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Abstract In this paper, we extend the implementable APG method to solve the matrix
l2,1-norm minimization problem arising in multi-task feature learning. We investigate
that the resulting inner subproblem has closed-form solution which can be easily
determined by taking the problem’s favorable structures. Under suitable conditions, we
can establish a comprehensive convergence result for the proposed method. Furthermore,
we present three different inexact APG algorithms by using the Lipschitz constant, the
eigenvalue of Hessian matrix and the Barzilai and Borwein parameter in the inexact
model, respectively. Numerical experiments on simulated data and real data set are
reported to show the efficiency of proposed method.
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1. Introduction

Consider the following matrix l2,1-norm minimization problem

min
X∈ℜn×t

1

2
∥AX − b∥22 + µ∥X∥2,1, (1)
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where the matrix l2,1-norm ∥X∥2,1 is defined by the sum of l2-norm of each row

∥X∥2,1 =

n∑
i=1

√√√√ t∑
j=1

X2
i,j =

n∑
i=1

∥Xi,:∥2,

in which Xi,: is the i-th row of X , X:,j is the j-th column of X . In the multi-task
feature section, the given training set of t tasks is {(aji , b

j
i )}

mj

i=1(j = 1, 2, · · · , t),
where aji ∈ ℜn is the i-th sample for j-th task, bji is the corresponding response
and mj is the number of training sample for the j-th task, the total number of
training samples is m =

∑t
j=1 mj , Aj = [aj1, · · · , ajmj

]T ∈ ℜmj×n denotes the
data for the j-th task, A = [A1; · · · ;At] ∈ ℜm×n, bj = [bj1, · · · , bjmj

]T ∈ ℜmj ,
b = [b1; · · · ; bt]T ∈ ℜm, X:,j ∈ ℜn be the sparse feature for j-th task, X =
[X:,1, · · · , X:,t] ∈ ℜn×t be the joint feature to be learned. In order to select features
globally, it would like to encourage several rows of X to be zero. The first term in
problem (1) is to measure the loss incurred by X on the training sample A and b,
while the second is a regularization term. In addition, the regularization parameter
µ > 0 is used to balance both terms for minimization. The appealing property of
the matrix l2,1-norm regularization is that it encourages multiple predictors from
different tasks to share similar parameter sparsity patterns [1, 12, 13].

Feature selection problem was first introduced in the filed of bio-informatics,
and then studied widely involving with sparsity regularization [16]. Also,
Obosinsky et al. [13] and Argyriou et al. [1] introduced the matrix l2,1-norm
regularization problem to the multi-task learning and lots of research has been
laid in this topic in recent years. A practical challenge in using the l2,1-norm
regularization is to develop efficient algorithms to solve the resulting non-
smooth optimization problems. In Liu et al. [9] the matrix l2,1-norm minimization
problem was formulated into two smooth convex optimization problems and then
minimized by the Nesterov’s gradient method [11]. Argyriou et al. [1] proved that
the problem (1) is equivalent to a constrained optimization problem which can
be solved by using an iterative alternating algorithm. Recently, Xiao et al. [19]
presented a proximal alternating direction method to solve the problem (1) by
generating approximate solutions to the matrix l2,1-norm minimization problem.
Experiments on simulated and real data sets demonstrated that those algorithms
are efficient.

In this paper, based on the accelerated proximal gradient method (FISTA)
[4], we now develop an inexact APG algorithm to minimize the matrix l2,1-
norm regularization problem. In the kth iteration with iterator X̄k, we solve the
following subproblem

min
X∈ℜn×t

⟨∇F (X̄k), X −Xk⟩+ 1

2
⟨X −Xk,Hk(X −Xk)⟩+ µ∥X∥2,1, (2)
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where F (Xk) = 1
2∥AXk − b∥22, Hk : ℜn×t → ℜn×t is a given self-adjoint

positive definite linear operator. In FISTA [4], Hk is restricted to LI, where I
denotes the identity map and L is a Lipschitz constant for ∇F . More significantly,
in our algorithm, the subproblem (2) has closed-form solution which can be easily
determined by taking the problem’s favorable structures and Hk is not restricted
to a Lipschitz constant. Specifically, we present three different implementable
choices of the self-adjoint positive definite linear operator Hk which take
advantage of some more useful information: (i) IAPG-EIG use eigenvalue of the
Hessian matrix, Hk = λmax(A

∗A)I; (ii) IAPG-BB, Hk = αkI , αk is the Barzilai
and Borwein parameter; (iii) IAPG-L use the Lipschitz constant, Hk = LI .

