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1. Introduction

Wide sense stationary and related stochastic processes have been studied by
many scientists. The obtained results found their applications for solving actual
problems in description and analysis of models of economic and financial time
series. The most simple examples are linear stationary models such as moving
average (MA), autoregressive (AR) or autoregressive-moving average (ARMA)
sequences, state space model, all of which refer to stationary sequences with
rational spectral function without unit AR-roots. Time series with trends and
seasonal components are modeled by integrated ARMA (ARIMA) sequences
which have unit roots in their autoregressive parts and are examples of sequences
with stationary increments. Such models attract interest of scientists during the
last 30 years. The main points concerning model definition, parameter estimation,
forecasting and further investigation are discussed in the well-known book by
Box, Jenkins and Reinsel [1]. While analyzing financial data some economists
noticed that in special cases linear combinations of integrated sequences become
stationary. Grander [10] called this phenomenon cointegration. Cointegrated
sequences found their application in applied and theoretical econometrics and
financial time series analysis [9].

Estimation of unknown values of stochastic processes is an important part
of the theory of stochastic processes. Effective methods of solution of the
linear extrapolation, interpolation and filtering problems for stationary stochastic
processes were developed by Kolmogorov [15], Wiener [37], Yaglom [38, 39].
Further results one can find in book by Rozanov [35]. Yaglom [40, 41] developed
theory of non-stationary processes whose increments of order n form a stationary
process. Further results for such stochastic processes were presented by Pinsker
[33], Yaglom and Pinsker [32]. See books by Yaglom [38, 39] for more relative
results and references.

The mean square optimal estimation problems for stochastic processes with nth
stationary increments are natural generalizations of extrapolation, interpolation
and filtering problems for stationary stochastic processes. The classical methods
of solution of extrapolation, interpolation and filtering problems are based on the
assumption that spectral density of the process is known. In practice, however,
it is impossible to obtain complete information on the spectral density in most
cases. To solve the problem one finds parametric or nonparametric estimates of
the unknown spectral density or selects a density by other reasoning. Then the
classical estimation method is applied provided that the estimated or selected
density is the true one. Vastola and Poor [36] have demonstrated that the described
procedure can result in significant increasing of the value of error. This is a
reason for searching estimates which are optimal for all densities from a certain
class of admissible spectral densities. These estimates are called minimax since
they minimize the maximal value of the error of estimates. A survey of results
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in minimax (robust) methods of data processing can be found in the paper by
Kassam and Poor [14]. The paper by Grenander [11] should be marked as the
first one where the minimax extrapolation problem for stationary processes was
formulated and solved. Franke and Poor [13], Franke [12] investigated the minimax
extrapolation and filtering problems for stationary sequences with the help of
convex optimization methods. In papers by Moklyachuk [20] – [22] the minimax
approach was applied to extrapolation, interpolation and filtering problems for
functionals which depend on the unknown values of stationary processes and
sequences. For more results and details see, for example, book by Moklyachuk
[29], articles and book by Moklyachuk and Masyutka [26]− [31]. Dubovets’ka
and Moklyachuk [3]− [8] investigated the minimax-robust estimation problems
(extrapolation, interpolation and filtering) for periodically correlated stochastic
processes.

In papers [16]− [19], [25] by Luz and Moklyachuk the minimax interpolation
and extrapolation problems for linear functionals which depend on unknown
(missed) values of stochastic process ξ(m) with stationary nth increments
from observations of the process with and without noise were investigated. In
the paper [18] they investigated the problem of optimal linear estimation of
the functional Aξ =

∑∞
k=0 a(k)ξ(−k) which depends on unknown values of a

stochastic sequence ξ(k) with nth stationary increments from observations of
the sequence ξ(k) + η(k) at points k = 0,−1,−2, . . ., where η(k) is a stochastic
sequence with stationary nth increments which is uncorrelated with the sequence
ξ(k). To solve the problem the functional Aξ is represented as a functional
of increments of the sequence providing some conditions on the coefficients
a(k), k ≥ 0. This representation gives a possibility to find an estimate only
for the functional Aξ, but not for the functional ANξ =

∑N
k=0 a(k)ξ(−k). In

the present article we require the noise sequence η(k) to be stationary. This
condition let us find estimates of both functionals Aη =

∑∞
k=0 a(k)η(−k) and

ANη =
∑N

k=0 a(k)η(−k) which are used for solving the filtering problem for
functionals Aξ and ANξ. The obtained results give us a method of solution the
filtering problem for cointegrated sequences ξ(k) and ζ(k) under the condition
that a stationary linear combination of the sequences does not correlate with the
sequence ξ(k). The estimation problem is solved in the case of spectral certainty
where spectral densities of sequences ξ(k) and η(k) are exactly known as well as
in the case of spectral uncertainty where spectral densities of the sequences are
not exactly known, but a set of admissible spectral densities is given. Formulas
that determine least favorable spectral densities and minimax (robust) spectral
characteristics of optimal estimates of functionals are proposed in the case of
spectral uncertainty for concrete classes of admissible spectral densities.
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2. Stationary increment stochastic sequences. Spectral representation

Definition 2.1
For a given stochastic sequence {ξ(m),m ∈ Z} the sequence

ξ(n)(m,µ) = (1−Bµ)
nξ(m) =

n∑
l=0

(−1)lCl
nξ(m− lµ), (1)

where Bµ is a backward shift operator with step µ ∈ Z, such that Bµξ(m) =
ξ(m− µ), is called stochastic nth increment sequence with step µ ∈ Z.

For the stochastic nth increment sequence ξ(n)(m,µ) the following relations
hold true

ξ(n)(m,−µ) = (−1)nξ(n)(m+ nµ, µ), (2)

ξ(n)(m, kµ) =
∑(k−1)n

l=0
Alξ

(n)(m− lµ, µ), k ∈ N, (3)

where coefficients {Al, l = 0, 1, 2, . . . , (k − 1)n} are determined by the represen-
tation

(1 + x+ . . .+ xk−1)n =

(k−1)n∑
l=0

Alx
l.

Definition 2.2
The stochastic nth increment sequence ξ(n)(m,µ) generated by stochastic
sequence {ξ(m),m ∈ Z} is wide sense stationary if the mathematical expectations

Eξ(n)(m0, µ) = c(n)(µ),

Eξ(n)(m0 +m,µ1)ξ
(n)(m0, µ2) = D(n)(m,µ1, µ2)

exist for all m0, µ,m, µ1, µ2 and do not depend on m0. The function c(n)(µ) is
called mean value of the nth increment sequence and the functionD(n)(m,µ1, µ2)
is called structural function of the stationary nth increment sequence (or structural
function of nth order of the stochastic sequence {ξ(m),m ∈ Z}).

The stochastic sequence {ξ(m),m ∈ Z} which determines the stationary nth
increment sequence ξ(n)(m,µ) by formula (1) is called sequence with stationary
nth increments (or integrated sequence of order n).

