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Abstract In this article, a numerical solution of the Kawahara equation is presented
by septic B-spline collocation method. Applying the Von-Neumann stability analysis,
the present method is shown to be unconditionally stable. The accuracy of the proposed
method is checked by two test problems. Lo and Lo, error norms and conserved
quantities are given at selected times. The obtained results are found in good agreement
with the some recent results.
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1. Introduction

In this paper, we consider the Kawahara equation which is firstly studied by
Kawahara[1],
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where «, 3 are nonzero arbitrary constants. This equation is also known as a fifth-
order KdV equation or singularly perturbed KdV equation[2]. The fifth-order KdV
equation is one of the most known nonlinear evolution equation which is used in
the theory of magneto-acoustic waves in a plasma, capillary-gravity waves and
in the theory of shallow water waves having surface tension. If the coefficient
of the term having third-order derivative is dominant over that of the fifth-order,
a monotone solitary wave solution is found. But if the fifth-order derivative is
dominating over the third one, oscillatory structure of the solitary waves forms
which are called as Kawahara solitons[3]. If we take o = 4/+/105 and 3 = 4/13,
Eq.(1) returns to another form of the equation

Various analytical and numerical studies including; Crank-Nicolson Differential
quadrature method[3], RBF collocation method[4], meshless method of lines[5],
Dual-Petrov Galerkin method[6], Adomian decomposition method[7], tanh-
function method[8], variational iteration and homotopy perturbation method[9]
and sine-cosine method[10] have been proposed for solving the Kawahara type
equations.

In the present paper, a numerical scheme based on the septic B- spline
collocation method has been set up for solving the Kawahara equation with a
variant of initial and boundary conditions. This paper is organized as follows: In
Section 2, numerical algorithm is presented. In Section 3, stability analysis of the
scheme is given and numerical results of the equation are obtained in Section 4.
Finally a summary is presented in Section 5.

2. Septic B-spline finite element solution

Consider the Kawahara Eq.(2) with the following boundary and initial
conditions

U(a,t) =1, Ubt)=as, a<z<b >0, 3)

U(z,0) = f(z). )

To implement the numerical algorithm, solution region of the problem is
restricted over an interval @ < z < b. And let the partition of the space interval
[a, b] into uniformly sized finite elements of length / by the knots z,,, such that
a=x9<x1<..<zy=band h= b’T“ The set of septic B-spline functions
{b—3(x), p_2(x),...,dNn+2(x), dn43(x)} forms a basis over the problem domain

of solution [a,b]. A global approximation Uy (z,t) is expressed in terms of the
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septic B-splines as
N+3

= Z ¢i(x)di(t) )

i=—3

where §;(t) are time dependent parameters to be determined from the boundary
and collocation conditions. Septic B-splines ¢,,(x) , (m= —3,—-2,.... N + 2, N +
3) at the knots z,,, are defined over the interval [a, b] by[11]

(& = @m_a)’ [Zm—a,Tm—3]
(@ = Trm—a)” — 8(z — Tm_3)" [@m—3, Tm—2]
(z — -17771—4)7 - 8(z — an73)7 + 28(z — 7)77;72>7 [m—2,Tm—1]
1] @—oma)] = 8@ —@m—3)] +28( —op—2)" —56(z —@m_1)7  [Tm-1,7m]
dm (z) = W (@ms — 2) = 8(Tmis — )7 + 28(zmqo — E)7 = 56(zmy1 — @) [@m, Tm+41]
(Tmys — )7 = 8(Tyqs — T)7 + 28(Tmp2 — )7 [Zm+41, Tm2]
(Tmta —2)7 = 8(wmys —2)7 [Zm+t2, Tm+3]
(Tmya — )7 [@m+43, Tmal
0 otherwise.
(6)

Substituting trial function (6) into Eq.(5), the nodal values of
v, u',u”,u"”,uw,U" at the knots x,, are obtained in terms of the element
parameters d,,, by

Un (@myt) = U = 8 + 12062 + 119181 + 24166, + 119161+
1206m+2 Y Omiz, m=0,..,N,
U/ ( _3 — 560,92 — 2450,,_1 + 2455m+1 + 565m+2 + 5m+3)7

U7/7/L = 22 m 3+ 24§m 2+ 155m 1~ 805m + 155m+1 + 246m—i—2 + 5m+3)a
Ul = %1 D (—6m—3 — 8m—2 + 1961 — 196,11 + 85mt2 + 6mrs)s

U'v = 40( m—3 — 95m 1+ 166 — i1 + Oms),

Up = 53 (—0m—3 + 46m—2 — 50m—1 + 50m11 — 4642 + Oms).

