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Abstract Conjugate gradient methods are efficient for smooth optimization problems,
while there are rare conjugate gradient based methods for solving a possibly
nondifferentiable convex minimization problem. In this paper by making full use of
inherent properties of Moreau-Yosida regularization and descent property of modified
conjugate gradient method we propose a modified Fletcher-Reeves-type method for
nonsmooth convex minimization. It can be applied to solve large-scale nonsmooth convex
minimization problem due to lower storage requirement. The algorithm is globally
convergent under mild conditions.
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1. Introduction

Let f : Rn → R be a possibly nondifferentiable convex function and consider
unconstrained optimization problem of the form

min
x∈Rn

f(x). (1)

Associated with problem (1) is the problem

min
x∈Rn

F (x), (2)
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where F : Rn → R is the so-called Moreau-Yosida regularization of f , which is
defined by

F (x) = min
z∈Rn

{f(z) + 1

2λ
∥ z − x ∥2},

where λ is a positive parameter and ∥ · ∥ denotes the Euclidean norm.
The function F has some good properties: problems (1) and (2) are equivalent in

the sense that the solution sets of the two problems coincide with each other [9]. F
is a differentiable convex function, even though the function f is nondifferentiable.
Moreover F has a Lipschitz continuous gradient [9]. These features motivate us
to solve problem (1) through the Moreau-Yosida regularization, particularly when
f is nondifferentiable.

Existing methods for minimizing Moreau-Yosida regularization F are mainly
Newton-type methods (see, e.g., [2, 3, 4, 7, 10, 11, 13, 14, 15, 16] and
the references therein) and trust region methods ( see, e.g., [12, 17, 19] and
the references therein). The algorithms studied in [4, 7, 14, 15, 16, 17] are
implementable in the sense that they utilize inexact values of the Moreau-
Yosida regularization and its gradient. Rauf and Fukushima in [16] made a direct
application of the BFGS method to the Moreau-Yosida regularization, Sagara-
Fukushima in [17] proposed an implementable trust-region method. [16] and
[17] studied global convergence under the assumption of strong convexity of the
objective function.

The conjugate gradient methods are welcome methods for smooth uncon-
strained optimization problems. They are particularly efficient for large-scale
problems due to their simplicity and low storage [8]. To the best of our knowl-
edge, there are rare conjugate gradient based methods for nonsmooth convex
minimization, which motivates this paper. We propose a conjugate gradient based
method for minimizing Moreau-Yosida regularization F , with a line search on
approximate value of the function F instead of its exact value. The line search
rule is different from that in [7, 16]. In this paper, we will focus on the MFR
method which is a descent conjugate gradient method, proposed by Zhang,
Zhou and Li [20] for solving unconstrained optimization. Under mild conditions,
we prove the global convergence of the method. Note that we do not require
the strong convexity assumption on the objective function f as [16] and [17]
required. Recently, Yuan, Wei and Li [18] propose a modified Polak-Ribière-
Polyak conjugate gradient algorithm for nonsmooth convex programs, [18] and
this paper have common feature that they both propose algorithms for problem (1)
by means of Moreau-Yosida regularization and the search directions satisfy the
sufficient descent property, but they have different line search technique.

The paper is organized as follows. In section 2, we derive the algorithm. Section
3 is devoted to proving its global convergence. The last section contains some
concluding remarks.
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Throughout this paper, ⟨·, ·⟩ denotes inner product of two vectors, and g(x)
denotes the gradient of F (x).

2. Derivation of MFR Type Algorithm

In this section, we first recall some basic results in convex analysis which are
useful in the subsequent discussions. Let θ : Rn → R be a function such that

θ(z) = f(z) +
1

2λ
∥ z − x ∥2,

since θ1(z) =
1
2λ ∥ z − x ∥2 is strongly convex and f(z) is convex, by the

definition of strongly convex function we know that θ(z) is strongly convex. Hence
p(x) = argminz∈Rn θ(z) is well defined and unique. Then F (x) can be expressed
by

F (x) = f(p(x)) +
1

2λ
∥ p(x)− x ∥2 .

Some features about F (x) can be seen in [9].
Properties

1. The function F is finite-valued, convex and everywhere differentiable with
gradient

g(x) =
1

λ
(x− p(x)).

Moreover, the gradient mapping g : Rn → Rn is globally Lipschitz
continuous with modulus 1

λ , i.e.,

∥ g(x)− g(y) ∥≤ 1

λ
∥ x− y ∥, ∀x, y ∈ Rn. (1)

2. x is an optimal solution to (1) if and only if g(x) = 0, namely p(x) = x.