Accelerated proximal gradient (APG) algorithm was first studied by Nesterov
[10] for minimizing smooth convex functions, then had been demonstrated to be
efficient in solving various convex optimization problems, including composite
convex objective functions [4], convex quadratic semidefinite programming
problems [6], nuclear norm minimization problems [18] in matrix completion and
l1 minimization problems [17] in compressed sensing. In this paper, the extension
of the APG algorithm to the matrix l2,1-norm minimization problem in multi-task
feature learning is interesting in terms of practical perspective, because it takes
computational advantage over alternative algorithms for solving the problem (1).
We solve the matrix l2,1-norm minimization problem by using some inexact APG
algorithms, establish the iteration complexities, and present numerical results to
demonstrate the efficiency of our proposed algorithms. In particular, as we will
show later in the paper, our inexact APG algorithm can be much more efficient
than the IADM-MFL algorithm (the proximal alternating direction method in [19])
for solving the problem (1).

The paper is organized as follows. In Section 2 we present the APG algorithm
to solve (1) and elaborate on how to derive the closed-form solution of the inner
subproblem generated at each iteration. In Section 3 we prove that the proposed
APG algorithm enjoys the same iteration complexity as the FISTA algorithm
in [4]. We also present inexact APG version with three different choices of
the self-adjoint positive definite linear operator Hk. In Section 4 we conduct
some preliminary numerical experiments to evaluate the practical performance of
our proposed inexact APG algorithms for solving matrix l2,1-norm minimization
problems arising from simulated data and real data set, then compare it with the
existing IADM-MFL method. Finally, we have a conclusion section.

2. An accelerated proximal gradient method

Consider the standard form of the matrix l2,1-norm minimization problem (1)

min
X∈ℜn×t

1

2
∥A(X)− b∥22 + µ∥X∥2,1, (3)
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where A : ℜn×t → ℜm is a map defined by matric-vector multiplication based on
each task, i.e. A(X) = [A1X:,1; · · · ;AtX:,t] ∈ ℜm. Let F (X) = 1

2∥A(X)− b∥22,
we consider the following minimization problem

min
X∈ℜn×t

Φ(X) := F (X) + µ∥X∥2,1, (4)

where dom(µ∥X∥2,1) = ℜn×t, and the gradient ∇F is Lipschitz continuous with
modulus L on ℜn×t, i.e.,

∥∇F (X)− F (Y )∥ ≤ L∥X − Y ∥, ∀X,Y ∈ ℜn×t.

We note that the problem (3) has an optimal solution since the function ∥ · ∥2,1
is coercive. In what follows, X ∗ denotes the set of optimal solutions. The inexact
APG algorithm is described for minimizing the matrix l2,1-norm regularization
problem (3) as follows.

Algorithm 1: APG for matrix l2,1-norm minimization problem (3)

Step0. Given a tolerance ε > 0. Input Y 1 = X0, t1 = 1. Set k = 1. Iterate the
following steps.

Step1. Find an minimizer

Xk = arg min
Y ∈ℜn×t

{F (Y k) + ⟨∇F (Y k), Y − Y k⟩+
1

2
⟨Y − Y k,Hk(Y − Y k)⟩+ µ∥Y ∥2,1},

(5)
where Hk is a self-adjoint positive definite linear operator that is chosen by the

user.
Step2. Update tk+1 =

1+
√

1+4t2k
2 .

Step3. Compute Y k+1 = Xk + ( tk−1
tk+1

)(Xk −Xk−1).

Remark. We give the details on how to chose the proper self-adjoint positive
definite linear operator Hk in Section 3, but Hk is restricted to a Lipschitz constant
in FISTA [4].