Theorem 2.1
The mean value c(n)(µ) and the structural function D(n)(m,µ1, µ2) of the
stochastic stationary nth increment sequence ξ(n)(m,µ) can be represented in the
following forms

c(n)(µ) = cµn, (4)

D(n)(m,µ1, µ2) =

∫ π

−π

eiλm(1− e−iµ1λ)n(1− eiµ2λ)n
1

λ2n
dF (λ), (5)
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where c is a constant, F (λ) is a left-continuous nondecreasing bounded function
with F (−π) = 0. The constant c and the function F (λ) are determined uniquely
by the increment sequence ξ(n)(m,µ).

From the other hand, a function c(n)(µ) which has form (4) with a constant c
and a function D(n)(m,µ1, µ2) which has form (5) with a function F (λ) which
satisfies the indicated conditions are the mean value and the structural function of
a stationary nth increment sequence ξ(n)(m,µ).

Using representation (5) of the structural function of a stationary nth increment
sequence ξ(n)(m,µ) and the Karhunen theorem [2], we obtain the following
spectral representation of the stationary nth increment sequence ξ(n)(m,µ):

ξ(n)(m,µ) =

∫ π

−π

eimλ(1− e−iµλ)n
1

(iλ)n
dZ(λ), (6)

where Z(λ) is an orthogonal stochastic measure on [−π, π) connected with the
spectral function F (λ) by the relation

EZ(A1)Z(A2) = F (A1 ∩A2) <∞. (7)

3. Filtering problem

Let a stochastic sequence {ξ(m),m ∈ Z} define stationary nth increment
sequence ξ(n)(m,µ) with absolutely continuous spectral function F (λ) which has
spectral density f(λ). Let {η(m),m ∈ Z} be an uncorrelated with the sequence
ξ(m) stationary stochastic sequence with absolutely continuous spectral function
G(λ) which has spectral density g(λ). Without loss of generality we will assume
that mean values of the increment sequence ξ(n)(m,µ) and stationary sequence
η(m) equal to 0.

Consider the problem of mean-square optimal linear estimation of the
functionals

Aξ =

∞∑
k=0

a(k)ξ(−k), ANξ =

N∑
k=0

a(k)ξ(−k)

which depend on unknown values of the sequence ξ(m) from observations of the
sequence ζ(m) = ξ(m) + η(m) at pointsm = 0,−1,−2, . . .. We will consider the
case where the step µ > 0. And we will suppose that conditions

∞∑
k=0

|aµ(k − µn)| <∞,

∞∑
k=0

(k + 1)|aµ(k − µn)|2 <∞ (8)

hold true for coefficients aµ(k), k ≥ −µn, which are defined in the following part
of the paper.
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The functional Aξ can be represented in the form

Aξ = Aζ −Aη,

where Aζ =
∑∞

k=0 a(k)ζ(−k), Aη =
∑∞

k=0 a(k)η(−k).
Let ∆(f, g, Âξ) = E|Aξ − Âξ|2 denote the mean-square error of the estimate

Âξ of the functional Aξ and let ∆(f, g, Âη) = E|Aη − Âη|2 denote the mean-
square error of the estimate Âη of the functional Aη. Since the functional Aζ is
determined by the observed values of the sequence ζ(m), the following relations
hold true

Âξ = Aζ − Âη, (9)

∆(f, g, Âξ) = E|Aξ − Âξ|2 = E|Aζ −Aη −Aζ + Âη|2 = E|Aη − Âη|2 = ∆(f, g, Âη).

To find the mean-square optimal estimate of the functional Aη we use spectral
representations of the stationary sequence η(m), the stationary nth increment
sequence η(n)(m,µ) and apply the Hilbert space orthogonal projection method
proposed by Kolmogorov [15]. The stationary stochastic sequence η(m) admits
the spectral representation

η(m) =

∫ π

−π

eiλmdZη(λ)

and the nth increment sequence η(n)(m,µ) admits the spectral representation

η(n)(m,µ) =

∫ π

−π

eiλm(1− e−iλµ)ndZη(λ),

where Zη(λ) is an orthogonal stochastic measure on [−π, π) corresponding to the
spectral function G(λ). The stationary increment sequence ζ(n)(m,µ) admits the
spectral representation

ζ(n)(m,µ) =

∫ π

−π

eiλm(1− e−iλµ)n
1

(iλ)n
dZξ(n)+η(n)(λ)

=

∫ π

−π

eiλm(1− e−iλµ)n
1

(iλ)n
dZξ(n)(λ) +

∫ π

−π

eiλm(1− e−iλµ)ndZη(λ),

where dZη(n)(λ) = (iλ)ndZη(λ), λ ∈ [−π, π). The spectral density p(λ) of the
sequence ζ(m) is determined by spectral densities f(λ) and g(λ) by the relation

p(λ) = f(λ) + λ2ng(λ).
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Denote by H0(ξ
(n)
µ + η

(n)
µ ) the closed linear subspace of the Hilbert space

H = L2(Ω,F,P) of random variables of the second order which is generated by
values {ξ(n)(k, µ) + η(n)(k, µ) : k ≤ 0}, µ > 0.

Denote by L0
2(f(λ) + λ2ng(λ)) the closed linear subspace of the Hilbert space

L2(f(λ) + λ2ng(λ)) generated by functions

{eiλk(1− e−iλµ)n
1

(iλ)n
: k ≤ 0}.

It follows from the formula

ξ(n)(k, µ) + η(n)(k, µ) =

∫ π

−π

eiλk(1− e−iλµ)n
1

(iλ)n
dZξ(n)+η(n)(λ)

that there exists a one to one correspondence between elements eiλk(1−
e−iλµ)n

1

(iλ)n
of the space L0

2(f(λ) + λ2ng(λ)) and elements ξ(n)(k, µ) +

η(n)(k, µ) of the space H0(ξ
(n)
µ + η

(n)
µ ).

Every linear estimate Âξ of the functional Aξ admits the representation

Âξ = Aζ −
∫ π

−π

hµ(λ)dZξ(n)+η(n)(λ), (10)

where hµ(λ) is the spectral characteristic of the estimate Âη. The mean square
optimal estimate Âη is a projection of the element Aη on the subspace H0(ξ

(n)
µ +

η
(n)
µ ). This estimate is determined by the following conditions:
1) Âη ∈ H0(ξ

(n)
µ + η

(n)
µ );

2) (Aη − Âη) ⊥ H0(ξ
(n)
µ + η

(n)
µ ).

It comes from condition 2) that for all k ≤ 0 the following relations hold true

E(Aη − Âη)(ξ(n)(k, µ) + η(n)(k, µ))

=
1

2π

∫ π

−π

(
A(e−iλ)− (iλ)nhµ(λ)

)
e−iλk(1− eiλµ)ng(λ)dλ

− 1

2π

∫ π

−π

hµ(λ)e
−iλk(1− eiλµ)n

1

(−iλ)n
f(λ)dλ = 0.

