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Abstract In this work, the modified Laplace Adomian decomposition method (LADM)
is applied to solve the Burgers’ equation. In addition, example that illustrate the pertinent
features of this method is presented, and the results of the study is discussed. We prove
the convergence of LADM applied to the Burgers’ equation. Also, Burgers’ equation has
some discontinuous solutions because of effects of viscosity term. These discontinuities
raise phenomenon of shock waves. Some explicit and implicit numerical methods have
been experimented on Burgers’ equation but these schemes have not been seen proper
in this case because of their conditional stability and existence of viscosity term. We
consider two types of box schemes and implement on Burgers’ equation to get better
results with no artificial wiggles.
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1. Introduction

In the recent decade, the study of nonlinear partial differential equations modelling
physical phenomena, has become an important tool. Nonlinear phenomena are
of fundamental importance in various fields of science and engineering. Most
nonlinear phenomena are models of our real-life problems. The investigation
of the travelling wave solutions plays an important role in nonlinear science.
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A variety of powerful methods have been presented, such as the inverse
scattering transform [1], sine-cosine method [2], homotopy perturbation method
[3], variational iteration method [4, 14], homotopy analysis method [6, 7], tanh-
function method [8, 9], tanh-coth method [10], Backlund transformation [11],
(%)—expansion method [12] and so on.

In 1980, George Adomian introduced a new method to solve nonlinear
functional equations. This method has since been termed the Adomian
decomposition method (ADM) and has been the subject of many investigations
[13, 14, 15]. The ADM involves separating the equation under investigation into
linear and nonlinear portions. This method generates a solution in the form of
a series whose terms are determined by a recursive relation using the Adomian
polynomials. Some fundamental works on various aspects of modifications of the
Adomian’s decomposition method are given by Andrianov [16], Venkatarangan
[17, 18] and Wazwaz [19]. The modified form of Laplace decomposition method
has been introduced by Khuri [20, 21]. Agadjanov [22] solved the Duffing
equation by this method. This numerical technique basically illustrates how the
Laplace transform may be used to approximate the solutions of the nonlinear
partial differential equations by manipulating the decomposition method. Elgasery
[23] applied the Laplace decomposition method for the solution of Falkner—Skan
equation. Hussain and Khan in [24] the modified Laplace decomposition method
have applied for solving some PDEs. The Burgers’ equation [25, 26]

Ut + UUy = Ugg, (D

is a nonlinear partial differential equation of second order which appears in various
areas of applied mathematics, such as modelling of fluid dynamics, turbulence,
boundary layer behavior, shock wave formation, and traffic flow [27]. Burgers’
equation is parabolic when the viscous term is included. If the viscous term is
neglected, the remaining equation is hyperbolic. If the viscous term is dropped
from the Burgers’ equation the nonlinearity allows discontinuous solutions to
develop. In Burgers’ equation discontinuities may appear in finite time, even if the
initial condition is smooth. They give rise to the phenomenon of shock waves with
important applications in physics [28]. These properties make Burgers’ equation
a proper model for testing numerical algorithms in flows where severe gradients
or shocks are anticipated. Discretization methods are well-known techniques for
solving Burgers’ equation. One of the most simple one is leap-frog explicit scheme
[29] which was proposed in the 1960s. This explicit scheme is very easy to
formulate but fails to give a correct solution when the viscosity is too small. To
avoid these unstable conditions, implicit methods such as CranckNicolson type
scheme is presented, but this scheme cannot be used for very small viscosities.

A variety of powerful methods has been presented, such as the homotopy
analysis method [32, 33], homotopy perturbation method [34], the Exp-function
method [36], variational iteration method [35] and the Adomian decomposition
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method [35]. By using the LADM we obtain analytical solutions for the integro-
differential equations. Our aim in this paper is to obtain the numerical and
analytical solutions by using the modified Laplace Adomian decomposition
method and explicit and implicit numerical methods. The remainder of the paper
is organized as follows: In Sections 2 and 3, a brief discussions for the modified
Laplace Adomian decomposition method and application of this method are
presented and approximate solution for one example is obtained. In Section 4 and
5, numerical methods and numerical results are discussion. Also, in Section 6
we will study the convergence analysis. Also a conclusion is given in Section 7.
Section 8 ends this paper with a brief conclusion.