)
The B-splines ¢,,,(z) and its six principle derivatives vanish outside the interval
[xm—4; zm+4]~
Now we identify the collocation points with the knots and use Eq.(7) to
evaluate U,,, its necessary space derivatives and substitute into Eq.(2) to obtain
the set of the coupled ordinary differential equations:

O3+ 1200, o + 11918, 1 + 24168,, + 11918, 41 + 1200, 12+
Zm (5,3 — 560, o — 2450, 1 + 2450, 41 + 560,12 + Omi3)+
%(_6m—3 - 85m—2 + 196171—1 - 196m+1 + 85m+2 + 6m+3)_

th (=0m—3 + 40m—2 — 50m—1 + 50m+t1 — 40m+2 + dmts) =0,

®)

where

Zm: m =

3+ 1200, o + 11918, 1 + 24168,, + 11918,,41 + 1208, 12 + O3,
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and - denotes derivative with respect to time. If time parameters 4;’s and its time
derivatives d;’s in Eq.(8) are discretized by the Crank-Nicolson formula and usual
finite difference aproximation, respectively,
71 n il 76n+1—6n
51—2(5 +07), b= Al )

we obtain a recurrence relationship between two time levels n and n + 1 relating
two unknown parameters (5?“, offori=m—-2,m—-1,..m+1m+2

715m 3+ ’725n+ 2+ ’735n+ 1+ ’745n+1 + ’Y5tsn 1t ’Y(stsn Got+ 775” e (10)

= 0ty et 4 vt ot + yi2dit] "+ 7135m+2 + 7145:21137
where
= (1= EZm-M+K), Y2 = (120 — 56 EZy — 8M — 4K),
% = (1191 — 245E Zy, + 19M + 5K), 4 = (2416),
v = (1191 + 245EZ, — 19M — 5K), 6 = (120 + 56 EZm + 8M + 4K),
vi =1+ EZm + M — K), 8 = (1+ EZp + M — K),
Y9 = (120 + 56 EZy, + 8M + 4K), Y10 = (1191 + 245EZp, — 19M — 5K),
Y11 = (2416), Y12 = (1191 — 245EZy, + 19M + 5K),
713:(120—56EZm—8M 4K) Y14 = (l—EZm—M-‘rK)
m=0,1,...,N, E=At, M=22At K=2120A
(11)
The system (10) consists of (N + 1) linear equations including (N + 7)
unknown parameters (§_3,0_2,6_1...,0n+1,0n12,0n+3)" . To obtain a unique

solution to this system, we need six additional constraints. These are obtained
from the boundary conditions and can be used to eliminate d_3,d_3,d_1 and
ON+1,0N+2,0n+3 from the system (10) which then becomes a matrix equation
for the N + 1 unknowns d" = (¢, d1,...,0x)7 of the form

Ad™! = Ba®. (12)

The matrices A and B are (N + 1) x (IV + 1) septa-diagonal matrices given by

ail  aiz a3 a4
a1 az az3 a4 az;s
a3l asp ass azq aszs asg
A= Am,m—3 Om,m-—2 Am,m—1 @m,m Am,m+1 Am,m+2 Am,m+3 )

@n—1n—4 @n—1n-3 @n—-1n-2 Gan—lnm-1 Gn-ln Gn-ln+l
Gn,n—3 Qn,n—2 Gn,n—1 an.n Gn,n+1
n+1,n—2 @n+ln—1 Gn+ln  Gnilntl

and, form =4,5,..n — 2,
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Am,m—1

am,m
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120 + 28EZ;, + 8M 4 4K,