These relations can be represented in the form∫ π

−π

[
A(e−iλ)g(λ)(−iλ)n − hµ(λ)(f(λ) + λ2ng(λ))

] (1− eiλµ)n

(−iλ)n
e−iλkdλ

= 0, k ≤ 0.
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From these equations we can derive the spectral characteristic hµ(λ) of the
estimate Âη. It is of the form

hµ(λ) = A(e−iλ)
(−iλ)ng(λ)

f(λ) + λ2ng(λ)
− (−iλ)nCµ(e

iλ)

(1− eiλµ)n(f(λ) + λ2ng(λ))
,

A(e−iλ) =

∞∑
k=0

a(k)e−iλk, Cµ(e
iλ) =

∞∑
k=1

cµ(k)e
iλk.

where cµ(k) are unknown coefficients to be determined. It follows from
condition 1) that the spectral characteristic hµ(λ) of the estimate Âη admits the
representation

hµ(λ) = h(λ)(1− e−iλµ)n
1

(iλ)n
, h(λ) =

∞∑
k=0

s(k)e−iλk,

where ∫ π

−π

|h(λ)|2|1− eiλµ|2n f(λ) + λ2ng(λ)

λ2n
dλ <∞,

(iλ)nhµ(λ)

(1− e−iλµ)n
∈ L0

2,∫ π

−π

[
A(e−iλ)λ2ng(λ)

(1− e−iλµ)n(f(λ) + λ2ng(λ))
−

λ2nCµ(eiλ)

|1− eiλµ|2n(f(λ) + λ2ng(λ))

]
e−iλldλ = 0, l ≥ 1.

(11)
Suppose that spectral densities f(λ), g(λ) are such that the following condition

holds true: ∫ π

−π

λ2n

|1− eiλµ|2n(f(λ) + λ2ng(λ))
dλ <∞. (12)

Determine for every k, j ∈ Z the Fourier coefficients of the corresponding
functions

Sµ
k,j =

1

2π

∫ π

−π

e−iλ(j+k) λ2ng(λ)

|1− eiλµ|2n(f(λ) + λ2ng(λ))
dλ;

Pµ
k,j =

1

2π

∫ π

−π

eiλ(j−k) λ2n

|1− eiλµ|2n(f(λ) + λ2ng(λ))
dλ;

Qk,j =
1

2π

∫ π

−π

eiλ(j−k) f(λ)g(λ)

(f(λ) + λ2ng(λ))
dλ.

Using these Fourier coefficients we can represent equation (11) in the form of the
following system of linear equations

∞∑
m=−µn

Sµ
l,maµ(m) =

∞∑
k=1

Pµ
l,kcµ(k), l ≥ 1,
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where

aµ(m) =

n∑
l=max{[−m

µ ]
′
,0}

(−1)lCl
na(m+ µl), m ≥ −µn, (13)

Here [x]′ denotes the least integer number among numbers which are greater or
equal to x. This system can be written in the form

Sµaµ = Pµcµ,

where cµ = (cµ(1), cµ(2), cµ(2), . . .)
′, aµ = (aµ(−µn), aµ(−(µn− 1)), . . .)′, Pµ,

Sµ are linear operators in the space ℓ2 defined by the matrices with elements
(Pµ)l,k = Pµ

l,k, l, k ≥ 1, (Sµ)l,m = Sµ
l,m, l ≥ 1, m ≥ −µn. Consequently, the

unknown coefficients cµ(k) which determine the spectral characteristic hµ(λ) are
calculated by the formula

cµ(k) = (P−1
µ Sµaµ)k, k ≥ 0,

where (P−1
µ Sµaµ)k, k ≥ 0, is the kth element of the vector P−1

µ Sµaµ. Thus, the
spectral characteristic hµ(λ) of the optimal estimate Âη of the functional Aη is
calculated by the formula

hµ(λ) = A(e−iλ)
(−iλ)ng(λ)

f(λ) + λ2ng(λ)
−

(−iλ)n
∑∞

k=1(P
−1
µ Sµaµ)ke

iλk

(1− eiλµ)n(f(λ) + λ2ng(λ))
. (14)

The mean-square error of the estimate is calculated by the formula

∆(f, g; Âξ) = ∆(f, g; Âη) = E|Aη − Âη|2

=
1

2π

∫ π

−π

∣∣A(e−iλ)(1− eiλµ)nf(λ) + λ2n
∑∞

k=1(P
−1
µ Sµaµ)ke

iλk
∣∣2

|1− eiλµ|2n(f(λ) + λ2ng(λ))2
g(λ)dλ

+
1

2π

∫ π

−π

∣∣A(e−iλ)(1− eiλµ)nλ2ng(λ)− λ2n
∑∞

k=1(P
−1
µ Sµaµ)ke

iλk
∣∣2

λ2n|1− eiλµ|2n(f(λ) + λ2ng(λ))2
f(λ)dλ

= ⟨Sµaµ,P
−1
µ Sµaµ⟩+ ⟨Qa,a⟩, (15)

where a = (a(0), a(1), a(2), . . .)′, Q is a linear operator in the space ℓ2 defined by
the matrix with elements (Q)l,k = Ql,k, l, k ≥ 0.

These observations can be summarized in the form of the theorem.

Theorem 3.1
Let {ξ(m),m ∈ Z} be a stochastic sequence which defines stationary nth
increment sequence ξ(n)(m,µ) with absolutely continuous spectral function F (λ)
which has spectral density f(λ). Let {η(m),m ∈ Z} be an uncorrelated with the
sequence ξ(m) stationary stochastic sequence with absolutely continuous spectral
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function G(λ) which has spectral density g(λ). Let condition (12) be satisfied.
Let coefficients {aµ(k) : k ≥ −µn} defined by formula (13) satisfy conditions
(8). The optimal linear estimate Âξ of the functional Aξ of unknown elements
ξ(m), m ≤ 0, based on observations of the sequence ξ(m) + η(m) at points
m = 0,−1,−2, . . . is calculated by formula (10). The spectral characteristic hµ(λ)
of the optimal estimate Âξ is calculated by formula (14). The value of the mean-
square error ∆(f, g; Âξ) is calculated by formula (15).