2. MLADM

The purpose of this section is to discuss the use of modified Laplace
decomposition algorithm for the integro-differential equations. We consider the
general form of second order nonlinear partial differential equations with initial
conditions in the form

Lu(x,t) + Ru(x, t) + Nu(x,t) = h(x,t), u(x,0)=1{(x), us(x,0) =g(x), (2)
where L is the second order differential operator L, = 8%, R is the remaining
linear operator, N represents a general non-linear differential operator and h(x, t)
is the source term. Applying Laplace transform (denoted by £) on both sides of
Eq. (2) we have

L[Lu(x,t)] + L[Ru(x,t)] + L[Nu(x,t)] = L[h(x,t)],
and by using the differentiation property of Laplace transform we obtain:
s*Llu(x, t)] — sf(x) — g(x) + L[Ru(x, t)] + LNu(x, t)] = Lh(x, t)],

and so:

Lt ) = ) 80 L

LlRu(x,t)] — S%E[Nu(x,t)] + S%L[h(x,t)}. 3)

The next step in Laplace decomposition method is representing the solution as an
infinite series given below

u(x,t) = Y ua(x, t). )
n=0
The nonlinear operator is decomposed as
e}
Nu(x, t) = > An(x,t), (5)
n=0
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where for every n € N A, is the Adomian polynomial given below

1 dIl o ;
An = Ed)\n lN (Z)\ul>‘| .
i=0 A=0

Using (3), (4) and (5) we get

> Aulxt)

Z ['[un(xat)] = @ + g(;() - S%E[Ru()gt)] — S%L‘,

+ L)L (6)
S

n=0 s s n=0
Comparing both sides of (6) we have
Llug(x, t)] = ki (x;s), 7
Lo, 0] = e 8) = ZLRouGx 0] = 5Ll 0], ®)
Lt (x,8)] = —S%E[Rnu(x,t)} - SlQL Anot)], n>1, (9

where kj(x,s) and ko(x,s) are Laplace transform of k;(x,t) and ka(x,t)
respectively. Applying the inverse Laplace transform to Egs. (7)-(9) gives our
required recursive relation as follows

uO(X7 t) = k1 (Xv t)7 (10)
w5 ) = ka(x,t) — £ lec[Rou(x, 0]~ Lo t)]] LA
Upp1(x,t) = —L£71 [;E[Rnu(x,t)] — S%E [An(x,t)]} , n>1. (12)

The solution through the modified Adomian decomposition method highly
depends upon the choice of ko(x,t) and k;(x,t), where ko(x,t) and k;(x,t)
represent the terms arising from the source term and prescribed initial conditions.

3. Application of the modified Adomian decomposition method

In this section we give one example to illustrate this method for the Burgers’
equation.

Example 1. Consider a nonlinear partial differential equation

1 1
U + Uy = Uyy, u(x,0) = 5~ itanh (z) . (13)
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Applying the Laplace transform (denoted by £) we have
su(x,s) —u(x,0) = —L(uuy) + L(uy),
or
1 1 1
u(x,s) = gu(x, 0) — gﬁ(uux) + gﬁ(uxx).

Using initial condition (13) becomes

1 1 X 1 1
) =—— =t h(f)_f X - XX )+
u(x, s) 55 ~ ggtanh { 7 Sﬁ(uu )+ Sﬁ(u )
Applying the inverse Laplace transform we get

u(x,t) = % - %tanh G) Lot {iﬁ(uux) + éﬁ(uxx) .14

We decompose the solution as an infinite sum given below

oo

u(x,t) = Y ua(x,t). (15)

n=0

Using (15) on (14) we get

i () = & — L h(3) e ey iA(t) +1£§: (x,1)
Oun X, = B B an 4 S . n S OU.n,XX X, )
n= n= n=

in which A, = Z;}:o Ujun—j . The recursive relation is given below

ug(x,t) = Elgtz [tanh (%) — tanh® (%)} ,

and so on. We use an 8-term approximation and set
app7 :=ug +uy + ug + ... + uy.

the maximum error occurs in the x-interval (—2,2), so we have tabulated the
absolute errors for various times on this interval, in Table 1.

Our approximation has one more interesting property, we expand app7 using
Taylors expansion about (0,0) we would have

t+13 1t2+1t2 1t3+ L t°
— X" — —tx" 4+ —=t"x —
384 256 512 3072 491520

-~ 1
app(x,t) & 3 §X+ 16
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1 4 L 23 L 23
t t?— ——+¢
191520 T 12288 " Graat < T
using the Taylor series gives the exact solution
1 1 1 1

Table I. Absolute errors of app7 for Burgers’ equation using LADM.

