑

k ZsklZtkl and δst is the Kronecker delta, then we have:
1. If (QTTP) is solvable and X ∗ is an optimal solution, then (HQTP) is solvable

and
(X ∗; I) is an optimal solution, where I ∈ Rn2×n2×n3 is the identity three

order tensor
defined in property 2.1.

2. If (HQTP) is solvable and (X ∗;Z∗) is an optimal solution, then (QTTP) is
solvable

and D∗ is an optimal solution, where D∗ is defined as (2.2).

Proof. Through property 2.1, we note that f(D) = fH(X ;Z) for every feasible
solution (X ;Z) of (HQTP), since the system of equalities

gstl(X ;Z) = δst, 1 ≤ s ≤ t ≤ n2, l = 1, · · · , n3

is actually equivalent to Z1(Z1)T , · · · , Zn3(Zn3)T = In2 .
1. For every feasible solution (X ;Z) of (HQTP), combined with property 2.1

we have

fH
0 (X ;Z) = f0(D), fH

0 (X ∗; I) = f0(X ∗).

Meanwhile

fp(D) = fH
p (X ;Z) ≤ 0, p = 1, · · · ,m

shows that D is a feasible solution of (QTTP), which means f0(D) ≥ f0(X ∗).
From the above equalities, we argue that (X ∗; I) is an optimal solution of (HQTP).

2. Similar to the above method, for every X in the feasible set of (QTTP), we
have

f0(X ) = fH
0 (X ; I) ≥ fH

0 (X ∗;Z∗) = f0(D∗),

which shows that D∗ is an optimal solution of (QTTP). 2

Notice that (QTTP) and (HQTP) have the same value of the optimal objective
function via the proof of Proposition 2.1, i.e.

vmin(QTTP ) = vmin(HQTP ). (2.3)
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QUADRATIC THIRD-ORDER TENSOR OPTIMIZATION 135

So they are actually equivalent optimization problem. From now on, we will only
consider (HQTP) instead of (QTTP).

For QTT function (2.1), let matrix sequences {Zl}n3

l=1 and {X l}n3

l=1 satisfy

Zl
sk = Zskl, X l

ik = Xikl,

with i = 1, · · · , n1, s, k = 1, · · · , n2 and l = 1, · · · , n3. For convenience, we
adopt the following matrix notation:

Mf =

(
A B
BT c

n2n3
In2

)
and W l =

(
X l

Zl

)
.

Then we can rewrite fH(X ;Z) as

fH(X ;Z) =

n3∑
l=1

Mf •W l(W l)T .

It holds that (HQTP) is equivalent to

min
n3∑
l=1

Mf0 •W l(W l)T

s.t.
n3∑
l=1

Mfp •W l(W l)T ≤ 0, p = 1, · · · ,m,

Nst •W l(W l)T = 2δst, 1 ≤ s ≤ t ≤ n2,

W l ∈ R(n1+n2)×n2 , l = 1, · · · , n3 (2.4)

with

Nst =

(
0n1×n1 0n1×n2

0n2×n1 En2
st + En2

ts

)
, 1 ≤ s ≤ t ≤ n2.

Now after some constructions, (QTTP) has been transferred to problem (2.4),
where the objective function is in the form of the sum of n3 individual functions
without crossed variables. In fact, problem (2.4) can be viewed as a special kind of
separable QMP problems. Based on this characterization, making use of the rank
reduction algorithm of [11], we can deduce the tightness between (QTTP) and its
SDP relaxation.

Let U l = W l(W l)T for l = 1, · · · , n3, which can be equivalently written as{
U l ∈ Sn1+n2

+

rank(U l) ≤ n2.
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Omitting constraints {rank(U l) ≤ n2}n3

l=1, we finally arrive at the SDP relaxation
of (HQTP):

(RHQTP ) min
n3∑
l=1

Mf0 • U l

s.t.
n3∑
l=1

Mfp • U l ≤ 0, p = 1, · · · ,m,

Nst • U l = 2δst, 1 ≤ s ≤ t ≤ n2,

U l ∈ Sn1+n2
+ , l = 1, · · · , n3,

The SDP problem (RHQTP) has a dual, which is given by

(DHQTP ) max −
n3∑
l=1

TrΨl

s.t. V l = Mf0 +

m∑
p=1

λpMfp +

(
0n1×n1 0n1×n2

0n2×n1 Ψl

)
,

V l ≽ 0, λp ≥ 0,

Ψl ∈ Sn2 , l = 1, · · · , n3, p = 1, · · · ,m.

