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Abstract This paper presents an estimation procedure for sparse signals in adaptive
setting. We show that when the pure signal is strong enough, the value of loss function is
asymptotically the same as for an optimal estimator up to a constant multiplier.
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1. Introduction

The problem of sparse signal estimation is well studied, and optimal results
have been established for various models (see, e.g., [1] and references therein).
However, most existing approaches to the estimation assume non-adaptive
sampling process. Adaptive sampling, on the other hand, leads to significant
performance gains as well as sharper estimates of the signal. In this paper we
propose a procedure for pure signal estimation under the sequential sampling
framework introduced in [3].

Consider the following classical signal model

yi = µi + εi, i = 1, . . . , n (1)

where εi are independent standard normal random variables, and the vector
µ = (µ1, . . . , µn) has most of its coordinates equal to zero. The problems of
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identification of non-zero components as well as the issues of their estimation from
the observations y1, . . . , yn find applications in genetic microarray data analysis
[6], astronomical surveying [5], and many other fields of science (see, e.g., [7]). A
widespread approach to these problems is thresholding. The idea is to assume µi
to be zero if the value of the corresponding observation yi does not exceed some
threshold, which may be chosen to depend on the whole vector y (e.g., [1]).

In [3], the authors consider a generalization of (1) that allows for sequential
sampling procedures. In the proposed model one may construct multi-step
algorithms such that the estimations carried out at the step j may depend on the
results of all the preceding steps. Additionally, the authors introduce an algorithm
called Distilled Sensing which helps to identify almost all of the zero and non-zero
components correctly. Several results on the optimal estimation under adaptive
setting for the case of two experiments have been also established in recent work
[4].

While most existing papers on the topic are devoted to identification of non-
zero components of the signal, we focus on its estimation. In the setup with an
unlimited number of experiments, we suggest a way to estimate a sparse vector µ
by slightly modifying the Distilled Sensing algorithm. We investigate the precision
of the resulting estimates and derive sufficient conditions for their asymptotic
optimality.

2. Adaptive scheme

We consider the model introduced in [3]. In contrast to the classical setup (1),
there are k ∈ N noised observations of the signal µ ∈ Rn. To each observation
j = 1, . . . , k there correspond some non-negative amount of energy Ej and a
random set Ij ⊆ {1, . . . , n}. The observations have the form

yij =
√
ϕijµi + εij , j = 1, . . . , k i = 1, . . . , n (2)

where εij are independent standard normal random variables and

ϕij =

{
Ej

|Ij | for i ∈ Ij ,

0 otherwise.
(3)

Furthermore, the total amount of energy is limited, namely E1 + . . .+ Ek = n.
Thus, model (2) is reduced to (1) when k = 1 and I1 = {1, . . . , n}.

Denote by Sn(µ) = {i : 1 ≤ i ≤ n, µi ̸= 0} the set of all non-zero components
of µ. We focus on the case of sparse signals when Sn(µ) constitutes a very
small share of n; throughout this paper it is assumed that Sn(µ) ≤ n1−β for all
n large enough and some β from (0, 1/3). Since it is not known beforehand which
components of µ are not zero, the value of loss function (in the sense of (7) below)
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in model (1) exceeds n1−β . Moreover, reasonably precise estimations of the set
Sn(µ) require additional assumptions on the vector µ (see, e.g., [3]). On the other
hand, under adaptive sampling these assumptions may be significantly relaxed.
We will restrict our attention to the signals µ from the set

Θn(r) = {µ ∈ Rn+ : |Sn(µ)| ≤ n1−β , µi ≥ r
√

log n for all i ∈ Sn(µ)} (4)

where r > 0.
In our approach to pure signal estimation we choose the energy levels slightly

differently than it is done in [3]. Fix δ ∈ (0, 1) and set

Ej =


δn
4

(
1− δ

2

)j−1
, j = 1, . . . , k − 2

n
2

(
1− δ

2

)k−2
, j = k − 1

n
2 , j = k.

(5)

We follow the Distilled Sensing algorithm (DS) introduced in [3]. It is assumed
that j = 1, . . . , k are sequential experiments, and ϕij corresponds to the energy
spent on suppressing the noise for the i-th component on the j-th step. For the
given Ej the sets Ij are determined as follows.

Distilled Sensing
Step 0: Set I1 = {1, . . . , n}.
Step j: Set Ij+1 = Ij ∩ {i : yij > 0}.

