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Abstract Mixed effects models are frequently used for analyzing longitudinal data.
Normality assumption of random effects distrbution is a routine assumption for these
models, violation of which leads to model misspecification and misleading parameter
estimates. We propose a semi-parametric approach using gradient function for random
effect estimation. In the approach, we relax the normality assumption for random
effects by estimating the random effects distribution over a pre-specified grid. Unknown
parameters of the marginal model are estimated using maximum likelihood method.
Some simulation studies and analyzing of a real data set are performed for illustration
of the proposed semi-parametric method.
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1. Introduction

Longitudinal studies are frequently encountered in many areas such as biology,
medical, epidemiology and social sciences. In these studies, individuals are
followed over time and some repeated measurements for individuals are collected.

For analyzing longitudinal data, Gaussian mixed effects models [5] are
commonly used. These models are flexible and widely applicable, in addition,
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many available software can be used for analyzing data using these models. Since,
the normality assumption is often violated in practice, the use of multivariate
t distribution [9], normal/independent family [6, 11], skew-normal distribution
[7, 1] and other parametric distribution assumptions are proposed. Although
the fixed effects may be robust to departure of normality assumption [14], the
efficiency and validity of inference on random effects may destroy. The nature of
random effects may be multimodal or skew and a non-appropriate distributional
assumption for random effects may suggest exclusion of important covariate or
may lead to unrealistic results. Moreover, less restrictive assumption for random
effects distribution may provide considerable insights. The use of non-parametric
mixed models [12, 10, 3, 15] is another suggestion when there is departure from
the normality assumption.

In this paper, a new non-parametric approach for random effects estimation,
based on directional derivative is proposed. The main idea of this approach is
to search in each direction for maximizer of the log-likelihood function of the
marginal model. Tsonaka et al. [13] apply vertex exchange method (VEM) to
obtain semi-parametric maximum likelihood estimates of model parameters. Their
approach uses the directional derivative of the log-likelihood function in a pre-
specific grid and updates the weights that correspond to at most two grid points
in the first step and maximize the marginal likelihood in the second step. These
two steps are iterated until convergence takes place. One of the advantage of
this approach is its simplicity and applicability in specification of random effects
distribution. However, the speed of the algorithm is very slow. Our proposed
approach modifies the approach of Tsonaka et al. [13] and increases the speed of
it, specially in high dimensional random effects distribution. Similar to Tsonaka
et al. (2009)’s algorithm [13], our approach uses the directional derivative of
the individual log-likelihood function over a pre-specified grid. But the random
effects are estimated by the corresponding value of grid points that maximize
the directional derivative of the individual log-likelihood function. Weights of the
grid points are estimated by counting the frequency of each grid points. Also,
the marginal likelihood is maximized for parameter estimation. These steps are
iterated until convergence is achieved.

The advantage of these approaches is that they use the directional derivative,
which is an objective measure to evaluate whether the maximum has been reached.
However, our approach is faster than the VEM method. The reason is that the
weights are updated for all grid points in each iteration.

This paper is organized as follows. In Section 2, the semi-parametric mixed
effects model is introduced. Section 3 includes some simulation studies for
investigating the performance of the proposed method. Also, the model is used for
analyzing a real data set in Section 4. The last section includes some conclusions.

Stat., Optim. Inf. Comput. Vol. 2, December 2014.



A FAST ALGORITHM USING SEMI-PARAMETRIC RANDOM EFFECTS MODEL 341

2. The semi-parametric mixed effects model

2.1. Notation and model specification

Let Yi, i = 1, 2, ..., n denote the vector of ni longitudinal measurements for the ith

individual such that Yi = {yi(sij), j = 1, 2, ..., ni}, where yi(sij) = yij denotes
the longitudinal measurement for the ith subject at time sij . We consider the
following linear mixed effect model for describing the longitudinal outcomes:

Yi = Xiβ +Zibi + εi, (1)

where Yi is the longitudinal vector of response variable for the ith subject.
εi = (εi1, ..., εini)

′ is the vector of measurement errors, β = (β1, ..., βp)
′ is a

p-dimensional vector of longitudinal fixed-effect parameters. bi = (bi1, ..., biq)
′

is a q-dimensional vector of random effects and is independent of εi. Xi =
(xi(si1), ...,xi(sini))

′ and Zi = (zi(si1), ...,zi(sini))
′, where x and z are p-

dimensional and q-dimensional vectors of explanatory variables, respectively.
We assume that εi ∼ Nni(0,Σi), where we assume that Σi = σ2Ini , also let
θy = (β′, σ2).