For the sake of completeness, we present the constructive rank reduction
procedure [2, 11] again (Proposition 2.2 below) to reach a rank constraint of the
optimal solution of (RHQTP).

Proposition 2.2
Suppose that (RHQTP) and its dual (DHQTP) are solvable. Then, (RHQTP) has
always an optimal solution (U∗l)n3

l=1 such that

n3∑
l=1

rank(U∗l)(rank(U∗l) + 1)

2
≤ m+

n2n3(n2 + 1)

2
.

Proof. Suppose (U l)n3

l=1 and ((V l)n3

l=1, (λp)
m
p=1, (Ψ

l)n3

l=1) are optimal solutions
of (RHQTP) and (DHQTP), respectively (existence can be ensured by assuming
that both the primal and dual SDPs have interior points in their feasible regions,
respectively). Notice that they comply with the complementary conditions

λp

∑
l

Mfp • U l = 0 for p = 1, · · · ,m, (2.5)

and

U lV l = 0 for l = 1, · · · , n3. (2.6)
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Let Rl = rank(U l), l = 1, · · · , n3. By decomposing U l = Y l(Y l)T , Y l ∈
R(n1+n2)×Rl , it holds that∑

l

MfP • U l =
∑
l

(Y l)TMfpY
l • IRl

≤ 0 p = 1, · · · ,m,

Nst • U l = (Y l)TNstY l • IRl
= 2δst 1 ≤ s ≤ t ≤ n2, l = 1, · · · , n3.

Consider the following system of linear equations:∑
l

(Y l)TMfpY
l •∆l = 0 p = 1, · · · ,m,

(Y l)TNstY l •∆l = 0 1 ≤ s ≤ t ≤ n2, l = 1, · · · , n3 (2.7)

with ∆l ∈ SRl for l = 1, · · · , n3. Note that there are Rl(Rl+1)
2 unknowns in

the entries of ∆l; therefore the system (2.7) has m+ n3n2(n2+1)
2 equations

and
∑

l
Rl(Rl+1)

2 unknowns. If
∑

l
Rl(Rl+1)

2 ≥ m+ n3n2(n2+1)
2 , then there is a

nonzero solution of the system of linear (2.7), say, (∆l)n3

l=1. Let σlk with k =
1, · · · , Rl be eigenvalues of ∆l for l = 1, · · · , n3. Let l0 and k0 be such that

|σl0k0 | = max{|σlk| : 1 ≤ k ≤ Rl, 1 ≤ l ≤ n3}.

Thus it is easily seen that the matrices

IRl
− 1

σl0k0

∆l ≽ 0 l = 1, · · · , n3.

Let Ū l = Y l(IRl
− 1

σl0k0
∆l)(Y l)T for l = 1, · · · , n3, clearly Ū l ≽ 0. Noticing

that ∑
l

Mfp • Ū l ≤ 0, Nst • Ū l = 2δst

with p = 1, · · · ,m, 1 ≤ s ≤ t ≤ n2 and l = 1, · · · , n3, it follows that (Ū l)n3

l=1 is a
feasible solution of (RHQTP). Meanwhile, it is easy to prove that (2.5) (2.6) and
(2.7), together with Ū l, V l ≽ 0, l = 1, · · · , n3, gives that

λp

∑
l

Mfp • Ū l = 0, Ū lV l = 0 for p = 1, · · · ,m, l = 1, · · · , n3.

Therefore the complementary conditions are satisfied, which means (Ū l)n3

l=1 is
still an optimal solution of (RHQTP). Note that

∑
l rank(Ū

l) ≤
∑

l Rl − 1, i.e.
sum of the ranks of the optimal solutions reduce at least one. Repeat the above
rank-deduction procedure, finally we will get one optimal solution (U∗l)n3

l=1 of
(RHQTP) such that

n3∑
l=1

rank(U∗l)(rank(U∗l) + 1)

2
≤ m+

n2n3(n2 + 1)

2
,
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which completes the proof. 2

Using Proposition 2.2, we are now able to show that (QTTP) with at most n2

constraints possess a tight SDP relaxation under some mild conditions.