r  t=0.1 t=05 t=1.0 t=15 t =20

0.1 139x107® 4.14x107 650x10~ T 630x10" 10 3.87x10~ 7
0.5 647x107®  243x1072  592x10710  143x107® 1.34x1077
1.0 9.03x1078  352x10712  899x10710 228x1078 225x1077
1.5 6.89x107'8 275x107'2  725%x10710  1.90x107%®  1.94x10°7
20 243x107'%  1.03x107'2  2.89x10710 8.07x107® 8.71x10°®

4. Numerical methods

4.1. Some discretization methods

The Burgers’ equation is given by

ou ou 9%u
g2t

o~ Yax Teae an

we consider this equation in the case of initial condition with periodic boundary
condition. There are several numerical methods for solving Burgers’ equation
based on discritization on a fixed grid for both space and time variables.

w = E b ) (i = ul) (- o ),
(18)
In the above formula the artificial boundary at n = 0 is approximated
by u;~! =u;'. By approximating the artificial boundary with extrapolation
methods along characteristics, better results can be extracted. In this scheme
x:xi:iAX,t:tn:nAtandu:%,by

u(x,0) = sin(7x), ¢ = 1073, Ax = 0.005, At = 0.01.

This method is conditionally stable [1]. Another numerical scheme is the implicit
CrankNicolson method, its formulation is

Au Le(w® ™) Doy ™t

At 2 2 ’

19)
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where Auy;"t! = "t —y™ and Ly = (_QIAO);”, Ly = (1(’4\:(2)’21). By reducing
these equations to a system of linear equations, we can overcome on the effect
of nonlinear terms appeared in (19) and then we can find the solutions. In the case
of very small viscosity, wiggles appear and cause the solution to be perturbed. In
this situation other numerical schemes must be used. In the following we show
the ¢ = 10~* at the top and the bottom of the shock wiggles. This implicit scheme
is unconditionally stable by Von Neumann criteria and has a truncation error of
order O(h?,k?). As we see there are some problems in the long time solution of
Burgers’ equation which depend on the viscosity term. In this case we examine
some symplectic and multisymplectic box methods on Burgers’ equation. These
methods are very high quality schemes for the long time integration of nonlinear,
conservative partial differential equations [1,2]. These numerical schemes are
constructed on Finite Difference Discretization (FDD) which are represented as
explicit and implicit discretization methods. Among these methods the semi-
explicit symplectic box method is very effective because of ensuring that no
artificial wiggles appear in the approximate solution.

4.2. Multisymplectic box scheme for Burgers’ Equation

This type of compact discretization method in both x and t is centered at a cell
(box), whose corners are

(i, tn)y (Xistn+1), (Xit1,tn), (Xit1, tnt1)-
Based on this compact scheme some multisymplectic box and fully implicit
narrow box schemes can be constructed. We apply two 12-point and 8-point
multisymplectic schemes on Burgers’ equation. For applying these discretization
methods on Burgers’ equation, Burgers’ equation can be represented by the
following formula:

Wy = —Uly + Clixx = — V' (1) + clyy, V(u) = 5 (20)

By applying the 8-point multismyplectic schemes on Burgers’ equation we have
the following:

113 3 1
“TRAL| -1 -3 -3 —1 |

1 171 1 1 [1 -2 1
- (10 1]v(= - .
v ]V<4{1 1]“>+2(Ax)2{1 2 1]”

Also by applying the 12-point multisymplectic scheme on Burgers’ equation the
following discretization method with stencil notation is resulted:

1 3 3 1
0 0 0 0 |u
-1 -3 -3 -1

1

AR’
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-2 1
1 [ 10 1], (1[1 1 1
4Ax{1 0 1]‘/(4[1 1}“)*4@9;)2 f 74 f “'

As we saw already in constructing the two above schemes, when using the 8-point
scheme for initializing 12- point scheme identical results up to round off error
level are obtained [1].

—_
[\

Table II. Error results of Example 1 for t = 0.05.

Method Infinity-norm 2-Norm

8-Point multisymplectic box 7x10~2 3x107 !
12-Point multisymplectic box 1074 55x107°
Crank—Nicolson 5x107 ¢ 55%x1072

One example of the Burgers’ equation is considered in this section by
multisymplectic box methods. The multisymplectic scheme is fully implicit
scheme and is more accurate than explicit and semi-explicit methods and has
stability for large time steps and different parameters [38, 39]. The one above
example showed that if we want to get more accurate solution in longer times the
finer mesh is required. In the latter case the set of equations will be very large
and it takes more time and memory for solving, which we did not examine it in
this article. In the case of steady state and dispersion the stability analysis of these
schemes can be found in [38].

5. Numerical results

We have examined some well-known numerical methods and two 8-point and 12-
point multisymplectic box methods on Burgers’ equation.