1+ EZm+M - K,

1—EZm— M+ K,

120 — 28EZy, — 8M — 4K,
1191 — 245EZy, + 19M + 5K,
2416,

1191 + 245EZ,,, — 19M — 5K,
120 + 28 EZp, + 8M + 4K,
1+ EZm+M—K,

b11 b2 biz b1y
b21 b2z bag by bas
bz b3z baz baa b3s b3e
bmn,m-3 bmm-2 bmm-—1 bm,m b, m+1 bmomt2  bmm+s
bn—in—4 bn-1n-3 bn-1n-2 bn-1n-1 bn-1n bn-1,nn1
bn.n—3 bnn—2 bnn—1 bn,n bnnt1
bnt1in—2 bantin-— bnt1in  bntintr
186032 108720 186032 108720
—FEZm - by =- m
297 207 297 207
183414 107190 183414 107190
—FEZn bz = — m
297 297 297 207
18480 10800 18480 , 10800
297 % 297 R T T T D
54 90 B i 00
207 T 297 ST ™
2ABAL 45585 8663 12961 gy = 2IBAIL 45585 8663 12961
207 207 ™ a7 207 2= Too7 207 ™ 207 207
616822.5 184815 B01.5 10126.5 6168225 184815 601.5 10126.5
~—oos EZm + ———M + K, 09 = ————— — A= A = K
297 297 297 297 297 297 297
340284 75168 5640 48 340284 75168 5640 48
m— =M — —K, 23 = — EZm+ —M + —K,
297 297 297 297 297 297 297 297
35525.5  8338.5 2378.5 1197.5 35525.5  8338.5 2378.5 1197.5
m - K, by = —— — m — ———M + K,
207 207 297 207 207 297 297 207
14 EZm+ M — K, bas=1— EZm — M+ K,
34432 7108 1168 2396 34432 7108 1168 2396
—_—  —FEZy, — M- —K, 31 = =——— + —FEZy M+ K,
297 297 297 297 297 207 297 297
352833 71871 6537 591 352833 71871 6537 591
= s M2k, = T8 g — 8 _ 59
297 297 297 297 297 297 297 297
717432 120 120 120 717432 120 120 120
ol R Wiy M Ot i) i 43 = —— — ——EZm — —M + —K,
307 T oer At g7 207 T T el T
353726 72766 5642 1486 353726 72766 5642 1486
S A e 2 g = ba = od® D ey DM Pk,
207 297 297 297 297 297 297 207

bas = 120 — 28EZ,,, — 8M — 4K,

big=1—-EZm — M+ K,

bnm—3=1+EZn +M - K,
bm,m—2 =120+ 28 EZ, + 8M + 4K,
bm,m—1 = 1191 4+ 245E 7, — 19M — 5K,
bm,m = 2416,
bm,m+1 = 1191 — 245EZ,, + 19M + 5K,
bim,m+2 = 120 — 28 EZ,, — 8M — 4K,
bnymts =1—EZn — M + K,

Two or three inner iterations are applied to the term §"™* = 6" + % (6" — o™~ 1) ateach
time step to cope with the non-linearity caused by Zy,. Before the commencement of the
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1- EZp— M+ K,

An—1,n—4
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bn—tna4 =14 EZpy + M — K,

Gntmg = 120—28EZ, —SM — 4K, b1 =120 + 28EZ,, + 8M + 4K,
353726 72766 642 1486 i 353726 _ 72766 5642 1486
Gn=tin=2 = o7 297 o™ T 97 297 nbn=2 = Togr 297 T a7 T Taer
717432 120 120 120 717432 | 120 120 120
i1 = — ——EZm — —M + —K, bn—1,n—1= s EZm+ oM - =K,
Sl o7 Tl T aer M T aer noinol = e Y ogr i Am Y og7 297
352833 71871 6537 501 352833 71871 6537 501
am = =L 2 -2k [ =0 22 6
R 297 207 ™ 297 2097 m=he = o7 27 om T M wn
34432 7108 1168 2396 31432 7108 1168 2396
_ = =, pz M+ 222K, b - — M- gy,
Gn—tmtl 27 e At ey 297 nobRtL T T T 97 T T 297 297 ¢
tnnoz = 1-EZy,—M+K, bpng=1+EZy+M—K
35525.5  8338.5 w185 1075 355255 83385 29785 1975
nn-2 = - - M — N 2= 1
= 297 297 ™ Ta297 297 nn-2 = o7 297 ™7 Tag7 297
084 7568 56A0 48 . 340284 75168 5640 48
Gn,n— = — —] —K, — — — IS A
i 297 297 O™ T 297 297 mn—l = Tog7 297 O™ 297 297
6168225 184815 6015 101265 616825 184815 GOL5 101965
a = — - —M — s = —
e 297 297 ™ 207 207 s 297 297 ™ 207 297
_ s asess BOG3 12061 . 215411 5 12061
Gmntl = o7 297 O™ 297 297 = g7 207
154 90 154 9
an41n—2 = ﬁEZni + ﬁK' bntin—2 = ﬁEan — ﬁK'
18480 10800 18180 10800
An+lm—1 = — g7 EZm TK, bntin—1 = 597 Eém — —K
183414 107190 183414 107190
ntln = — 597 m 297 bntin = o7 FZm— =557
186032 108720 186032 108720
Un+1ntl = — 297 m 297 bnt+1,n+1 = g7 Bim— —5g7

solution process, initial parameters d’ must be determined by using the initial condition
and following derivatives at the boundaries;

Un(z,0) U(xm,0) m=0,1,2,..,N
(UN)z(a,0) = 0, (UN)z(b,0) =0,
(UN)az(a,0) = 0, (UN)zz(b,0) =0,
(UN)zzz(a,0) 0, (UN)azz(b,0) = 0.