2.2. Details of the approach

In this paper, we do not make any parametric assumption for the random effects
distribution, let bi be the random effects such that bi ∼ g(bi) where g(.) belongs
to the set of all distribution functions on the parameter space of bi. The marginal
distribution of Yi is given by

f(yi;θy) =

∫
f(yi|bi;θy)dG(bi). (2)

The nonparametric maximum likelihood estimate of G is discrete with finite
support [4, 8]. In the following, the left side of equation (2) is called ℓi(G) to
ensure that the marginal distribution of Yi is obtained using G.

We assume that the random effects bi is a q-dimensional cube with elements
µ = {µj1j2...jq} for j1, j2, ..., jq = 1, 2, ..., C with corresponding weights π =
{πj1j2...jq}. The structure is a semi-parametric mixed effects model, note that the
unknown parameters of this structure are θy = (β, σ2).

The algorithm includes three steps. The first step consists of considering
some initial values and the other two steps are weights updating and parameter
estimations, respectively. The later two steps are repeated iteratively until
convergence are achieved. The details of the steps are as follows:

Step 1: Initial values The algorithm needs an initial values for θy, say θ0
y, and an

initial value for the weights π, say π0.
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• A linear mixed effects model under normal distribution assumption for
random effects is considered, the parameter estimates in this stage is
used as initial values to have the vector θ0

y.
• The grid µ = {µj1j2...jq} for j1, j2, ..., jq = 1, 2, ..., C is kept fixed

through the algorithm and only the corresponding weights are updated.
For the q-dimensional grid with fixed points µj1j2...jq , the initial
weights π0

j1j2...jq
= 1/Cq, j1, j2, ..., jq = 1, 2, ..., C are considered.

Step 2: Weight updating Let k be the iteration number. For each point µj1j2...jq ,
the directional derivative Di(Ĝ

(k), Gµj1j2...jq
) of ℓi(G) at Ĝ(k) in the

direction Gµj1j2...jq
is evaluated. This is given by

Di(Ĝ
(k), Gµj1j2...jq

) =
f(yi|Gµj1j2...jq

,θ
(k)
y )

f(yi|Ĝ(k),θ
(k)
y )

(3)

=
f(yi|Gµj1j2...jq

,θ
(k)
y )∑C

j1=1 ...
∑C

jq=1 πj1j2...jqf(yi|Gµj1j2...jq
,θ

(k)
y )

,

where Ĝ(k) is the current estimate of G and Gµj1j2...jq
is a degenerated

distribution at point µj1j2...jq .

After directional derivative evolution b̂i = (bi1, ..., biq), the estimated value
of random effect for ith individual, is defined as follows:

b̂i = argmaxµDi(Ĝ
(k), Gµ),

and the corresponding weight of πj1j2...jq is estimated as the frequency of
µj1j2...jq in the estimated values of random effects. To ensure that the mean
of the random effects is zero, model (1) can be written as

Yi = Xiβ +Zi(b̂i − π′b̂) + εi, i = 1, 2, ..., n.

Step 3: Let θ(k+1) = (β(k+1), σ2(k+1)
)′ is the vector of parameters of k + 1th

step, where they are estimated in this step. The marginal distribution is
given by ℓi(G) =

∑C
j1=1 ...

∑C
jq=1 πj1j2...jqf(yi|Gµj1j2...jq

,θ(k)) and the

marginal likelihood is ℓ(G) =
∑N

i=1 ℓi(G). The model parameters θy are
estimated using quasi-Newton method. Note that π = {πj1j2...jq} and µ =
{µj1j2...jq} for j1, j2, ..., jq = 1, 2, ..., C in this step are considered as fixed
parameters.

The two later steps are repeated iteratively until convergence. The algorithm has
converged when |θ̂k+1 − θ̂k| < ε, where |.| is a distance measure.
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3. Simulation studies

For investigating the proposed method, we perform some simulation studies, 1)
with univariate random effect as random intercept, 2) with bivariate random effect
as random intercept and random slope.