Determine ϕij as in (3) above, i = 1, . . . , n.
Result: Obtain the observations yij and a finite sequence of sets Ij .

Note that the sets I2, . . . , Ik+1 are random while I1 is not. Correspondingly, for
i = 1, . . . , n, coefficients ϕi1 are non-random but coefficients ϕij with j ≥ 2 are.

The authors of DS use Ik+1 as an estimate for the set Sn(µ) of non-zero
components for µ. In this paper we estimate the vector µ itself. Namely, as an
estimate of µ take the vector µ̂ with components

µ̂i =

{
0, ϕik = 0,
yik√
ϕik

, ϕik ̸= 0,
(6)

where i = 1, . . . , n. Now consider a loss function

R(µ̂, r) = sup
µ∈Θn(r)

E∥µ̂− µ∥2, (7)

where ∥z∥2 = z21 + . . .+ z2n for z ∈ Rn and Θn(r) is as in (4).

Theorem 2.1
Let δ ∈ (0, 1) and β ∈ (0, 1/3). If the number of experiments k is large enough,
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there exists K > 0 such that for r >
√

10β/δ and n large enough the following
inequality holds

R(µ̂, r) < Kn1−2β .

It should be noted that in non-adaptive settings of (1) an equivalent loss
function takes much larger values. In particular, asymptotic losses are of order
C(β)n1−β logn when µ has approximately n1−β non-zero components (see [6]).
Furthermore, the losses of the order n1−2β are in a certain sense asymptotically
optimal when |Sn(µ)| ∼ n1−β as n→ ∞. This optimality is studied more closely
in Section 3, and the proof of Theorem 2.1 is provided in Section 4.

3. Optimal estimation

Proposition 3.1
Assume that (2) is satisfied and that the set of non-zero coordinates Sn(µ) is
known beforehand. Whatever the choices of k(n), Ej , and Ij are, there exists
no linear estimator µ̂(yij) for µ such that expected losses for it are less than
|Sn(µ)|2/n for each n ∈ N.

Proof
Suppose that some k, Ej , and Ij have been chosen. Their choice determines
the coefficients ϕij according to (3). Fix i ∈ {1, . . . , n}. Since the observations
corresponding to µi are of the form yij =

√
ϕijµi + εij , j = 1, . . . , k, a standard

argument shows that

E(µ̂i − µi)
2 ≥

 k∑
j=1,ϕij ̸=0

ϕij

−1

.

Since all zero coordinates are known in advance, for i /∈ Sn(µ) the best estimate
is µ̂i = 0. Thus one has

E(µ̂− µ)2 ≥
∑

i∈Sn(µ)

 ∑
1≤j≤k,ϕij ̸=0

ϕij

−1

≥ inf

 ∑
i∈Sn(µ)

 ∑
1≤j≤k,ψij ̸=0

ψij

−1

: ψij ≥ 0,
∑

i∈Sn(µ)

j=k∑
j=1

ψij ≤ n

 .

The infimum on the right-hand side can be evaluated by solving the underlying
optimization problem with Lagrange multipliers method. Its solution implies that

E(µ̂− µ)2 ≥ |Sn(µ)|2/n. �
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4. Loss under distilled sensing

Proof of Theorem 2.1
As described in the section 2, for k ∈ N the sets Ij are chosen according to the
DS algorithm, and the estimate µ̂ is defined by (6). The loss function (7) can be
rewritten as follows.

R(µ̂, r) = E

 ∑
i∈Ik\Sn(µ)

(µ̂i − µi)
2 +

∑
i∈Ik∩Sn(µ)

(µ̂i − µi)
2 +

∑
i∈Sn(µ)\Ik

(µ̂i − µi)
2

 .

Here, the first sum is taken over the coordinates of µ falsely considered to be
non-zero, the second sum is taken over correctly identified non-zero coordinates,
and the third sum is taken over the coordinates misidentified as zeroes. We denote
these loss components R1, R2, and R3 respectively and treat them separately.
Estimation of R1.

Let sj = |{Ij \ S(µ)}| for j = 1, . . . , n. Denote ⌈x⌉ = min{m ∈ N : m ≥ x}.
The following result holds.

Proposition 4.1
For a fixed ε0 from (0, 1/2) set k = 2 + ⌈2β log 2

1+2ε0

n⌉. Then for all n large
enough

P
(
sk ≤ n1−2β

)
≥ 1− exp{−n1−2βε20}.