Theorem 2.1
Suppose that (RHQTP) and its dual (DHQTP) are solvable. If the rank of each
optimal solutions of (RHQTP) is no less than n2 and m ≤ n2, then, (QTTP) is
solvable and vmin(QTTP ) = vmin(RHQTP ).

Proof. By assumption, any given optimal solution (U l)n3

l=1 of (RHQTP) satisfies
rank(U l) ≥ n2 for l = 1, · · · , n3. It follows by Proposition 2.2 that (RHQTP) has
an optimal solution (U∗l)n3

l=1 such that

n2n3(n2 + 1)

2
≤

n3∑
l=1

rank(U∗l)(rank(U∗l) + 1)

2
≤ n2 +

n2n3(n2 + 1)

2
.

This implies rank(U∗l) = n2 for l = 1, · · · , n3. As a result, (RHQTP) is
equivalent to problem (2.4). Hence by (2.3), we have

vmin(QTTP ) = vmin(HQTP ) = vmin(2.4) = vmin(RHQTP ),

which completes the proof. 2

3. Approximation algorithms for the homogeneous QTTP problem

The focus of this section, in particular, is on nonconvex QTTPs which involve
positive semidefinite matrices in constraints, and the objective function and
constrains both are homogeneous. Through a simple randomized polynomial-time
procedure proposed by AMC So et al [14], we can extract a feasible solution of
(QTTP) from the optimal solution of its SDP relaxation. And the approximation
ratio is Ω( 1

logm ) or Ω( 1√
logm

) which depends on the magnitude of n2.

Consider the following optimization problems:

(HQ− 1) v∗minqp =min
n1∑

i,j=1

n2∑
k=1

n3∑
l=1

A0
ijXiklXjkl

s.t.
n1∑

i,j=1

n2∑
k=1

n3∑
l=1

Ap
ijXiklXjkl ≤ αp,

Ap ≽ 0, p = 1, · · · ,m,

where A0, Ap ∈ Sn1 and αp ∈ R for p = 1, · · · ,m. we can see that (HQ-1) is
(QTTP)’s simplification by omitting the monomial term and the constant term.
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Unfortunately, (HQ-1) itself is still NP-hard which has been proved in [10] as n2 =
n3 = 1. However, it is possible to approximately solve the problem by deriving
a feasible solution from its SDP relaxation. And we see that the approximating
procedure can be completed in polynomial time.

Similar to the argument in section 2, we can rewrite (HQ-1) with another
equivalent form:

v∗minqp =min
n3∑
l=1

A0 • U l

s.t.
n3∑
l=1

Ap • U l ≤ αp, p = 1, · · · ,m,

U l ≽ 0, rank(U l) ≤ n2, (3.1)

where U1, · · · , Um ∈ Sn1 , and its natural SDP relaxation is given by:

v∗minsdp =min
n3∑
l=1

A0 • U l

s.t.
n3∑
l=1

Ap • U l ≤ αp,

U l ≽ 0, p = 1, · · · ,m. (3.2)

Now we introduce a low-rank approximate solution to a system of linear
equations in symmetric positive semidefinite matrices, which will be used to derive
an approximate solution to our homogeneous QTTP problem (HQ-1).

Lemma 3.1
[14] Let A1, · · · , Am ∈ Rn×n be symmetric positive semidefinite matrices, where
n <

√
2m. Then, for any d ≥ 1, there exists an X0 ≽ 0 with rank(X0) ≤ d such

that:

β(m,n, d) · TrAi ≤ Ai •X0 ≤ α(m,n, d) · TrAi for i = 1, · · · ,m,

where:

α(m,n, d) =

{
1 + 12 log(4mr)

d for 1 ≤ d ≤ 12 log(4mr)