It is obvious that F (x) and g(x) can be obtained by p(x). However p(x) is
difficult or even impossible to obtain. Fortunately, for each x ∈ Rn and any ε > 0,
there exists a vector pa(x, ε) ∈ Rn, where the superscript character a means the
approximation, such that

f(pa(x, ε)) +
1

2λ
∥ pa(x, ε)− x ∥2≤ F (x) + ε. (2)

Hence, we can use pa(x, ε) to define approximations of F (x) and g(x) by

F a(x, ε) = f(pa(x, ε)) +
1

2λ
∥ pa(x, ε)− x ∥2, (3)
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and

ga(x, ε) =
1

λ
(x− pa(x, ε)). (4)

Implementable algorithms that are designed to find pa(x, ε) are introduced in
[1, 5, 6]. The following Proposition deriving from Fukushima and Qi [7] shows
that with pa(x, ε) we can compute approximations F a(x, ε) and ga(x, ε) to F (x)
and g(x), respectively with any desired accuracy.

Proposition 1
Let pa(x, ε) be a vector satisfying

F a(x, ε) ≤ F (x) + ε,

and F a(x, ε) and ga(x, ε) be given by (3) and (4), respectively. Then we have

F (x) ≤ F a(x, ε) ≤ F (x) + ε, (5)

∥ pa(x, ε)− p(x) ∥≤
√
2λε, (6)

∥ ga(x, ε)− g(x) ∥≤
√

2ε

λ
. (7)

Now we state our algorithm.
Algorithm 1: MFR type algorithm

Step 0 Given constants σ1 ∈ (0, 1), ρ ∈ (0, 1), and σ2 > 0 and an initial
point x0 ∈ Rn and ε0 > 0. Let k := 0.
Step 1 Compute pa(xk, εk). Compute the search direction

dk =

{
−ga(xk, εk) if k = 0,

−θkg
a(xk, εk) + βFR

k dk−1 if k ≥ 1,
(8)

where
yk−1 = ga(xk, εk)− ga(xk−1, εk−1),

βFR
k =

∥ga(xk, εk)∥2

∥ga(xk−1, εk−1)∥2
,

θk =
⟨dk−1, yk−1⟩

∥ga(xk−1, εk−1)∥2
.

Step 2 Choose a scalar εk+1 such that 0 < εk+1 < εk. Let ik be the smallest
nonnegative integer i such that

Fa(xk + ρidk, εk+1) ≤ Fa(xk, εk) + σ1ρ
i⟨ga(xk, εk), dk⟩ − σ2ρ

2i ∥ dk ∥2 +εk.
(9)

Set αk = ρik and xk+1 = xk + αkd
k. Let k := k + 1. Go to Step 1.
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Proposition 2
The search direction (8) in Algorithm 1 satisfies

⟨ga(xk, εk), d
k⟩ = −∥ga(xk, εk)∥2.

Proof. We omit the detail.
The following proposition ensures that, at each iteration k of the algorithm, αk

is well defined and can be determined finitely in Step 2.

Proposition 3
For every k, there exists ᾱk > 0 such that

F a(xk + τdk, εk+1) ≤ F a(xk, εk) + σ1τ⟨ga(xk, εk), d
k⟩ − σ2τ

2 ∥ dk ∥2 +εk,
(10)

for all τ ∈ (0, ᾱk).

Proof. By proposition 1, we have

F a(xk + τdk, εk+1) ≤ F (xk + τdk) + εk+1, (11)

F (xk) ≤ F a(xk, εk), (12)

⟨g(xk), dk⟩ − ⟨ga(xk, εk), d
k⟩ = ⟨g(xk)− ga(xk, εk), d

k⟩
≤ ∥ g(xk)− ga(xk, εk) ∥∥ dk ∥

≤
√

2εk
λ

∥ dk ∥ . (13)

Adding (11), (12) and (13) multiplied by τ , we obtain

Fa(xk + τdk, εk+1) ≤ Fa(xk, εk) + τ⟨ga(xk, εk), dk⟩+ εk+1 + τ

√
2εk
λ

∥ dk ∥

+F (xk + τdk)− F (xk)− τ⟨g(xk), dk⟩. (14)

If dk = 0, then (13) implies that (10) holds for any τ > 0, because εk+1 < εk.
Consider the case dk ̸= 0. Then, we have

⟨ga(xk, εk), d
k⟩ = − ∥ ga(xk, εk) ∥2≤ 0,

so that
⟨ga(xk, εk), d

k⟩ ≤ σ⟨ga(xk, εk), d
k⟩. (15)

Denote

ϕ(τ) = τ

√
2εk
λ

∥ dk ∥ +F (xk + τdk)− F (xk)− τ⟨g(xk), dk⟩+ σ2τ
2 ∥ dk ∥2 .
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Since F is continuous and εk+1 < εk, we have

lim
τ→0

ϕ(τ) = 0 < εk − εk+1.