We can use Theorem 3.1 to obtain the optimal estimate ÂNξ of the functional
ANξ of unknown elements ξ(m), m = 0,−1,−2, . . . ,−N , from observations of
the sequence ξ(m) + η(m) at points m = 0,−1,−2, . . .. Take a(k) = 0, k > N .
Then the spectral characteristic hµ,N (λ) of the linear estimate

ÂNξ = ANζ −
∫ π

−π

hµ,N (λ)dZξ(n)+η(n)(λ) (16)

is calculated by the formula

hµ,N (λ) = AN (e−iλ)
(−iλ)ng(λ)

f(λ) + λ2ng(λ)
−

(−iλ)n
∑∞

k=1(P
−1
µ Sµ,Naµ,N )ke

iλk

(1− eiλµ)n(f(λ) + λ2ng(λ))
,

(17)
where

AN (e−iλ) =

N∑
k=0

a(k)e−iλk,

aµ,N = (aµ,N (−µn), aµ,N (−(µn− 1)), . . . , aµ,N (N), 0, . . .),

aµ,N (m) =

min{[N−m
µ ],n}∑

l=max{[−m
µ ]

′
,0}

(−1)lCl
na(m+ µl), −µn ≤ m ≤ N, (18)

Sµ,N is a linear operator in the space ℓ2 defined by the matrix with elements
(Sµ,N )l,m = Sµ

l,m, l ≥ 1, −µn ≤ m ≤ N , and (Sµ,N )l,m = 0, l ≥ 1, m > N . The
mean-square error of the estimate ÂNξ is calculated by the formula

∆(f, g; ÂN ξ) = ∆(f, g; ÂNη) = E|ANη − ÂNη|2

=
1

2π

∫ π

−π

∣∣AN (e−iλ)(1− eiλµ)nf(λ) + λ2n
∑∞

k=1(P
−1
µ Sµ,Naµ,N )ke

iλk
∣∣2

|1− eiλµ|2n(f(λ) + λ2ng(λ))2
g(λ)dλ

+
1

2π

∫ π

−π

∣∣AN (e−iλ)(1− eiλµ)nλ2ng(λ)− λ2n
∑∞

k=1(P
−1
µ Sµ,Naµ,N )ke

iλk
∣∣2

λ2n|1− eiλµ|2n(f(λ) + λ2ng(λ))2
f(λ)dλ

= ⟨Sµ,Naµ,N ,P−1
µ Sµ,Naµ,N ⟩+ ⟨QNaN ,aN ⟩, (19)
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where aN = (a(0), a(1), . . . , a(N), 0, . . .), QN is a linear operator in the space
ℓ2 defined by the matrix with elements (QN )l,k = Qµ

l,k, 0 ≤ l, k ≤ N , and
(QN )l,k = 0 otherwise.

The following theorem holds true.

Theorem 3.2
Let {ξ(m),m ∈ Z} be a stochastic sequence which defines stationary nth
increment sequence ξ(n)(m,µ) with an absolutely continuous spectral function
F (λ) which has spectral density f(λ). Let {η(m),m ∈ Z} be an uncorrelated with
the sequence ξ(m) stationary stochastic sequence with an absolutely continuous
spectral function G(λ) which has spectral density g(λ). Let condition (12) be
satisfied. Let coefficients {aµ,N (k) : −µn ≤ k ≤ N} be defined by formula (18).
The optimal linear estimate ÂNξ of the functional ANξ of unknown elements
ξ(k), k = 0,−1,−2, . . . ,−N , from observations of the sequence ξ(m) + η(m) at
pointsm = 0,−1,−2, . . . is calculated by formula (16). The spectral characteristic
hµ,N (λ) of the optimal estimate ÂNξ is calculated by formula (17). The value of
the mean-square error ∆(f, g; ÂNξ) is calculated by formula (19).

A particular case of the considered problem is the problem of estimation
of an unobserved value ξ(−p) at a point −p, p ≥ 0, from observations
of the sequence ξ(k) + η(k) at points k = 0,−1,−2, . . .. In this case
the vector aµ,N has coefficients aµ,N (m) = (−1)lCl

n if m = p− µl, l =
0, 1, 2, . . . , n, m = −µn,−(µn− 1), . . ., and aµ,N (m) = 0 if m ̸= p− µl,
l = 0, 1, 2, . . . , n, m = −µn,−(µn− 1), . . .. Let us define a vector an =
(an(0), an(1), . . . , an(n), 0, 0, . . .)

′, where an(k) = (−1)kCk
n, k = 0, 1, 2, . . . , n.

It follows from the derived formulas that the spectral characteristic hµ,p(λ) of
the optimal estimate

ξ̂(−p) = ζ(−p)−
∫ π

−π

hµ,p(λ)dZξ(n)+η(n)(λ) (20)

of the value ξ(−p), p ≥ 0, can be calculated by the formula

hµ,p(λ) = e−iλp (−iλ)ng(λ)
f(λ) + λ2ng(λ)

−
(−iλ)n

∑∞
k=1(P

−1
µ Sµ,pan)ke

iλk

(1− eiλµ)n(f(λ) + λ2ng(λ))
, (21)

where Sµ,p is a linear operator in the space ℓ2 defined by the matrix with
elements (Sµ,p)l,k = Sµ

l,p−µk, l ≥ 1, 0 ≤ k ≤ n, and (Sµ,N )l,k = 0, l ≥ 1, k > n.
The mean-square error of the estimate is calculated by the formula

∆(f, g; ξ̂(−p)) = ∆(f, g; η̂(−p)) = E|η(−p)− η̂(−p)|2

=
1

2π

∫ π

−π

∣∣e−iλp(1− eiλµ)nf(λ) + λ2n
∑∞

k=1(P
−1
µ Sµ,pan)ke

iλk
∣∣2

|1− eiλµ|2n(f(λ) + λ2ng(λ))2
g(λ)dλ

Stat., Optim. Inf. Comput. Vol. 2, September 2014.



MINIMAX-ROBUST FILTERING PROBLEM FOR STOCHASTIC SEQUENCES 187

+
1

2π

∫ π

−π

∣∣e−iλp(1− eiλµ)nλ2ng(λ)− λ2n
∑∞

k=1(P
−1
µ Sµ,pan)ke

iλk
∣∣2

λ2n|1− eiλµ|2n(f(λ) + λ2ng(λ))2
f(λ)dλ

= ⟨Sµ,pan,P
−1
µ Sµ,pan⟩+Q0,0. (22)

Thus, we have the following statement.

Corollary 3.1
The optimal linear estimate ξ̂(−p) of the unknown value ξ(−p), p ≥ 0, of a
stochastic sequence with nth stationary increments from observations of the
sequence ξ(k) + η(k) at points k = 0,−1,−2, . . . is calculated by formula (20).
The spectral characteristic hµ,p(λ) of the optimal estimate ξ̂(−p) is calculated by
formula (21). The value of the mean-square error ∆(f, g; ξ̂(−p)) is calculated by
formula (22).

Theorem 3.1, 3.1 and Corollary 3.1 determine solutions of the filtering problem
for the linear functionals Aξ, ANξ and the value ξ(−p), p ≥ 0, using the Fourier
coefficients of functions

λ2n

|1− eiλµ|2n(f(λ) + λ2ng(λ))
,

λ2ng(λ)

|1− eiλµ|2n(f(λ) + λ2ng(λ))
.