In the first scenario, the random intercept is sampled from three different
distributions: a normal distribution, a uniform distribution and two components
normal mixture. Also in the second scenario, the random intercept and the random
slope are sampled from three different bivariate distributions: bivariate normal
distribution, bivariate uniform distribution and a two components bivariate normal
mixture. The details of these simulation studies are given in the following.

3.1. Univariate random effects

The data are simulated from the following linear mixed effect model:

yij = β0 + β1tij + β2xi + bi + εij , i = 1, 2, ..., N, j = 1, 2, 3

where β0 = 5, β1 = 1 and β2 = 1, N = 300, ti1 = 2, ti2 = 6. xis are
generated from a Bernoulli distribution with success probability 0.2 and εij ∼
N(0, σ2)where σ2 = 1. The random intercept, bi, is generated from three different
distributional assumption: i) a normal distribution with variance σ2

b = 4, ii) a
uniform distribution on [−4, 4] and iii) a mixture of two normal distributions,
i.e., 0.5 N(−1, 1) + 0.5 N(1, 1). Results of this simulation study are presented in
Table 1. This table contains estimated value of parameters, standard errors, relative
biases and root of mean square errors. The two later criteria are defined as

Rel.Bias(θ) =
1

N

N∑
i=1

(
θ̂i
θ
− 1), MSE(θ) =

1

N

N∑
i=1

(θ̂i − θ)2

where θ̂i is the estimated value of θ for the ith sample. In this simulation study,
we consider a sequence with length 100 in interval [−4, 4]. This table shows that
in all scenarios the estimated values of parameters, standard deviations, relative
biases and root of MSEs confirm the well performance of the proposed method.
Also, figure 1 shows the estimated weights of randomly selected samples for all
scenarios, this figure shows that the estimated weights are similar to density plot
of the real value: the estimated weights for the normal random intercept (panel
a) have unimodal and symmetric form, the estimated weights for the uniform
distribution have approximately equal weights at all points of the region. Also,
panel (c) shows a bimodal distribution. To ensure zero-mean random effect model,
we also consider the following model:

yij = β0 + β1tij + β2xi + b̂i − π̂′b̂+ εij , i = 1, 2, ..., N, j = 1, 2, ..., ni,
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Table I. Results of simulation studies for mixed model with univariate random effects

Normal Model
Parameter real Est. S.E. Rel. bias RMSE

β0 5.000 4.987 0.167 -0.002 0.137
β1 1.000 0.999 0.012 -0.001 0.009
β2 1.000 1.021 0.407 0.021 0.300
σ2 1.000 1.028 0.035 0.0280 0.036
σ2
b 4.000 3.968 0.323 -0.010 0.252

Uniform Model
real Est. S.E. Rel. bias RMSE

β0 5.000 4.977 0.143 -0.004 0.106
β1 1.000 0.999 0.013 -0.001 0.010
β2 1.000 1.003 0.259 0.004 0.196
σ2 1.000 0.996 0.031 -0.004 0.023
σ2
b 5.333 5.403 0.288 0.018 0.236

Mixture Model
real Est. S.E. Rel. bias RMSE

β0 5.000 4.996 0.098 -0.001 0.076
β1 1.000 1.002 0.013 0.001 0.010
β2 1.000 1.000 0.118 0.000 0.093
σ2 1.000 0.972 0.029 -0.027 0.033
σ2
b 1.500 1.377 0.084 0.021 0.032

where µ̂i is the estimated value of random intercept for ith individual and π̂ and
µ̂ are the vector of estimated weights and the vector of grid points, respectively.
One of the advantages of the proposed method is its ability for considering wide
intervals with favorite grid points, but a grid can be chosen for the scaled random
effects b∗i = Ŝ−1

b bi instead of bi, where Ŝb is an approximation of the random
effects covariance matrix of bi (similar to that of Tsonaka et al., 2009). For
comparison of the results of the proposed method and the Gaussian model, we
also analyze the generated data set using the pure normal model.