Therefore there exists a constant ᾱk > 0 such that ϕ(τ) < εk − εk+1 for all τ ∈
(0, ᾱk). That is,

εk+1 + τ

√
2εk
λ

∥ dk ∥ +F (xk + τdk)− F (xk)− τ⟨g(xk), dk⟩ < −σ2τ
2 ∥ dk ∥2 +εk

(16)
for all τ ∈ (0, ᾱk). That (10) holds for all τ ∈ (0, ᾱk) follows from (14)-(16).

3. Global Convergence of MFR Type Algorithm

In this section, we prove the global convergence under the following assumptions:

A1 f is bounded from below.

A2 Ω = {x ∈ Rn | F (x) ≤ F (x0) +
∞∑
i=0

εi} is bounded.

We note that this assumption is a weaker condition than the strong convexity of
f as required in [16, 17], which can be verified by the fact that the property of
strong convexity of f is transmitted to the Moreau-Yosida regularization F : If
f is strongly convex, then F is strongly convex [11] (Theorem 2.2), so we can
deduce that the strong convexity of f implies the boundedness of Ω. It is clear that
the sequence {xk} generated by Algorithm 1 are contained in Ω. Combining this
assumption with the Lipschitz continuous property of the gradient g, we have that
there exists a constant γ > 0 such that

∥ g(x) ∥≤ γ, ∀x ∈ Ω. (1)

Combining (1) with Proposition 1, we obtain the conclusion that there exists a
constant γ1 > 0 such that

∥ ga(x, ε) ∥≤ γ1, ∀x ∈ Ω. (2)

Lemma 1
Let {xk} and {dk} be generated by Algorithm 1. If the sequence {εk} of strictly
decreasing positive numbers satisfies the condition

∞∑
k=0

√
εk < +∞. (3)

Then the whole sequence {F a(xk, εk)} is convergent, and∑
k≥0

αk∥ga(xk, εk)∥2 < +∞. (4)
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Proof. By the line search rule, it holds that

F a(xk+1, εk+1) ≤ F a(xk, εk) + σ1αk(g
a(xk, εk), d

k)− σ2α
2
k ∥ dk ∥2 +εk (5)

for all k. Since
⟨ga(xk, εk), d

k⟩ = − ∥ ga(xk, εk) ∥2≤ 0,

it follows that
F a(xk+1, εk+1) ≤ F a(xk, εk) + εk, (6)

and hence

F a(xk, εk) ≤ F a(x0, ε0) +

k−1∑
i=0

εi,

which together with the assumption
∞∑
k=0

√
εk < +∞ implies that the sequence

F a(xk, εk) is bounded from above. On the other hand, f is bounded from below
by assumption, and hence F is also bounded from below. Since F a(xk, εk) ≥
F (xk) for all k, the sequence {F a(xk, εk)} is bounded from below. Therefore
the sequence {F a(xk, εk)} has at least one accumulation point. In fact, it can be
shown in a way similar to the first part of the proof of Theorem 4.1 in [7] that the
whole sequence {F a(xk, εk)} is convergent.

Applying the inequality (5) recursively, we have

Fa(xk+1, εk+1) ≤ Fa(x0, ε0) + σ1

i=k∑
i=0

αi(g
a(xi, εi), d

i)− σ2

i=k∑
i=0

α2
i ∥ di ∥2 +

i=k∑
i=0

εi.

That is,

σ1

i=k∑
i=0

−αi(g
a(xi, εi), d

i) + σ2

i=k∑
i=0

α2
i ∥ di ∥2≤ Fa(x0, ε0)− Fa(xk+1, εk+1) +

i=k∑
i=0

εi.

(7)
Since the whole sequence {F a(xk, εk)} is convergent,

∞∑
k=0

εk < +∞ and − (ga(xk, εk), d
k) ≥ 0,

by taking the limit in (7) we have∑
k≥0

αk∥ga(xk, εk)∥2 =
∑
k≥0

−αk⟨ga(xk, εk), d
k⟩ < +∞.
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Lemma 2
Assume the conditions of Lemma 3.1 hold. Then∑

k≥0

∥ga(xk, εk)∥4

∥dk∥2
< +∞. (8)

Proof. Now we prove (8) by considering the following two cases.
Case 1. αk = 1. We get from Proposition 2 that ∥ga(xk, εk)∥ ≤∥ dk ∥ . Hence∑

k≥0

∥ga(xk, εk)∥4

∥dk∥2
≤

∑
k≥0

∥ga(xk, εk)∥2 < +∞.