So we have the following matrix form for the initial vector d;

where
dO (607617627"'75N—275N—175N)T
b= (U(zo,0),U(z1,0),...,U(zn_1,0),U(zy,0)T.

3. A linear stability analysis

To apply the Von-Neumann stability analysis, the Kawahara equation can be
linearized by assuming that the quantity U in the nonlinear term UUy, is locally constant.
Substituting the Fourier mode 47 = 6meiFh (j = \/=1) in which k is a mode number
and h is the element size, into the Eq.(10) gives the growth factor g of the form

_a—l—ib
a—1ib’
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[ 1536 2712 768 24 ]
82731 210568.5 104796  10063.5 |
=1 51 1 1
9600 96597 195768 96474
BT 81 2;1 81 120 1
W=
1 120 1191 2416 1191 120 1
96474 195768 96597 9600
1120 S= [ S5 ST
1 10063.5 104796 2105685 82731
81 81 81 T8
L 24 768 2712 1536 |
where

a = (19M + 5T — 245E Zy,) sin[hk] +
(=M + T — EZp,)sin[3hk],
b = —1208 — 1191 cos[hk] — 120 cos[2hk] — cos[3hk].

(=8M — AT — 56 EZyy,) sin[2hk]+
(13)

The modulus of |g| is 1, therefore the linearized scheme is unconditionally stable.

4. Numerical examples and results

To obtain the approximate solutions of the Eq.(2), we consider some numerical
experiments including: motion of single solitary wave and interaction of two solitary
waves. To show how good the numerical scheme predicts the position and amplitude of
the solution as the simulation proceeds, we use the error norm Lo

N
2
Ly = HUEJCact_UNH22 hZ‘U;wact_(UN)j‘ 7
J=1
and the error norm Loo
Lo = HUezact _ UNHoo ~ mjax ’U;Iact _ (UN)j , j=1,2,...,N—1.

The equation possesses the lowest three conserved quantities given by[12]

N
= [% Udx ~ hzileU;L,
Iy= [ iU%dz~hY" | 3(UM?,
13 _foo (13,6[]2 105 2U3+ ng)dx:
hY o, B z))2 105 (U] + 3 (Uza)})?

We can calculate the integrals (14) by using the trapezium rule and the variables U;"
and their derivatives are obtained from Eq.(7). To show the efficient of the numerical

(14)
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scheme, the above conserved quantities are expected to remain constant during the run of
the algorithm so conserved quantities will be monitored.

4.1. The motion of single solitary wave

For this problem, Eq.(2) has a solitary wave solution of the form
— (B2 et [l ( _36,_ )}
U(x,t)f(a) sec h 4\/B x 169t z0

where (g)2 is the amplitude of the single solitary wave[13]. It represents a single solitary
wave initially centred on 2o and moving to the right with velocity V = (1.53)?. Initial
condition

U@,0) = (2)sech® [1 v/ (@~ 0)]
and the boundary conditions o; = 0, ag = 0 are taken at the boundaries.
The values of the parameters h = 0.2, At = 0.001, zp = 2, « = 4/+/105, 3 =4/13
are chosen over the spatial interval [—20, 30] to coincide with that of previous papers[3-

5]. For these parameters, the single solitary wave has an amplitude A = (g)2 =0.6213

and velocity V = (1.53)% = 0.2130. Numerical computations are done up to time ¢ = 25
to obtain the invariants and error norms Lo and Lo at various times. Error norms, three
conserved quantities, amplitudes and peak position of the solitary waves are listed in
Table(7). Itis clearly seen from the table that the invariants remain almost constant during
the computer run. Table(/7) shows a comparison of the values of the invariants and error
norms obtained by the present method with obtained by the methods[3-5]. It is observed
from the table that the error norms obtained by our method is smaller than given in
Ref.[3] and almost the same in Refs.[4, 5]. Values of the invariants are also found in good
agreement with the others. Solitary wave profiles with h = 0.2, At = 0.001 are depicted
at different time levels in Fig.(1). As it is seen from the figure, the soliton moves to the
right at a constant speed and almost unchanged amplitude as time increases, as expected.