1 +

√
12 log(4mr)

d for d > 12 log(4mr)

and

β(m,n, d) =

{ 1
e(2m)2/d

for 1 ≤ d ≤ 4 log(2m)

max{ 1
e(2m)2/d

, 1−
√

4 log(2m)
d } for d > 4 log(2m)

Moreover, there exists an efficient randomized algorithm for finding such an X0.
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Our main result in this section is the following:

Theorem 3.1
Let (U∗l)n3

l=1 be an optimal solution to (3.2). We can extract a feasible solution X0

of (HQ-1) from (U∗l)n3

l=1 such that

v∗minqp ≤
∑
ijkl

A0
ijX 0

iklX 0
ikl ≤

1

α(m,n1, n2)
v∗minqp,

where:

α(m,n1, n2) =

{
1 + 12 log(4mh)

n2
for 1 ≤ n2 ≤ 12 log(4mh)

1 +
√

12 log(4mh)
n2

for n2 > 12 log(4mh)

and h = min{
√
2m,n1}.

Proof. Using Proposition 2.2, we know there exists an optimal solution (U∗l)n3

l=1

of problem (3.2) such that

n3∑
l=1

rank(U∗l)(rank(U∗l) + 1)

2
≤ m,

which follows that rank(U∗l) <
√
2m. Through the technique used by AMC So

et al [14], we construct the following matrices

U∗l = P ∗l(P ∗l)T ,

X̃ l =

n2∑
j=1

ξjl(ξjl)T ,

X̄ l = P ∗lX̃ l(P ∗l)T ,

where P ∗l ∈ Rn1×rl with rl = rank(U∗l) <
√
2m, and ξjl ∈ Rrl for ξjli are

i.i.d. Gaussian random variables with mean 0 and variance 1/n2, here
l = 1, · · · , n3, i = 1, · · · , rl. Clearly rank(X̄ l) ≤ rank(X̃ l) ≤ n2. Notice that
(P ∗l)TApP ∗l ∈ Rrl×rl , then by proof of Lemma 3.1 [14] and some calculations,
we assert that

(P ∗l)TApP ∗l • X̃ l ≤ α(m,n1, n2) · Tr(P ∗l)TApP ∗l = α(m,n1, n2) ·Ap • U∗l

and

EA0 • X̄ l = A0 • U∗l (3.3)
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with p = 1, · · · ,m and l = 1, · · · , n3, which means

Ap • X̄ l = (P ∗l)TApP ∗l • X̃ l ≤ α(m,n1, n2) ·Ap • U∗l. (3.4)

Set X l = 1
α(m,n1,n2)

X̄ l, combined with (3.4), easily we get

X l ≽ 0,

rank(X l) ≤ rank(X̃ l) ≤ n2,∑
l

Ap •X l ≤
∑
l

Ap • U∗l ≤ αp for p = 1, · · · ,m.

Obviously X l is a feasible solution of problem (3.1). Meanwhile

E

n3∑
l=1

A0 •X l =
1

α(m,n1, n2)

n3∑
l=1

EA0 • X̄ l

=
1

α(m,n1, n2)

n3∑
l=1

A0 • U∗l

=
1

α(m,n1, n2)
v∗minsdp

≤ 1

α(m,n1, n2)
v∗minqp,

where the second equality follows from (3.3). So there exists certain X l such that

v∗minqp ≤
n3∑
l=1

A0 •X l ≤ 1

α(m,n1, n2)
v∗minqp. (3.5)

Now we transfer matrix sequence {X l}n3

l=1 to a third-order tensor X 0. Actually the
construction process of {X l}n3

l=1 states that

X l =
1

α(m,n1, n2)
X̄ l

=

n2∑
j=1

(
1√

α(m,n1, n2)
P ∗lξjl)(

1√
α(m,n1, n2)

P ∗lξjl)T

=

n2∑
j=1

ηjl(ηjl)T ,

here we let ηjl = 1√
α(m,n1,n2)

P ∗lξjl for j = 1, · · · , n2 and l = 1, · · · , n3.