3.2. Bivariate random effects

The data are generated from the following linear mixed effects model with random
intercept and random slope:

yij = β0 + β1tij + β2xi + b0i + b1itj + εij , i = 1, 2, ..., N, j = 1, 2, 3

where β0 = 5, β1 = 1 and β2 = 1, N = 300, ti1 = 2, ti2 = 6, xis are generated
from Bernoulli distribution with success probability 0.2 and εij ∼ N(0, σ2)
where σ2 = 1. The vector of random effects bi = (b0i, b1i)

′ is generated from
three different distributional assumptions: i) a standardized bivariate normal
distribution, ii) a bivariate uniform distribution on [−4, 4]2, iii) a mixture of two
bivariate normal distribution with mean (−1,−1)′ and (1, 1)′ and an identity
covariance matrix. The results of this simulation study are presented in Table
2. This table shows the well performance of proposed method. Also, Figure 2
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Table II. Results of simulation studies for mixed model with bivariate random effects

Normal Model
Parameter real Est. S.E. Rel. bias RMSE

β0 5.000 4.997 0.114 -0.001 0.091
β1 1.000 1.001 0.079 0.001 0.064
β2 1.000 1.002 0.027 0.002 0.022
σ2 1.000 0.995 0.195 -0.002 0.135
d11 1.000 1.364 0.150 0.363 0.366
d12 0.000 -0.080 0.114 * 0.114
d22 1.000 1.011 0.090 0.011 0.071

Uniform Model
real Est. S.E. Rel. bias RMSE

β0 5.000 4.993 0.125 0.002 0.060
β1 1.000 0.985 0.111 -0.045 0.107
β2 1.000 1.001 0.029 0.030 0.036
σ2 1.000 0.956 0.087 -0.058 0.150
d11 5.333 5.550 0.282 0.024 0.289
d12 0.000 -0.032 0.303 * 0.187
d22 5.333 5.341 0.239 -0.028 0.256

Mixture Model
real Est. S.E. Rel. bias RMSE

β0 5.000 4.997 0.112 -0.000 0.085
β1 1.000 0.994 0.077 -0.005 0.062
β2 1.000 1.008 0.025 0.008 0.022
σ2 1.000 0.924 0.094 -0.075 0.103
d11 1.500 0.352 0.127 -0.294 0.150
d12 0.500 1.728 0.106 0.118 0.228
d22 1.500 1.522 0.109 0.014 0.089

“*: This is not given, because the real value is 0.000.”

shows estimated values of the weights for grid points under different distribution
assumptions for random intercept and random slope.

4. Application

We consider a longitudinal study on 467 HIV infected patients who had failed or
were intolerant of zidovudine (AZT) therapy. The aim of the study was to compare
the efficacy and safety of two alternative antiretroviral drugs, namely didanosine
(ddI) and zalcitabine (ddC). Patients were randomly assigned to receive either ddI
or ddC, and CD4 cell counts were recorded at study entry, when randomization
took place, as well as at 2, 6, 12 and 18 months thereafter.

The distribution of CD4 cell counts is right skewed, so we analyze the
square root of the CD4 cell counts. Figure 3 shows

√
CD4 trajectories for fifty

randomly selected individuals given each drug. Panels of this figure show a sharply
increasing degree of missing data over time due to death, dropout, and missed
clinic visits. In this figure the profiles of those individuals who remain and those
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Figure 1. Estimated values of the weights for grid points under different distribution
assumptions for random intercepts. (a) normal, (b) uniform, (c) mixture of two normals.

Figure 2. Estimated values of the weights for grid points under different distribution
assumptions for random effects. (a) bivariate normal, (b) bivariate uniform, (c) mixture
of two bivariate normals.

of individuals who do not remain are indicated using different colors. The missing
values belong to people who leave the study for different reasons. This figure
underlines that those who do not remain had smaller

√
CD4 than others. More

details about this data set can be found in [2].
The following longitudinal model with random intercept is:

yij = β0 + β1tij + β2tijDrugi + β3Sexi (4)
+ β4PrevOIi + β5Stratumi + bi + σεij ,

where, εij ∼ N(0, 1) and bi = µi − π′µ.
In this model, yij is the square root of the jth CD4 count measurement on the ith

individual in the trial, j : 1, 2, ..., 5 and i : 1, 2, ..., 467. Sexi is a gender indicator
(0=female, 1=male). The other three explanatory variables are Drugi (0=ddC, 1=
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Figure 3. Profiles of
√
CD4 measurements over time for fifty randomly selected

individuals from each drug, bold red lines are mean profile for all observed individuals
on each drug.

ddI), PrevOIi, previous opportunistic infection (1=AIDS diagnosis, 0=no AIDS
diagnosis) and Stratumi (1=AZT failure, 0=AZT intolerance).