Proof
Note that P(εij > 0) = 1/2. By the Hoeffding inequality with probability 1 we get

E

(
I
{
1

2
− ε0 ≤ sj+1

sj
≤ 1

2
+ ε0

}∣∣∣sj) ≥ 1− 2 exp{−2sjε
2
0},

where I{A} is the indicator of an event A.

Let Aj+1 = {sj+1 ≤ (ε0 + 1/2)sj} and A =
k−1∩
j=1

Aj+1. Denote by Ā the

complement ofA. Note that by the choice of k one has P(A ∩ {sk > n1−2β}) = 0.
Moreover, the sequence {sj}kj=1 is decreasing, therefore, {sk > n1−2β} ⊆ {sj >
n1−2β} for j = 1, . . . , k − 1. Thus for n large enough we have

P(sk > n1−2β) = P({sk > n1−2β} ∩ Ā) ≤
k−1∑
j=1

P({sk > n1−2β} ∩ Āj+1)

≤ 2k exp{−2n1−2βε20} < exp{−n1−2βε20},

which completes the proof. �
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Fix some i ∈ Ik \ Sn(µ). Note that ϕik ≥ Ek/n = 1/2. Hence for such i there
holds the inequality E(µ̂i − µi)

2 ≤ 2. For n large enough we have

R1 = E
∑

i∈Ik\Sn(µ)

(µ̂i − µi)
2 ≤ E2sk ≤ 3n1−2β .

Estimation of R2.

By the definition of sk we have |Ik| ≤ |Sn(µ)|+ sk. Let k and ε0 be as in
Proposition 4.1. One has

P
(
|Ik| > |Sn(µ)|+ n1−2β

)
≤ P

(
sk > n1−2β

)
≤ exp{−n1−2βε20}.

For a fixed i ∈ Ik ∩ Sn(µ) one has

P(ϕik ≤ nβ/2) = P(|Ik| ≥ n1−β) ≤ exp{−n1−2βε20}.

Moreover, ϕik ≥ Ek/n = 1/2. Consequently,

E(µ̂i − µi)
2 = EE

(
(µ̂i − µi)

2
∣∣ϕik) = E1/ϕik

≤ EI{ϕik > nβ/2}/ϕik + 2EI{ϕik ≤ nβ/2} ≤ 2n−β .

Therefore,

R2 =
∑

j∈Ik∩Sn(µ)

E(µ̂j − µj)
2 ≤

∑
j∈Ik∩Sn(µ)

2n−β ≤ 2n1−2β .

Estimation of R3.

Let Φ(x) and φ(x) be cumulative distribution function and density of the
standard normal distribution respectively. Fix i from Sn(µ). For j ≥ 2 observe
that

P(i ∈ Ij) = P(i ∈ Ij , i ∈ Ij−1) = P(i ∈ Ij−1)P(i ∈ Ij |i ∈ Ij−1),

and, consequently,

P(i ∈ Ik) = P(i ∈ I2)

k∏
j=3

P(i ∈ Ij |i ∈ Ij−1).

Since ϕi1 for i ∈ Sn(µ) are fixed, P(i ∈ I2) = P(εi1 > −µiϕi1) = Φ(µi/2).
Furthermore, for j = 3, . . . , k one has

P(i ∈ Ij |i ∈ Ij−1) = P(εi,j−1 > −µi
√
ϕi,j−1|ϕi,j−1 > 0). (8)
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To estimate the expression on the right-hand side we establish the following result.
Proposition 4.2
For every δ ∈ (0, 1) and ε0 ∈ (0, (1− δ)/2) one has

P

(
sj ≤ n

(
1 + 2ε0

2

)j
for all j = 1, . . . , k

)
≥ 1− exp{−n1−2βε20/2}.

Proof
Set Aj = {sj ≤ n ((1 + 2ε0)/2)

j} for j = 1, . . . , k. As it follows from the proof
of Proposition 4.1,

P(Aj) ≥ 1− exp{−n1−2βε20}.

Since P

(
j∩
l=1

Al

)
≥ P(Aj)−

j−1∑
l=1

P(Āl), we have

P

(
k∩
j=1

Aj

)
≥ 1− exp{−n1−2βε20} − (k − 1) exp{−n1−2βε20}.