Set
Kl = (η1l, · · · , ηn2l)
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and

X 0
ikl = Kl

ik,

where i = 1, · · · , n1, k = 1, · · · , n2 and l = 1, · · · , n3. By the above assumption,
we have ∑

ijkl

A0
ijX 0

iklX 0
jkl =

∑
ijl

A0
ij

∑
k

Kl
ikK

l
jk

=
∑
ijl

A0
ij(K

l(Kl)T )ij

=
∑
l

A0 • (Kl(Kl)T )

=
∑
l

A0 •X l.

This implies, together with (3.5), that

v∗minqp ≤
∑
ijkl

A0
ijX 0

iklX 0
ikl ≤

1

α(m,n1, n2)
v∗minqp,

which completes the proof of the theorem. 2

We remark that the constructive proof of Theorem 3.1 actually provides a
polynomial-time algorithm to generate an appropriate feasible solution of the
homogeneous QTTP problem (HQ-1), and the approximation ratio is Ω( 1

logm )

or Ω( 1√
logm

) which depends on the comparison of n2 and m.

4. A class of homogeneous QTTP problems whose SDP relaxations admit no
gap with the true optimal values

For the homogeneous QTTP problem, in this section, after making some
assumptions to the coefficient matrices in the objective function and constrains,
we can see that its optimal value is the same as the bound obtained by its SDP
relaxation and the optimal solution for the original problem can be obtained from
the optimal solution of its SDP relaxation.

Consider a homogeneous QTTP problem of the form:

(HQ− 2) min
n1∑

i,j=1

n2∑
k=1

n3∑
l=1

A0
ijXiklXjkl

s.t.
n1∑

i,j=1

n2∑
k=1

n3∑
l=1

Ap
ijXiklXjkl ≤ αp, p = 1, · · · ,m,
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where αp ∈ R and A0, Ap ∈ Sn1 for p = 1, · · · ,m. Unlike in (HQ-1), here
A1, · · · , Am may be indefinite.

Stretch the three-order tensor X to n2n3 vectors defined by:

xkl
i = Xikl (4.1)

with xkl ∈ Rn1 for k = 1, · · · , n2 and l = 1, · · · , n3. By using the correspondence
(4.1), we can represent (HQ-2) as the separable indefinite homogeneous quadratic
optimization problem:

min
n2∑
k=1

n3∑
l=1

(xkl)TA0xkl

s.t.
n2∑
k=1

n3∑
l=1

(xkl)TApxkl ≤ αp, p = 1, · · · ,m. (4.2)

The so-called SDP relaxation of (4.2) is

min
∑
kl

A0 • Y kl

s.t.
∑
kl

Ap • Y kl ≤ αp, p = 1, · · · ,m,

Y kl ∈ Sn1
+ , k = 1, · · · , n2, l = 1, · · · , n3. (4.3)

Theorem 4.1
Assume that all off-diagonal elements of Ap(0 ≤ p ≤ m) are nonpositive.
Let Y ∗kl be an optimal solution of the SDP relaxation (4.3) and x∗kl =
(
√

Y ∗kl
11 , · · · ,

√
Y ∗kl
n1n1

)T for 1 ≤ k ≤ n2 and 1 ≤ l ≤ n3. Using transfer strategy
(4.1), compress n2n3 vectors {x∗kl}kl to a third-order tensor X ∗. Then X ∗ is an
optimal solution of (HQ-2) and vmin(HQ− 2) = vmin(4.3).

Proof. By definition, we first observe that∑
kl

(x∗kl)TApx∗kl =
∑
kl

∑
ij

Ap
ijx

∗kl
i x∗kl

j

=
∑
kl

∑
ij

Ap
ij

√
Y ∗kl
ii

√
Y ∗kl
jj

≤
∑
kl

∑
ij

Ap
ijY

∗kl
ij

=
∑
kl

Ap • Y ∗kl (4.4)
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for p = 0, 1, · · · ,m. The above inequality based on the nonpositivity of all off-
diagonal elements of Ap(0 ≤ p ≤ m) and the fact that all the 2× 2 principle
submatrices of positive semidefinite matrices {Y ∗kl}kl are nonnegative. Let p =
1, · · · ,m, combined with the optimality of (Y ∗kl)kl, (4.4) makes it clear that
(x∗kl)kl is a feasible solution of (4.2). Therefore, we obtain that∑

kl

A0 • Y ∗kl ≥
∑
kl

(x∗kl)TA0x∗kl ≥ vmin(4.2) ≥ vmin(4.3) =
∑
kl

A0 • Y ∗kl.