Given any positive definite linear operator Hk : ℜn×t → ℜn×t, we define
Qk(·) : ℜn×t → ℜ by

Qk(X) = F (Y k) + ⟨∇F (Y k), X − Y k⟩+ 1

2
⟨X − Y k,Hk(X − Y k)⟩. (6)
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Note that if we choose Hk = LI , then we have F (X) ≤ Qk(X) for all X ∈ ℜn×t.
Suppose for each k, we have a minimizer:

Xk = arg min
X∈ℜn×t

Qk(X) + µ∥X∥2,1

= arg min
X∈ℜn×t

⟨∇F (Y k), X − Y k⟩+ 1

2
⟨X − Y k,Hk(X − Y k)⟩+ µ∥X∥2,1

= arg min
X∈ℜn×t

⟨∇F (Y k), X − Y k⟩+ 1

2
⟨X − Y k,Hk(X − Y k)⟩+ µ∥X∥2,1

= arg min
X∈ℜn×t

1

2
⟨X − (Y k − 1

Hk
∇F (Y k)),Hk(X − (Y k − 1

Hk
∇F (Y k)))⟩

+µ∥X∥2,1 (7)

To get the exact solution of (7) more specifically, we set M = Y k − 1
Hk∇F (Y k).

The solution of (7) takes the following form:

Xk+1 = arg min
X1,:,··· ,Xn,:

n∑
i=1

(µ∥Xi,:∥2,1 +
1

2
⟨Xi,: −Mi,:,Hk(Xi,: −Mi,:)⟩), (8)

which shows that the problem (8) can be decomposed into n separate subproblems
of dimension t, i.e.

min
Xi,:∈ℜt

µ∥Xi,:∥2,1 +
1

2
⟨Xi,: −Mi,:,Hk(Xi,: −Mi,:)⟩, i = 1, 2, · · · , n. (9)

It is easy to see that the optimal solution X∗
i,: must be in the direction of Mi,: and

takes the form X∗
i,: = aMi,: with scalar a ≥ 0. By constructing the Lagrangian

dual form, the closed-form solutions of (8) can be obtained (see e.g., [5, 7, 8])
explicitly by

X∗
i,: = max{Mi,: −

µ(Hk)−1Mi,:

∥Mi,:∥2
, 0}, i = 1, · · · , n. (10)

Then the closed-form solution of (5) is given by

Xk =


max{(Y k − 1

Hk∇F (Y k))1,: −
µ(Hk)−1(Y k− 1

Hk ∇F (Y k))1,:

∥(Y k− 1

Hk ∇F (Y k))1,:∥2
, 0}

max{(Y k − 1
Hk∇F (Y k))2,: −

µ(Hk)−1(Y k− 1

Hk ∇F (Y k))2,:

∥(Y k− 1

Hk ∇F (Y k))2,:∥2
, 0}

· · ·
max{(Y k − 1

Hk∇F (Y k))n,: −
µ(Hk)−1(Y k− 1

Hk ∇F (Y k))n,:

∥(Y k− 1

Hk ∇F (Y k))n,:∥2
, 0}

 , (11)

where ∇F (Y k) = A∗(A(Y k)− b) is the gradient of F (Y k).
Therefore, when the APG is applied to solving (3), the generated inner

subproblem has closed-form solution. This feature makes the implementation of
the inexact APG for (3) very easy if one choose Hk = LI .
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3. Analysis of inexact APG method for (3)

3.1. Convergence analysis

First we need the following assumptions which have been given in paper [6].
Assumption A. (i)Let {ξk}, {ϵk} be given convergent sequences of nonnegative
numbers such that

∞∑
k=1

ξk < ∞,

∞∑
k=1

ϵk < ∞.

(ii)the minimizer Xk in (7) satisfies the following conditions:

Φ(Xk) ≤ Qk(Xk) + µ∥Xk∥2,1 +
ξk
2t2k

, (12)

∇F (Xk) +Hk(Xk − Y k) + γk = δk with ∥(Hk)−1/2δk∥ ≤ ϵk/(
√
2tk), (13)

where γk ∈ ∂(µ∥Xk∥2,1; ξk
2t2k

) (the set of ξk
2t2k

-subgradients of µ∥X∥2,1 at Xk).
The following lemma shows that the optimal solution set of (3) is bounded.