However, the problem of finding the inverse operator (Pµ)
−1 to the operator Pµ

defined by the Fourier coefficients of the function
λ2n

|1− eiλµ|2n(f(λ) + λ2ng(λ))
is complicated in most cases. Therefore, we propose a method of finding the
operator (Pµ)

−1 under the condition that the functions

|1− eiλµ|2n(f(λ) + λ2ng(λ))

λ2n
,

λ2n

|1− eiλµ|2n(f(λ) + λ2ng(λ))
(23)

admit the canonical factorizations

|1− eiλµ|2n(f(λ) + λ2ng(λ))

λ2n
=

∣∣∣∣∣
∞∑
k=0

φµ(k)e
−iλk

∣∣∣∣∣
2

, (24)

λ2n

|1− eiλµ|2n(f(λ) + λ2ng(λ))
=

∣∣∣∣∣
∞∑
k=0

ψµ(k)e
−iλk

∣∣∣∣∣
2

. (25)

Using coefficients φµ(k), ψµ(k), k ≥ 0, from factorizations (24), (25), we
define linear operators Φµ and Ψµ in the space ℓ2. Let (Φµ)k,j = φµ(k − j)
and (Ψµ)k,j = ψµ(k − j) for 1 ≤ j ≤ k, (Φµ)k,j = 0 and (Ψµ)k,j = 0 for j > k,
k, j ≥ 1. The defined operators admit the following relation: ΨµΦµ = ΦµΨµ =
I , where I is the identity operator. Moreover, the operator Pµ admits the
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factorization Pµ = Ψ
′
µΨµ. Thus, (Pµ)

−1 = ΦµΦ
′
µ and elements of the matrix

which determines the operator Vµ = (Pµ)
−1 are calculated by the formula

V µ
k,j =

min(k,j)∑
p=1

φµ(k − p)φµ(j − p), k, j ≥ 1.

The following theorem holds true.

Theorem 3.3
Let functions (23) admit the canonical factorizations (24) and (25) respectively.
In this case the inverse operator P−1

µ to the operator Pµ is calculated by the
formula P−1

µ = ΦµΦ
′
µ, where linear operator Φµ in the space ℓ2 is determined by

matrix with elements (Φµ)k,j = φµ(k − j) if 1 ≤ j ≤ k and (Φµ)k,j = 0 if j < k,
k, j ≥ 1.

Example 3.1
Consider an ARIMA(0,1,1) sequence {ξ(m),m ∈ Z} whose first order increments
are stationary and increments with step µ = 1 form an one-sided moving average
sequence of order 1 with parameter ϕ. The sequence ξ(m) has the spectral density

f(λ) =
λ2|1− ϕe−iλ|2

|1− e−iλ|2
.

Let {η(m),m ∈ Z} be an uncorrelated with ξ(m) white noise stochastic sequence
with mean 0 and variance 1. The stochastic sequence {ξ(m) + η(m),m ∈ Z} is
an ARIMA(0,1,1) sequence with the spectral density

f(λ) + λ2g(λ) =
xλ2|1− ye−iλ|2

|1− e−iλ|2
,

where
x =

1

2
(3 + ϕ2 ∓

√
(ϕ2 − 1)2 + (ϕ− 1)2),

y =
1

2ϕ+ 2
(3 + ϕ2 ±

√
(ϕ2 − 1)2 + (ϕ− 1)2).

Consider the problem of finding the mean square optimal linear estimate of
the functional A1ξ = aξ(0) + bξ(−1) which depends on unknown values ξ(0),
ξ(−1) of the sequence ξ(m) from observations of the sequence ξ(m) + η(m)
at points m = 0,−1,−2, . . .. Condition (12) holds true if |y| < 1. To calculate
the spectral characteristic of the optimal estimate Â1ξ of the functional A1ξ
we use formula (17). The operator Pµ = P is determined by the matrix with

elements (P)l,k =
yp

x(1− y2)
, where p = |k − l|, l, k ≥ 1. The inverse operator

V = P−1 is defined by the matrix with elements (V)1,1 = x, (V)l,l = x(1 + y2)
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if l ≥ 2, (V)l,k = −xy if |l − k| = 1, l, k ≥ 1, and (V)l,k = 0 otherwise. The
operator Sµ,N = S is defined by the matrix with elements (S)l,m = yl+m

x(1−y2) if
l ≥ 1, m = −1, 0, 1, and (S)l,m = 0 if l ≥ 1, m ≥ 2. The spectral characteristic
h1,1(λ) of the estimate Â1ξ is calculated by the formula

h1,1(λ) =
1− e−iλ

iλ

∞∑
k=0

s(k)e−iλk,

where
s(0) = x−1(a+ b(y − 1)),

s(k) = x−1yk−1(ay + b(y2 − y + 1)), k ≥ 1.

The optimal estimate Â1ξ of the functional A1ξ is calculated by the formula

Â1ξ = a(ξ(0) + η(0)) + b(ξ(−1) + η(−1))−
∞∑
k=0

s(k)(ξ(1)(−k, 1) + η(1)(−k, 1))

= (a− s(0))(ξ(0) + η(0)) + (b+ s(0)− s(1))(ξ(−1) + η(−1))

−
∞∑
k=2

(s(k)− s(k − 1))(ξ(−k) + η(−k))

= x−1(a(x− 1)− b(y − 1))(ξ(0) + η(0)) + x−1(a(1− y)− b(y2 − 2y − x+ 2))

(ξ(−1) + η(−1))−
∞∑
k=2

x−1yk−2(y − 1)(ay + b(y2 − y + 1))(ξ(−k) + η(−k)).

In particular, the optimal estimate ξ̂(0) of the value ξ(0) is the following

ξ̂(0) = (1− x−1)(ξ(0) + η(0))−
∞∑
k=1

x−1yk−1(y − 1)(ξ(−k) + η(−k)).

4. Filtering of cointegrated sequences

Let {ξ(m),m ∈ Z} and {ζ(m),m ∈ Z} be two integrated stochastic sequences of
the same order n which define stationary nth increment sequences ξ(n)(m,µ) and
ζ(n)(m,µ) with absolutely continuous spectral functions F (λ) and P (λ) which
have spectral densities f(λ) and p(λ) correspondingly.

Definition 4.1
Two integrated stochastic sequences {ξ(m),m ∈ Z} and {ζ(m),m ∈ Z} are
called cointegrated if there exists a constant β ̸= 0 such that the sequence {ζ(m)−
βξ(m) : m ∈ Z} is stationary.
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Consider the filtering problem for cointegrated stochastic sequences which
consists in finding the mean-square optimal linear estimates of the functionals

Aξ =

∞∑
k=0

a(k)ξ(−k), ANξ =

N∑
k=0

a(k)ξ(−k)

of unknown values of the sequence ξ(m) from observations of the sequence
ζ(m) at points m = 0,−1,−2, . . .. This problem can be solved by using results
presented in the preceding section under the condition that sequences ξ(m) and
ζ(m)− βξ(m) are uncorrelated.