Example 1. Consider Burgers’ equation uy = uuy + cuy, with the following
exact solution:
sinh(g;)

cosh(2) +exp(—4)

u(x,t) =

The viscosity term in this equation is ¢ = 0.00075 and z € [0, 1],¢ > 0. We can
find that the 12- point multisymplectic box method is more accurate than 8-
point multisymplectic box method and in both cases the discretization error is
decreasing exponentially when x grows. We have examined this algorithm for
large time and variety of viscosity terms too. The errors with h = 0.05, k = 0.01
are presented in Table 1.
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6. Convergence analysis

Here, we will study the convergence analysis as same manner in [37] of the LADM
applied to the Burgers’ equation. Let us consider the Hilbert space H which may
define by H = L2((«, 3)X][0, T]) the set of applications:

u: (a,0)X[0,T] = R with / u?(x,s)dsdr < +o0.
(e,)x[0,T]
Now we consider the Burgers’ equation in the light of above assumptions and let
us denote
L(u) =

u,

at
then the Burgers’ equation become in a operator form

o 2

L(u) = —ug-u + 52t
The LADM is convergence if the following two hypotheses are satisfied:
(H1) (L(u) = L(v),u—v) >k|u—v||*k >0,Yu,v e H
(H2) whatever may be M >0, there exist a constant C(M) >0
such that for uw,veH with |u|<M,|v|<M we have:
(L(u) = L(v),u—v) <CM) |[u—v ||| w| for every weH. (see, [37]
and the references therein).
Theorem 1. (Sufficient condition of convergence for example 1). The Laplace
Adomian method applied to the Burgers’ equation as follows

0 0 0?
L(u) = U= TupLu u+ cHa b
without initial condition, converges towards a particular solution.
Proof. Now, we will verify the conditions (H1) and (H2) of convergence. We
will start to verify the convergence hypotheses (H1) for the operator L(u): i.e.,
dk > 0,Vu,v € H, we have:

2 2
L(u) — L(v) = — {u%ufv%v} +C%(H*V)=* 82[11 -V ]+C§2( - V).

N | =

(L(w) — L(v),u — v) = % <—§X(u2 —v?),u-— ) . <a22( v),u—v)

(21
Since a% and 53—; are differential operators in H, then there exists constants A; and
s, such that

82
<8X2(u—v),u—v> <Mfu—v | (22)
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and according the Schwartz inequality, we get

0]
(522 =¥a=v) <l = - v].

Now we use the mean value theorem, then we have

1o}
<&<u2 —v2>,u—v) <ol =l w = vll=2x2m || u = v < 20M | u—v |,
where u < <vand || ul,|| v ||< M. Therefore:

<aa(u2 V2),UV> <260M|u—-v|? e
X

(—8(u2—v2),u—v) > 2XoM [ u—v |? (23)
ox
Substituting (21) and (22) into (23) we get

(L(w) = L(v),u=v) > (A1 +2M) [[u—v [*=k [ u-v]?

where k = A\; + AoM. Hence, we find the hypothesis (H1). Now we verify the
convergence hypotheses (H2) for the operator L(u) which is for every M > 0,
there exist a constant C(M) > 0 such that for u,v € Hwith || u ||[<M, || v [|[<M

we have (L(u) — L(v),u—v) < C(M) || u—v |||| w || for every w € H. For that
we have:

(L(u) — L(v),w) = % (-2{@2 —vz),w> +e (;; (u—v)7w> .

< (M= v [l w [ w = v [ w )
=@+ M) [[u—vll]w]
= CM) [[u=v [ w],
where C(M) = 1 4+ M and therefore (H2) is hold. The proof is complete.

7. Conclusion

The main idea of this work was to give a simple method for solving the Burgers’
equation. We carefully applied a reliable modification of Laplace decomposition
method for this equation. The main advantage of this method is the fact that it
gives the analytical solution. Also, two types of multisymplectic box methods
were considered and implemented on Burgers’ equation. These methods are fully
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implicit methods which are more accurate than explicit and semi-explicit methods.
In both cases the artificial wiggle which is appeared in usual discretization
methods is diminished. Table showed their advantages on well-known usual
discretization methods. In the above example we observed that the LADM with the
initial approximation obtained from initial conditions yield a good approximation
to the exact solution only in a few iterations. It is also worth noting that the
advantage of the decomposition methodology displays a fast convergence of the
solutions. The illustrations show the dependence of the rapid convergence depend
on the character and behavior of the solutions just as in a closed form solutions.
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