Hence (x∗kl)kl is an optimal solution of problem (4.2) which means that X ∗ is an
optimal solution of (HQ-2) and vmin(HQ− 2) = vmin(4.3). 2

The assumption that all off-diagonal elements of Ap(0 ≤ p ≤ m) are
nonpositive plays an important role in the proof of Theorem 4.1. This however,
does not necessarily require that Ap

ij(i ̸= j), are of the same sign. In fact, Ap(0 ≤
p ≤ m) can be relaxed to be uniformly almost OD-nonpositive. To make this clear,
we introduce the following definition.

Definition 4.1
[7] A family of symmetric matrices Ap ∈ Sn1(0 ≤ p ≤ m) is said to be uniformly
almost OD-nonpositive if there exists a sign vector σ ∈ {−1,+1}n1 such that

Ap
ijσiσj ≤ 0 for 1 ≤ i < j ≤ n1, 0 ≤ p ≤ m.

As a result, Theorem 4.1 can be extended to the following.

Theorem 4.2
Assume that the family of symmetric matrices Ap(0 ≤ p ≤ m) is uniformly almost
OD-nonpositive with a sign vector σ ∈ {−1,+1}n1 . Let Y ∗kl be an optimal
solution of the following SDP relaxation problem

min
∑
kl

Ā0 • Y kl

s.t.
∑
kl

Āp • Y kl ≤ αp, p = 1, · · · ,m,

Y kl ∈ Sn1
+ , k = 1, · · · , n2, l = 1, · · · , n3 (4.5)

with Āp
ij = Ap

ijσiσj for 1 ≤ i, j ≤ n1 and 1 ≤ p ≤ m and x∗kl =

(σ1

√
Y ∗kl
11 , · · · , σn1

√
Y ∗kl
n1n1

)T for 1 ≤ k ≤ n2 and 1 ≤ l ≤ n3. Using transfer
strategy (4.1), compress n2n3 vectors {x∗kl}kl to a third-order tensor X ∗. Then
X ∗ is an optimal solution of (HQ-2) and vmin(HQ− 2) = vmin(4.5).

Proof. By assumption, we have

Ap
ijσiσj ≤ 0 for 1 ≤ i < j ≤ n1, 0 ≤ p ≤ m.
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Replace variables xkl by σ ◦ xkl (◦ denotes the Hadamard product), it follows that
(4.5) is another SDP relaxation of problem (4.2). Set {x∗kl}kl as the definition,
similar to the proof of Theorem 4.1, we assert the conclusion holds. 2

At last, we give another tight SDP relaxation result to problem (4.2) when
A1, · · · , Am could be any indefinite matrices. Different from (4.3), the following
problem

min A0 • Y
s.t. Ap • Y ≤ αp, p = 1, · · · ,m,

Y ∈ Sn1
+ (4.6)

is also a SDP relaxation of (4.2). If we get one optimal solution Y ∗ with
rank(Y ∗) ≤ n2n3, then (4.6) is exactly equivalent to problem (4.2). The dual
problem to (4.6) is given by

max −
m∑

p=1

αpyp

s.t. Z = A0 +

m∑
p=1

ypAp ≽ 0,

yp ≥ 0, p = 1, · · · ,m. (4.7)

Theorem 4.3
Suppose that SDP relaxation problem (4.6) and its dual (4.7) are solvable. If
m ≤ n2n3(n2n3+1)

2 , then homogeneous tensor programming problem (HQ-2) is
solvable, and vmin(HQ− 2) = vmin(4.6).

Proof. Similar as the proof of Proposition 2.2, we state that there exists one
optimal solution Y ∗ of problem (4.6) which satisfies

rank(Y ∗)(rank(Y ∗) + 1)

2
≤ m.

This implies, together with the assumption, that

rank(Y ∗) ≤ n2n3

Thus it holds that

vmin(HQ− 2) = vmin(4.2) = vmin(4.6),

which completes the proof. 2
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