Let the following condition holds true:∫ π

−π

λ2n

|1− eiλµ|2np(λ)
dλ <∞. (26)

Determine operators Pβ
µ, Sβ

µ, Qβ with the help of the Fourier coefficients of
functions

λ2n

|1− eiλµ|2np(λ)
,

(p(λ)− β2f(λ))

|1− eiλµ|2np(λ)
,

f(λ)p(λ)− β2f2(λ)

λ2np(λ)
(27)

in the same way as operators Pµ, Sµ, Q are determined in Section 3. It follows
from Theorem 3.1 that the spectral characteristic hβµ(λ) of the optimal estimate

Âξ = Aζ −
∫ π

−π

hβµ(λ)dZζ(n)(λ), (28)

of the functional Aξ is calculated by the formula

hβµ(λ) = A(e−iλ)
p(λ)− β2f(λ)

(iλ)np(λ)
−

(−iλ)n
∑∞

k=1((P
β
µ)

−1Sβ
µaµ)ke

iλk

(1− eiλµ)np(λ)
. (29)

The mean-square error of the estimate is calculated by the formula

∆(f, g; Âξ)

=
1

2π

∫ π

−π

∣∣∣A(e−iλ)(1− eiλµ)nβ2f(λ) + λ2n
∑∞

k=1((P
β
µ)

−1Sβ
µaµ)ke

iλk
∣∣∣2

λ2n|1− eiλµ|2np2(λ)
p(λ)dλ

−β2

2π

∫ π

−π

∣∣∣A(e−iλ)(1− eiλµ)nβ2f(λ) + λ2n
∑∞

k=1((P
β
µ)

−1Sβ
µaµ)ke

iλk
∣∣∣2

λ2n|1− eiλµ|2np2(λ)
f(λ)dλ

+
1

2π

∫ π

−π

∣∣∣A(e−iλ)(1− eiλµ)n(p(λ)− β2f(λ))− λ2n
∑∞

k=1((P
β
µ)

−1Sβ
µaµ)ke

iλk
∣∣∣2

λ2n|1− eiλµ|2np2(λ)

f(λ)dλ = ⟨Sβ
µaµ, (P

β
µ)

−1Sβ
µaµ⟩+ ⟨Qβa,a⟩, (30)

In summary we have the following statement.
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Theorem 4.1
Let the cointegrated stochastic sequences {ξ(m),m ∈ Z} and {ζ(m),m ∈ Z}
have absolutely continuous spectral functions F (λ) and G(λ) which have spectral
densities f(λ) and p(λ) satisfying conditions (26). Let coefficients {aµ(k) : k ≥
−µn} determined by formula (13) satisfy conditions (8). If the sequences ξ(m)

and ζ(m)− βξ(m) are uncorrelated, then the optimal linear estimate Âξ of the
functional Aξ of unknown elements ξ(m), m ≤ 0, from observations of the
sequence ζ(m) at points m = 0,−1,−2, . . . is calculated by formula (28). The
spectral characteristic hβµ(λ) of the optimal estimate Âξ is calculated by formula
(29). The value of the mean-square error ∆(f, g; Âξ) is calculated by formula (30).

Let operators Pβ
µ, Sβ

µ,N , Qβ
N be determined by the Fourier coefficients of

functions (27) in the same way as operators Pµ, Sµ,N , QN are determined in
Section 3. It follows from Theorem 3.2 that the spectral characteristic hβµ,N (λ) of
the optimal estimate

ÂNξ = ANζ −
∫ π

−π

hβµ,N (λ)dZζ(n)(λ) (31)

of the functional ANξ is calculated by the formula

hβµ,N (λ) = AN (e−iλ)
p(λ)− β2f(λ)

(iλ)np(λ)
−

(−iλ)n
∑∞

k=1((P
β
µ)

−1Sβ
µ,Naµ,N )ke

iλk

(1− eiλµ)np(λ)
.

(32)
The mean-square error of the estimate ÂNξ is calculated by the formula

∆(f, g; ÂN ξ)

=
1

2π

∫ π

−π

∣∣∣AN (e−iλ)(1− eiλµ)nβ2f(λ) + λ2n
∑∞

k=1((P
β
µ)

−1Sβ
µ,Naµ,N )ke

iλk
∣∣∣2

λ2n|1− eiλµ|2np2(λ)
p(λ)dλ

−
β2

2π

∫ π

−π

∣∣∣AN (e−iλ)(1− eiλµ)nβ2f(λ) + λ2n
∑∞

k=1((P
β
µ)

−1Sβ
µ,Naµ,N )ke

iλk
∣∣∣2

λ2n|1− eiλµ|2np2(λ)
f(λ)dλ

+
1

2π

∫ π

−π

∣∣∣AN (e−iλ)(1− eiλµ)n(p(λ)− β2f(λ))− λ2n
∑∞

k=1((P
β
µ)

−1Sβ
µ,Naµ,N )ke

iλk
∣∣∣2

λ2n|1− eiλµ|2np2(λ)

f(λ)dλ = ⟨Sβ
µ,Naµ,N , (Pβ

µ)
−1Sβ

µ,Naµ,N ⟩+ ⟨Qβ
NaN ,aN ⟩. (33)

The following theorem holds true.

Theorem 4.2
Let the cointegrated stochastic sequences {ξ(m),m ∈ Z} and {ζ(m),m ∈ Z}
have absolutely continuous spectral functions F (λ) and G(λ) which have spectral
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densities f(λ) and p(λ) satisfying condition (26). If the sequences ξ(m) and
ζ(m)− βξ(m) are uncorrelated, then the optimal linear estimate ÂNξ of the
functional ANξ of unknown elements ξ(m), −N ≤ m ≤ 0, from observations
of the sequence ζ(m) at points m = 0,−1,−2, . . . is calculated by formula (31).
The spectral characteristic hβµ,N (λ) of the optimal estimate ÂNξ is calculated by
formula (32). The value of the mean-square error ∆(f, g; ÂNξ) is calculated by
formula (33).

5. Minimax-robust method of filtering

The values of mean-square errors ∆(hµ(f, g); f, g) := ∆(f, g; Âξ) and
∆(hµ,N (f, g); f, g) := ∆(f, g; ÂNξ) and spectral characteristics hµ(f, g)

and hµ,N (f, g) of the optimal linear estimates Âξ and ÂNξ of the functionals
Aξ and ANξ of unknown values of the sequence ξ(m) based on observations of
the stochastic sequence ξ(k) + η(k) are derived by formulas (15), (14) and (19),
(17) correspondingly under the condition that spectral densities f(λ) and g(λ)
of stochastic sequences ξ(m) and η(m) are known. In the case where spectral
densities are not exactly known, but a set D = Df ×Dg of admissible spectral
densities is given, the minimax (robust) approach to estimation of functionals
which depend on the unknown values of stochastic sequence with stationary
increments is reasonable. In other words we are interested in finding an estimate
that minimizes the maximum of mean-square errors for all spectral densities from
a given class D = Df ×Dg of admissible spectral densities simultaneously.