Lemma 1
For each µ > 0, the optimal solution set X ∗ of (3) is bounded, and for any X∗ ∈ X ,
we have

∥X∥F ≤ χ. (14)

where

χ =

{
min{∥b∥22/(2µ), ∥A∗(AA∗)−1b∥2,1}, if A is surjective,
∥b∥22/(2µ), otherwise. (15)

Proof
From the definition of Frobenius norm ∥X∥F = (

∑n
i=1

∑t
j=1 X

2
i,j)

1/2 and l2,1-

norm ∥X∥2,1 =
∑n

i=1

√∑t
j=1 X

2
i,j , we obtain that

∥X∥F ≤ ∥X∥2,1. (16)

By considering the objective value of (3) at X = 0, for any X∗ ∈ X ∗, we have

µ∥X∗∥2,1 ≤ 1

2
∥A(X∗)− b∥22 + µ∥X∗∥2,1 ≤ 1

2
∥b∥22. (17)

This together with the inequality (16) show that ∥X∗∥F ≤ ∥b∥22/(2µ). On the
other hand, if A is surjective, by considering the objective value of (3) at X =
A∗(AA∗)−1b, for any X∗ ∈ X ∗, we have

µ∥X∗∥2,1 ≤ 1

2
∥A(X∗)− b∥22 + µ∥X∗∥2,1 ≤ µ∥A∗(AA∗)−1b∥2,1. (18)

This together with the inequality (16) implies (14).
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By the convexity of µ∥ · ∥2,1, i.e. µ∥X∥2,1 ≥ µ∥Xk∥2,1 + ⟨X −Xk, γk⟩, and
Assumption A, similar to Lemma 2.1 and Lemma 2.2 in [6], the following two
lemmas are described. For the proof is essentially the same as Lemma 2.3 and
Lemma 4.1 in [4], we omit its proof here.

Lemma 2
Given Y k ∈ ℜn×t and a positive definite linear operator Hk on ℜn×t such that the
conditions (12) and (13) hold. Then for any X ∈ ℜn×t, we have

Φ(X)− Φ(Xk) ≥ 1

2
⟨Xk − Y k,Hk(Xk − Y k)⟩+ ⟨Y k −X,Hk(Xk − Y k)⟩

+⟨δk, X −Xk⟩ − ξk/t
2
k. (19)

Lemma 3
Suppose that Hk ≽ Hk+1 ≻ 0 for all k. Let

Ck = Φ(Xk)− Φ(X∗) ≥ 0, Dk = tkX
k − (tk − 1)Xk−1 −X∗. (20)

Then

t2kCk +
1

2
⟨Dk,Hk(Dk)⟩ ≥ t2k+1Ck+1 +

1

2
⟨Dk+1,Hk+1(Dk+1)⟩

−tk+1⟨δk+1, Dk+1⟩ − ξk+1. (21)

We should note that although we share the similar idea in the forthcoming
lemma in this paper with Lemma 2.3 in [6], but as it can be seen later, the proof is
much more clear and concise due to different technical details.

Lemma 4
Suppose that Hk ≽ Hk+1 ≻ 0 for all k. Then

t2kCk ≤ (ξ̄k +

√
τ + ϵ1

√
τ + ξ1)

2. (22)

Proof
For simplicity, we define Ak = t2kCk, Bk = 1

2 ⟨Dk,Hk(Dk)⟩ ≥ 0, Ek =

tk⟨δk, Dk⟩, τ = 1
2 ⟨X

0 −X∗,H1(X0 −X∗)⟩ and ξ̄k =
∑k

k=1(
√
ξk + ϵk).

Note that we have A1 = Φ(X1)− Φ(X∗), B1 = 1
2 ⟨X1 −X∗,Hk(X1 −X∗)⟩ and

|Ek| ≤ ∥(Hk)−1/2δk∥∥(Hk)−1/2Dk∥tk ≤ ϵk∥(Hk)−1/2Dk∥/
√
2 = ϵk

√
Bk.