Table I. The invariants and the error norms for single solitary wave with h = 0.2, At =
0.001, —20 < z < 30.

t Iy Iy I3 Lo X 102 Lo, x 102 Amp. Peak Position
0 5.9736088 1.2725033 -0.1645840 0.0000 0.0000 6.2130 2

5 5.9738529 1.2725034 -0.1620645 0.3249 0.1116 6.2120 3

10 5.9738517 1.2725033 -0.1633093 0.2469 0.0852 6.2118 42

15 5.9737831 1.2725033 -0.1640871 0.1807 0.0744 6.2130 52

20 5.9737261 1.2725033 -0.1643599 0.1529 0.0548 6.2121 6.2

25 5.9736181 1.2725033 -0.1644699 0.1395 0.0511 6.2116 7.4

4.2. Interaction of two solitary waves

In this section, we consider Eq.(2) with the boundary conditions U(—50) =
U(100) = 0, by using the following initial condition

Stat., Optim. Inf. Comput. Vol. 2, September 2014.
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Table II. The errors and the invariants for single solitary wave with A = 0.2,At = 0.001,
—20 <z < 30, att = 25.

Method Iy I I3 Lo x 103 Loo X 103
Present 597361 1.27250 -0.16446 0.139 0.051
[B1(PDQ) 5.97353 1.27250 -0.16457 2.851 0.863
[31(CDQ) 597350 1.27250 -0.16458 0.159 0.076
[4] 597367 1.27250 -0.16459 0.093 0.023
[5](GA) 5.97353  1.27250 -0.16458 0.131 0.039
[5IMQ) 5.97355 1.27250 -0.16458 0.168 0.046
074 =0 =10 t=20 t=30
35

Figure 1. Single solitary wave with h = 0.2, At = 0.001, —20 < x < 30, t = 0, 10,20
and 30.

vV OZAZ‘
4

2
U(z,0) = A7 sech’( [z — 3]), (15)
=1

where o =4/v105, A; = B;/a, Bi = (12 —2i)/13, At =0.01, h=0.2. Eq.(15)
represents two solitary waves having different amplitudes, one with amplitude A; placed
initially at 1 = 0 and the second with amplitude Ag placed at zo = 20.

A comparison of the values of the invariants obtained by the present method with
those obtained in Refs.[3-5] given in Table(//7). We notice that the obtained values of
the invariants remain almost constant during the computer run. They are also found to be
very close with the other earlier papers. Fig.(2) shows the interaction of solitary waves.
As it is seen from the figure, at ¢ = 0, a wave with larger amplitude is on the left of
the another wave with smaller amplitude. The larger wave catches up with the smaller
one as the time increases. Interaction started at about time ¢ = 20, overlapping processes
occurred between times ¢t = 20 and ¢ = 40 and, waves started to resume their original
shapes after time ¢ = 40. At ¢t = 50, the amplitude of larger waves is 4.36993 at the point
x = 83.4 whereas the amplitude of the smaller one is 2.75247 at the point = = 62.8. It is
found that the absolute difference in amplitude is 2.67 x 10~! for the smaller wave and
4.86 x 107! for the larger wave. Also, oscillations of small amplitude trailing behind the
solitary waves were observed in the Figure.
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U(x, t)

t=20

1
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U(x, t)

1
50 100

=30

t=40

1
100

U(x, t)

t=56

1
100

1
50 100

X

Figure 2. Interaction of two solitary waves with ¢ = 0, 10, 20, 30, 40, 55.

5. Conclusion

In this paper, a numerical scheme based on the septic B-spline collocation method
have been set up to find numerical solution of the Kawahara equation. Unconditional
stability is shown by using Von-Neumann analysis. To show the performance of the
method, we have examined the motion of a solitary wave and the interaction of two
solitary waves. Efficiency and accuracy of the method is shown by calculating L2 , Loo
error norms and I, I> and I3 invariant quantities. The obtained results show that the error
norms are adequately small and the conservation laws are reasonably well satisfied for

Stat., Optim. Inf. Comput.
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Table III. Comparison of the invariants for the interaction of two solitary waves with the
parameters h = 0.2, At = 0.01 in the interval —50 < z < 100.

Present method

t I Is I3

0 40.50920 45.83608 -37.87770
10 40.45628 45.83603  -34.73750
20 40.46943  45.83597  -34.97900
30 40.55136  45.83593  -33.83404
40 40.45048 45.83586  -33.69678
50 40.34304  45.83577  -33.17479
55[4] 4040483  45.83524  -32.37120

S50[51(GA)  40.41284 45.84364  -32.14082
50[51(MQ) 40.48389  45.85093  -32.15991

the interaction of two solitary waves. Thus, this numerical algorithm can be used reliably
to obtain numerical solutions of the differential equations.

10.
11.
. Malik, R. P. 1997. On fifth orderKdV-type equation, Bogoliubov laboratory of theoretical
13.

14.
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