Definition 5.1
For a given class of spectral densities D = Df ×Dg spectral densities f0(λ) ∈ Df ,
g0(λ) ∈ Dg are called least favorable in the class D for the optimal linear filtering
of the functional Aξ if the following relation holds true

∆(f0, g0) = ∆(h(f0, g0); f0, g0) = max
(f,g)∈Df×Dg

∆(h(f, g); f, g).

Definition 5.2
For a given class of spectral densities D = Df ×Dg the spectral characteristic
h0(λ) of the optimal linear estimate of the functional Aξ is called minimax-robust
if there are satisfied conditions

h0(λ) ∈ HD =
∩

(f,g)∈Df×Dg

L0
2(f(λ) + λ2ng(λ)),

min
h∈HD

max
(f,g)∈Df×Dg

∆(h; f, g) = max
(f,g)∈Df×Dg

∆(h0; f, g).
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Using the derived in the previous sections formulas and the introduced
definitions we can conclude that the following statement holds true.

Lemma 5.1
Spectral densities f0 ∈ Df , g0 ∈ Dg which satisfy condition (12) are least
favorable in the class D = Df ×Dg for the optimal linear filtering of the
functional Aξ if operators P0

µ, S0
µ, Q0 determined by the Fourier coefficients of

the functions

λ2n

|1− eiλµ|2n(f0(λ) + λ2ng0(λ))
,

λ2ng0(λ)

|1− eiλµ|2n(f0(λ) + λ2ng0(λ))
,

f0(λ)g0(λ)

f0(λ) + λ2ng0(λ)

determine a solution of the conditional extremum problem

max
f∈D

(⟨Sµaµ,P
−1
µ Sµaµ⟩+ ⟨Qa,a⟩) = ⟨S0

µaµ, (P
0
µ)

−1S0
µaµ⟩+ ⟨Q0a,a⟩. (34)

The minimax spectral characteristic is determined as h0 = hµ(f
0, g0) if

hµ(f
0, g0) ∈ HD.

The function h0 and the pair (f0, g0) form a saddle point of the function
∆(h; f, g) on the set HD ×D. The saddle point inequalities

∆(h; f0, g0) ≥ ∆(h0; f0, g0) ≥ ∆(h0; f, g) ∀f ∈ Df , ∀g ∈ Dg, ∀h ∈ HD

hold true if h0 = hµ(f
0, g0) and hµ(f0, g0) ∈ HD, where (f0, g0) is a solution of

the conditional extremum problem:

∆̃(f, g) = −∆(hµ(f
0, g0); f, g) → inf, (f, g) ∈ D,

∆(hµ(f
0, g0); f, g)

=
1

2π

∫ π

−π

∣∣∣A(e−iλ)(1− eiλµ)nf0(λ) + λ2n
∑∞

k=1((P
0
µ)

−1S0
µaµ)ke

iλk
∣∣∣2

|1− eiλµ|2n(f0(λ) + λ2ng0(λ))2
g(λ)dλ

+
1

2π

∫ π

−π

∣∣∣A(e−iλ)(1− eiλµ)nλ2ng0(λ)− λ2n
∑∞

k=1((P
0
µ)

−1S0
µaµ)ke

iλk
∣∣∣2

λ2n|1− eiλµ|2n(f0(λ) + λ2ng0(λ))2
f(λ)dλ.

This conditional extremum problem is equivalent to the unconditional extremum
problem

∆D(f, g) = ∆̃(f, g) + δ(f, g|Df ×Dg) → inf,

where δ(f, g|Df ×Dg) is the indicator function of the set Df ×Dg. Solution
(f0, g0) to this unconditional extremum problem is characterized by condition
0 ∈ ∂∆D(f

0, g0) (see [24, 34]).
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6. Least favorable spectral densities in the class D0
f × D0

g

Consider the problem of minimax filtering of the functional Aξ for the set of
admissible spectral densities D = D0

f ×D0
g , where

D0
f =

{
f(λ)| 1

2π

∫ π

−π

f(λ)dλ ≤ P1

}
, D0

g =

{
g(λ)| 1

2π

∫ π

−π

g(λ)dλ ≤ P2

}
.

Let us assume that densities f0 ∈ D0
f , g0 ∈ D0

g and functions

hµ,f (f
0, g0) =

∣∣∣A(e−iλ)(1− eiλµ)nλ2ng0(λ)− λ2n
∑∞

k=1((P
0
µ)

−1S0
µaµ)ke

iλk
∣∣∣

|λ|n|1− eiλµ|n(f0(λ) + λ2ng0(λ))
,

(35)

hµ,g(f
0, g0) =

∣∣∣A(e−iλ)(1− eiλµ)nf0(λ) + λ2n
∑∞

k=1((P
0
µ)

−1S0
µaµ)ke

iλk
∣∣∣

|1− eiλµ|n(f0(λ) + λ2ng0(λ))
(36)

are bounded. In this case the functional ∆(hµ(f
0, g0); f, g) is continuous and

bounded in the L1 × L1 space. It comes from the condition 0 ∈ ∂∆D(f
0, g0) that

least favorable densities f0 ∈ D0
f , g0 ∈ D0

g satisfy the equation∣∣∣∣∣A(e−iλ)(1− eiλµ)nλ2ng0(λ)− λ2n
∞∑
k=1

((P0
µ)

−1S0
µaµ)ke

iλk

∣∣∣∣∣
= α1|λ|n|1− eiλµ|n(f0(λ) + λ2ng0(λ)), (37)∣∣∣∣∣A(e−iλ)(1− eiλµ)nf0(λ) + λ2n

∞∑
k=1

((P0
µ)

−1S0
µaµ)ke

iλk

∣∣∣∣∣
= α2|1− eiλµ|n(f0(λ) + λ2ng0(λ)), (38)

where α1 ≥ 0 and α2 ≥ 0 are constants such that α1 ̸= 0 if
1

2π

∫ π

−π
f0(λ)dλ = P1

and α2 ̸= 0 if
1

2π

∫ π

−π
g0(λ)dλ = P2.

Thus, we have the following statements.