First, we show that A1 +B1 ≤ τ + ϵ1
√
B1 + ξ1. By the step0 in Algorithm 1

Y 1 := X0 and applying the inequality (19) to X := X∗ with k := 1, we have that

−A1 ≥
1

2
⟨X1 − Y 1,H1(X1 − Y 1)⟩+ ⟨Y 1 −X∗,H1(X1 − Y 1)⟩+ δ1, X

∗ −X1⟩ − ξ1

=
1

2
⟨X1 −X∗,H1(X1 −X∗)⟩ −

1

2
⟨Y 1 −X∗,H1(Y 1 −X∗)⟩+ δ1, X

∗ −X1⟩ − ξ1

= B1 −
1

2
⟨X0 −X∗,H1(X0 −X∗)⟩+ δ1, X

∗ −X1⟩ − ξ1.
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Together with ∥(H1)−1/2δ1∥ ≤ ϵ1/
√
2, it shows that

A1 +B1 ≤ 1

2
⟨X0 −X∗,H1(X0 −X∗)⟩ − δ1,X

∗ −X1⟩+ ξ1 ≤ τ + ϵ1
√

B1 + ξ1,

(23)
and B1 ≤ τ + ϵ1

√
B1 + ξ1. Solve the above inequality, we further obtain that√

B1 ≤ 1

2
(ϵ1 +

√
ϵ21 + 4(τ + ξ1)) ≤ ϵ1 +

√
τ + ξ1

. Let
sk = ϵ1

√
B1 + · · ·+ ϵk

√
Bk + ξ1 + · · ·+ ξk,

then

s1 = ϵ1
√

B1 + ξ1 ≤ ϵ1(ϵ1 +
√

τ + ξ1) + ξ1 ≤ ϵ21 + ξ1 + ϵ1
√

τ + ξ1.

Hence
√
τ + s1 ≤

√
τ + ϵ21 + ξ1 + ϵ1

√
τ + ξ1 ≤ ϵ1 +

√
ξ1 +

√
τ + ϵ1

√
τ + ξ1. (24)

By Lemma 3 we have for every k ≥ 1

Ak +Bk − sk ≤ Ak−1 +Bk−1 − sk−1 ≤ · · · ≤ A1 +B1 − s1 ≤ τ. (25)

and hence the inequality Bk ≤ τ + sk holds true, which combined with the
definition of sk yields

τ + sk = τ + sk−1 + ϵk
√

Bk + ξk ≤ τ + sk−1 + ϵk
√
τ + sk + ξk. (26)

Then the inequality (26) can equivalently be written as

(τ + sk)− ϵk
√
τ + sk − (τ + sk−1 + ξk) ≤ 0.

So we have
√
τ + sk ≤ 1

2
(ϵk +

√
ϵ2k + 4(τ + sk−1 + ξk))

≤ ϵk +
√

τ + sk−1 + ξk

≤ ϵk +
√

τ + sk−1 +
√

ξk.

Further we obtain that

√
τ + sk ≤

k∑
j=2

(ϵj +
√

ξj) +
√
τ + s1

≤
k∑

j=2

(ϵj +
√

ξj) + ϵ1 +
√

ξ1 +

√
τ + ϵ1

√
τ + ξ1

= ξ̄k +

√
τ + ϵ1

√
τ + ξ1,
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where the last inequality follows Equation (24). Together with Ak ≤ τ + sk for all
k by Equation (25), it shows that the required Equation (22) holds.

The following theorem gives an upper bound on the number of iterations for the
inexact APG algorithm to achieve ϵ-optimality.

Theorem 1
Suppose that Assumption A holds, and Hk ≽ Hk+1 ≻ 0 for all k. Then

0 ≤ Φ(Xk)− Φ(X∗) ≤ 4

(k + 1)2
(ξ̄k +

√
τ + ϵ1

√
τ + ξ1)

2. (27)

Hence

Φ(Xk)− Φ(X∗) ≤ ϵ, whenever k ≥ 2(ξ̄k +

√
τ + ϵ1

√
τ + ξ1)/

√
ϵ− 1. (28)

Proof
By Theorem 2.1 in [6], we obtain (27). Based on the basic properties of inequality,
we get the required result in (28).