For all n large enough one obtains the estimate

P

(
k∩
j=1

Aj

)
≥ 1− exp{−n1−2βε20/2}.

�
Fix some i ∈ Sn(µ). Recall that Ej ≥ δn

4

(
1− δ

2

)j−1
for j = 1, . . . , k.

According to the algorithm procedure, either ϕij ≥ Ej

n1−β+sj
or ϕij = 0. Using

the above estimate for sj one obtains

P(ϕij > δ/4|ϕij > 0) ≥ 1− exp{−n1−2βε20/2}.

Set Aj = {ϕij > δ/4}. Relation (8) yields

P(i ∈ Ij |i ∈ Ij−1) ≥ P
(
Aj−1 ∩

{
εi,j−1 > −µi

√
ϕi,j−1

} ∣∣∣ϕi,j−1 > 0
)

≥ P
(
εi,j−1 > −µi

√
δ/4
∣∣ϕi,j−1 > 0

)
− P

(
Āj−1

∣∣ϕi,j−1 > 0
)

≥ Φ(µi
√
δ/4)− exp{−n1−2βε20/2}. (9)

Therefore,

P(i ∈ Ik) ≥ Φ(µi/2)

k∏
j=3

(
Φ(µi

√
δ/4)− exp{−n1−2βε20/2}

)
.
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Using this estimate and the fact that 1− Φ(t) < φ(t)/t when t > 0, for all n large
enough we get

P(i ∈ Ik) ≥
(
1− φ(µi/2)

µi/2

) k∏
j=3

(
1−

φ(µi
√
δ/4)

µi
√
δ/4

− exp{−n1−2βε20/2}

)
.

At first, consider the case when µ2
i δ/4 < n1−2βε20/2. For such µi and n large

enough we derive the following estimate:

P(i ∈ Ik) ≥
(
1− φ(µi/2)

µi/2

) k∏
j=3

(
1− φ(µi

√
δ/4)

)
≥
(
1− φ(µi

√
δ/4)

)k−1

.

Since µi ≥ r
√
log n, for i from Sn(µ) and all n large enough, the expected

contribution to the losses R3 does not exceed

(1− P(i ∈ Ik))µ
2
i ≤ (k − 1)µ2

iφ(µi
√
δ/4) ≤ n−r

2δ/10 ≤ n−β . (10)

When µ2
i δ/4 ≥ n1−2βε20/2, a different approach is required. Note that, for j =

1, . . . , k, we have Ej ≥ n1−β . Consequently, it follows that

P(ϕij > n−β |ϕij > 0) ≥ P(ϕij > Ej/n|ϕij > 0) = 1.

Starting from the equation (8) and repeating the argument leading to (9), for
j = 3, . . . , k we obtain

P(i ∈ Ij |i ∈ Ij−1) ≥ Φ(µin
−β/2)

and

P(i ∈ Ik) ≥ Φ(µi/2)

k∏
j=3

Φ(µin
−β/2) ≥

(
Φ(µin

−β/2)
)k−1

≥
(
1−

φ(µin
−β/2)

µin−β/2

)k−1

.

For such i with µ2
i ≥ 2n1−2βε20/δ one has

E(µ̂i − µi)
2 = (1− P(i ∈ Ik))µ

2
i ≤ µiφ(µ

2
in

−β) ≤ exp{−cn1−3β} (11)

where c = c(δ, ε0) > 0. From (10) and (11) it follows that

R3 = E
∑

i∈Sn(µ)\Ik

(µ̂i − µi)
2 ≤

∑
i∈Sn(µ)

P(i /∈ Ik)µ
2
i ≤ |Sn(µ)|n−β ≤ n1−2β .

Combining the results of this section, we get

R = R1 +R2 +R3 ≤ 3n1−2β + 2n1−2β + n1−2β = 6n1−2β

which completes the proof. �
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5. Concluding remarks

In this paper we suggest an estimation procedure for sparse signals in adaptive
setting based on the Distilled Sensing algorithm introduced in [3]. In a sense,
our results are optimal when the set of non-zero components of pure signal is
of the order n1−β with some β ∈ (0, 1/3). For this case we demonstrate that the
asymptotic behavior of loss function is the same as for an optimal estimator up
to a constant multiplier. Under general assumptions such performance cannot be
achieved in non-adaptive setting. Further research could cover the cases of weaker
signals when µi are not bounded from below.
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