Theorem 6.1
Let spectral densities f0(λ) ∈ D0

f and g0(λ) ∈ D0
g satisfy condition (12), let

functions hµ,f (f0, g0) and hµ,g(f0, g0) be bounded. The spectral densities f0(λ)
and g0(λ) determined by equations (37), (38) are least favorable in the class D =
D0

f ×D0
g for the optimal linear estimation of the functional Aξ if they determine

solution of extremum problem (34). The function hµ(f
0, g0) determined by

formula (14) is minimax spectral characteristic of the optimal estimate of the
functional Aξ.
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Theorem 6.2
Let spectral density f(λ) be known, let spectral density g0(λ) ∈ D0

g and let
conditions (12) be satisfied. Let the function hµ,g(f, g

0) be bounded. Spectral
density g0(λ) is least favorable in the class D0

g for the optimal linear filtering of
the functional Aξ if it is of the form

g0(λ) =
1

λ2n
max

{
0,

∣∣A(e−iλ)(1− eiλµ)nf(λ) + λ2n
∑∞

k=1((P
0
µ)

−1S0
µaµ)ke

iλk
∣∣

α2|1− eiλµ|n
− f(λ)

}

and the pair (f, g0) determines a solution of the extremum problem (34). The
function hµ(f, g0) determined by formula (14) is minimax spectral characteristic
of the optimal estimation of the functional Aξ.
Theorem 6.3
Let spectral density g(λ) be known, let spectral density f0(λ) ∈ D0

f and let
condition (12) be satisfied. Let the function hµ,f (f

0, g) be bounded. Spectral
density f0(λ) is least favorable in the class D0

f for the optimal linear filtering
of the functional Aξ if it is of the form

f0(λ) = max

{
0,

|λ|n
∣∣A(e−iλ)(1− eiλµ)ng(λ)−

∑∞
k=1((P

0
µ)

−1S0
µaµ)ke

iλk
∣∣

α1|1− eiλµ|n
− λ2ng(λ)

}

and the pair (f0, g) determines a solution of the extremum problem (34). The
function hµ(f0, g) determined by formula (14) is minimax spectral characteristic
of the optimal estimation of the functional Aξ.

7. Least favorable densities in the class D = Dv
u × Dε

Consider the problem of optimal linear filtering of the functional Aξ for the set of
spectral densities D = Dv

u ×Dε, where

Dv
u =

{
f(λ)|v(λ) ≤ f(λ) ≤ u(λ),

1

2π

∫ π

−π

f(λ)dλ ≤ P1

}
,

Dε =

{
g(λ)|g(λ) = (1− ε)g1(λ) + εw(λ),

1

2π

∫ π

−π

g(λ)dλ ≤ P2

}
.

Here spectral densities u(λ), v(λ), g1(λ) are known and fixed, and spectral
densities u(λ), v(λ) are bounded.

Let spectral densities f0 ∈ Dv
u, g0 ∈ Dε be such that functions hµ,f (f0, g0) and

hµ,g(f
0, g0) determined by formulas (35), (36) are bounded. From the condition

0 ∈ ∂∆D(f
0, g0) we find the following equations that define least favorable

densities ∣∣∣∣∣A(e−iλ)(1− eiλµ)nλ2ng0(λ)− λ2n
∞∑
k=1

((P0
µ)

−1S0
µaµ)ke

iλk

∣∣∣∣∣
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= α1|λ|n|1− eiλµ|n(f0(λ) + λ2ng0(λ))(γ1(λ) + γ2(λ) + α−1
1 ), (39)∣∣∣∣∣A(e−iλ)(1− eiλµ)nf0(λ) + λ2n

∞∑
k=1

((P0
µ)

−1S0
µaµ)ke

iλk

∣∣∣∣∣
= α2|1− eiλµ|n(f0(λ) + λ2ng0(λ))(φ(λ) + α−1

2 ), (40)

where γ1 ≤ 0 and γ1 = 0 if f0(λ) ≥ v(λ); γ2(λ) ≥ 0 and γ2 = 0 if f0(λ) ≤ u(λ);
φ(λ) ≤ 0 and φ(λ) = 0 when g0(λ) ≥ (1− ε)g1(λ).

The following statements hold true.

Theorem 7.1
Let spectral densities f0(λ) ∈ Dv

u, g0(λ) ∈ Dε satisfy condition (12). Let
functions hµ,f (f0, g0) and hµ,g(f

0, g0) determined by formulas (35), (36) be
bounded. Spectral densities f0(λ) and g0(λ) determined by equations (39), (40)
are least favorable in the class D = Dv

u ×Dε for the optimal linear filtering of
the functional Aξ if they determine a solution of extremum problem (34). The
function hµ(f0, g0) determined by (14) is minimax spectral characteristic of the
optimal estimate of the functional Aξ.

Theorem 7.2
Let spectral density f(λ) be known, let spectral density g0(λ) ∈ Dε and let
condition (12) be satisfied. Assume that the function hµ,g(f, g0) determined by
formula (36) is bounded. Spectral density g0(λ) is least favorable in the class Dε

for the optimal linear filtering of the functional Aξ if it is of the form

g0(λ) =
1

λ2n
max {(1− ε)g1(λ), f1(λ)} ,

f1(λ) =

∣∣A(e−iλ)(1− eiλµ)nf(λ) + λ2n
∑∞

k=1((P
0
µ)

−1S0
µaµ)ke

iλk
∣∣

α2|1− eiλµ|n
− f(λ),

and the pair (f, g0) determines a solution of extremum problem (34). The function
hµ(f, g

0) determined by formula (14) is minimax spectral characteristic of the
optimal estimate of the functional Aξ.

Theorem 7.3
Let spectral density g(λ) be known, let spectral density f0(λ) ∈ Dv

u and let
condition (12) be satisfied. Let the function hµ,f (f

0, g) be bounded. Spectral
density f0(λ) is least favorable in the class Dv

u for the optimal linear filtering
of the functional Aξ if it is of the form

f0(λ) = min {v(λ),max {u(λ), g2(λ)}} ,

g2(λ) =
|λ|n

∣∣A(e−iλ)(1− eiλµ)ng(λ)−
∑∞

k=1((P
0
µ)

−1S0
µaµ)ke

iλk
∣∣

α1|1− eiλµ|n
− λ2ng(λ)
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and the pair (f0, g) determines a solution of extremum problem (34). The function
hµ(f

0, g) determined by formula (14) is minimax spectral characteristic of the
optimal estimation of the functional Aξ.

8. Conclusions

In this article we propose solutions of the filtering problem for functionals Aξ
and ANξ which depend on unobserved values of a stochastic sequence ξ(k) with
stationary nth increments. Estimates are based on observations of the sequence
ξ(k) + η(k) at points of time k = 0,−1,−2, . . . , where η(k) is an uncorrelated
with ξ(k) stationary sequence. We derived formulas for calculating values of the
mean-square errors and spectral characteristics of the optimal linear estimates of
the functionals in the case where spectral densities of the sequences are known.
The obtained results are applied to find solution of the filtering problem for
cointegrated sequences. In the case of spectral uncertainty where spectral densities
are not known exactly, but a set of admissible spectral densities is specified,
the minimax-robust method is applied. Formulas that determine least favorable
spectral densities and minimax (robust) spectral characteristics are derived for
some special sets of admissible spectral densities. The filtering problem for
ARIMA(0,1,1) sequence is analyzed as an example of application of the developed
method.
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