Case 2. αk < 1. By the line search step, i.e., Step 2 of Algorithm 1, ρ−1αk does
not satisfy inequality (9). This means

Fa(xk + ρ−1αkd
k, εk+1)− Fa(xk, εk) > σ1ρ

−1αk⟨ga(xk, εk), d
k⟩ − σ2ρ

−2α2
k ∥ dk ∥2 +εk.

(9)
By the mean-value theorem and inequality (7), there is a tk ∈ (0, 1) such that
xk + tkρ

−1αkd
k ∈ Ω and

F (xk + ρ−1αkd
k)− F (xk) = ρ−1αk⟨g(xk + tkρ

−1αkd
k), dk⟩

≤ ρ−1αkg
T
k d

k +
1

λ
ρ−2α2

k∥dk∥2.

Combining this with (5), we get

F a(xk + ρidk, εk+1)− F a(xk, εk) ≤ ρ−1αkg
T
k d

k +
1

λ
ρ−2α2

k∥dk∥2 + εk+1.

Substituting this inequality into (9), we get

−σ1∥ga(xk, εk)∥2 − σ2ρ
−1αk∥dk∥2 ≤ gTk d

k +
1

λ
ρ−1αk∥dk∥2.

Due to (7), we get

(1− σ1)∥ga(xk, εk)∥2 −
√

2εk
λ

∥dk∥ ≤ (
1

λ
+ σ2)ρ

−1αk∥dk∥2,

which implies

αk > c(1− σ1)
∥ga(xk, εk)∥2

∥dk∥2
− c

√
2εk
λ

1

∥dk∥
,

where c = ρ
1
λ+σ2

. From (4), we obtain

∑
k≥0

((1− σ1)
∥ga(xk, εk)∥4

∥dk∥2
−
√

2εk
λ

∥ga(xk, εk)∥2

∥dk∥
) < +∞.
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Since∑
k≥0

√
2εk
λ

∥ga(xk, εk)∥2

∥dk∥
≤

∑
k≥0

√
2εk
λ

∥ga(xk, εk)∥ ≤
∑
k≥0

γ1

√
2εk
λ

< +∞,

the second inequality is due to (2). Hence (8) holds.

Theorem 1
Assume the conditions of Lemma 3.1 hold. We have

lim inf
k→∞

∥gk∥ = 0.

Proof. For the sake of contradiction, we suppose that the conclusion is not true.
Then there exists a constant ϵ > 0 such that

∥gk∥ ≥ ϵ, ∀k ≥ 0. (10)

From (7), we obtain there exists a constant ϵ∗ > 0 such that

∥ga(xk, εk)∥ ≥ ϵ∗, ∀k ≥ 0. (11)

We get from (8) that

∥dk∥2 = (βFR
k )2∥dk−1∥2 − 2θk⟨dk, ga(xk, εk)⟩ − θ2k∥ga(xk, εk)∥2.

Dividing both sides of this equality by ⟨ga(xk, εk), d
k⟩2, we get from

Proposition 2 and (11) that

∥dk∥2

∥ga(xk, εk)∥4
=

∥dk∥2

⟨ga(xk, εk), dk⟩2

= (βFR
k )2

∥dk−1∥2

⟨ga(xk, εk), dk⟩2
− 2θk

⟨dk, ga(xk, εk)⟩
− θ2k∥g

a(xk, εk)∥2

⟨ga(xk, εk), dk⟩2

=
∥dk−1∥2

∥ga(xk−1, εk−1)∥4
− (θk − 1)2

∥ga(xk, εk)∥2
+

1

∥ga(xk, εk)∥2

≤ ∥dk−1∥2

∥ga(xk−1, εk−1)∥4
+

1

∥ga(xk, εk)∥2

≤
k−1∑
i=0

1

∥ga(xi, εi)∥2
≤ k

ϵ2∗
.

The last inequality implies that∑
k≥0

∥ga(xk, εk)∥4

∥dk∥2
≥ ϵ2∗

∑
k≥1

1

k
= +∞.

which contradicts (8). The proof is then complete.
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4. Concluding remarks

In this paper, via Moreau-Yosida regularization, by introducing a new line
search on the approximation to the Moreau-Yosida regularization, we extend
MFR method for smooth unconstrained optimization to nonsmooth convex
minimization. The global convergence is established under mild conditions.
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