Also, the following longitudinal model with random intercept and random slope
is used for analyzing the data set:

yij = β0 + β1tij + β2tijDrugi + β3Sexi (5)
+ β4PrevOIi + β5Stratumi + b0i + b1itij + σεij ,

where, εij ∼ N(0, 1), b0i = µ0i − π′
+1µ0 and b1i = µ1i − π′

1+µ1.
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We consider the proposed method with a grid defined on [−15, 15]l, l = 1, 2
and C = 450 (we begin with a grid for random effects in [−5, 5]l, l = 1, 2, the
results show that a wider grid is needed, therefore we refit the model with wider
grid). Also, a sensitivity analysis of the results with respect to different value of
C for random effects is performed and the results are not sensitive with respect to
this change.

Figure 4. The estimated weights for the univariate random effects for HIV data set.

The results of these models using the proposed approach and normal
mixed effects model are summarized in Table 3. In this table, models are
indicated by notations SPA and GM, where SPA is used for the proposed
semi-parametric approach and GM is the ordinary Gaussian model. The
standard deviation of parameters in semi-parametric approach are calculated
using Bootstrap approach [13]. The results are compared using AIC (Akaike
information criterion), BIC (Bayesian information criterion), HQC (Hannan-
Quinn criterion). Let Θ and Z = (z1, ..., zN )′ be the entire model parameters and
data, respectively, then AIC = −2ℓ(Θ̂|Z) + 2α, BIC = −2ℓ(Θ̂|Z) + α ln(N)
and HQC = −2ℓ(Θ̂|Z) + 2 ln(ln(N)), where α is the number of unknown
parameters and Θ̂ is the value of the parameter estimates at convergence. The
smaller the AIC (BIC or HQC), the better the fit of the model. The results show
that the semi-parametric model with univariate random effects is the best fitted
model for HIV data set. This table shows that time and previous opportunistic
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Figure 5. The estimated weights for the bivariate random effects for HIV data set.

infection are significant predictors in the model, such that the increase in time
reduces CD4 count. Also, previous opportunistic infection leads to decreasing
CD4 count. Figures 3 and 4, respectively, show the estimated weights for the
univariate and bivariate random effects for HIV data set. These figures present
the weights of the grid points in the semi-parametric fitted models.

5. Conclusion

In this paper, we have developed a semi-parametric mixed effects model for
analyzing longitudinal data. The approach uses the directional derivative of each
individual for finding the random effects estimation under any distributional
assumption and leads to reliable parameter estimates.

The main advantage of this approach is in the use of the directional derivative of
the individual log-likelihood. The method uses the relative frequency of grid points
as an estimate of their weights, therefore, the speed of the algorithm increases.
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Table III. Parameter estimates and standard deviations for the HIV data set. SPM: semi-
parametric mixed effect model, PM: parametric model.

model Univariate random effects Bivariate random effects
PM SPA PA SPA

parameters Est. (S.E.) Est. (S.E.) Est. (S.E.) Est. (S.E.)
Intercept (β11) 7.983(0.361) 12.782(1.480) 8.055(0.350) 10.312(1.701)

Time (β12) -0.159(0.016) -0.224(0.028) -0.199(0.048) -0.241(0.048)
Time × Drug (β13) 0.019(0.023) 0.045(0.035) 0.055(0.071) 0.053(0.070)

Gender (β14) -0.149(0.341) 0.470(0.683) -0.168(0.326) -0.201(0.322)
PrevOI (β15) -2.285(0.239) -1.576(0.598) -2.327(0.242) -3.727(0.237)
Stratum (β16) -0.156(0.231) -0.141(0.234) -0.105(0.229) -0.114(0.223)

σ2 3.846(0.175) 1.979(0.074) 2.904(0.263) 5.878(0.161)
d11 15.288(1.107) 17.603(1.405) 15.619(1.171) 4.473(0.317)
d12 – – -0.281(0.139) -0.078(0.258)
d22 – – 0.391(0.030) 0.891(0.956)
AIC 7005.616 7111.728 7409.634 7287.332
BIC 7034.640 7144.952 7438.658 7329.356
HQC 6995.248 7099.360 7399.266 7270.964

The proposed approach can be easily extended to shared random effects and
be used for joint modeling of longitudinal measurements and event time. In these
models the association between two process is captured by latent random effects.
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