3.2. Choices of Hk

In Section 2, an APG method (Algorithm 1) is presented for solving matrix l2,1-
norm minimization problem (3) with the desired convergent rate of O(1/k2).
However, an important issue on how to solve the inner subproblem (5) efficiently
has not been addressed.

In this subsection, we propose three different implementable choices of the self-
adjoint positive definite linear operator Hk which take advantage of more useful
information.

(i)First we change our attention to consider the function F (X) in problem (3),

F (X) =
1

2
∥A(X)− b∥22.

Clearly, F (X) is a quadratic function, its gradient is ∇F (Y k) = A∗(A(Y )−
b), and its Hessian matrix is G = A∗A. Consider the following quadratic
approximation of Φ(X) := F (X) + µ∥X∥2,1 at a given point Y :

Ψ(X) := F (X) + ⟨∇F (Y ), X − Y ⟩+ 1

2
⟨X − Y,G(X − Y )⟩+ µ∥X∥2,1. (29)

Suppose we have the eigenvalue decomposition G = PΛPT , where Λ = diag(λ)
and λ = (λ1, · · · , λn)

T is the vector of eigenvalues of G. Then the quadratic term

⟨X − Y,G(X − Y )⟩ = ⟨X − Y, PΛPT (X − Y )⟩ = ⟨X̂ − Ŷ ,ΛX̂ − Ŷ ⟩

=

n∑
i=1

t∑
j=1

(X̂ − Ŷ )i,jλj ,
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where X̂ − Ŷ = PT (X − Y )P . For the choice of Hk, one may simply choose
Hk = λmax(A∗A)I to approximate the Hessian matrix. So the minimizer of the
inner subproblem (5) is

Xk
i,: = (1− µ

λmax∥(Y k − 1
λmax

∇F (Y k))i,:∥2
)+(Y

k − 1

λmax
∇F (Y k))i,:, (30)

where (·)+ = max(·, 0) and i = 1, · · · , n. We are now ready to state the steps of
the inexact version APG method with eigenvalue of the Hessian matrix (IAPG-
EIG) as follows.

Algorithm 2: IAPG-EIG for matrix l2,1-norm minimization problem (3)

Step0. Given a tolerance ε > 0. Input Y 1 = X0, t1 = 1. Set k = 1. Iterate the
following steps.

Step1. Solve Xk via (30).

Step2. Update tk+1 =
1+

√
1+4t2k
2 .

Step3. Compute Y k+1 = Xk + ( tk−1
tk+1

)(Xk −Xk−1).

However, if the Hessian matrix A∗A is ill-conditioned, this choice of Hk =
λmaxI may not work very well in practice since Hk may not be a good
approximation of the Hessian matrix of F (X). To find a better approximation
of the Hessian matrix, we propose the following technique.

(ii)The spectral gradient method (also named the two-point stepsize method)
was initially given by Barzilai and Borwein [3] for solving strict quadratic
minimization problems. This method consists essentially of a steepest descent
method, where the choice of the stepsize along the negative gradient direction
is potentially derived from a two-point approximation to a secant equation
underlying the quasi-Newton method. Raydan [14] showed that the BB method is
globally convergent in the strictly convex quadratic case. Raydan [15] extended the
BB method for solving general unconstrained optimization problems and Yuan &
Wei [20] extended the BB method for nonsmooth convex optimization problems.

Let ak−1 = Y k − Y k−1, bk−1 = ∇F (Y k)−∇F (Y k−1), then the Barzilai and
Borwein parameter is defined as αk =

⟨ak−1,bk−1⟩
⟨ak−1,ak−1⟩ . One may simply choose Hk =

αkI , so the minimizer of the inner subproblem (5) is

Xk
i,: = (1− µ

αk∥(Y k − 1
αk

∇F (Y k))i,:∥2
)+(Y

k − 1

αk
∇F (Y k))i,:, (31)

where i = 1, · · · , n. We are now ready to state the steps of the inexact version
APG method with Barzilai and Borwein parameter (IAPG-BB) as follows.
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Algorithm 3: IAPG-BB for matrix l2,1-norm minimization problem (3)

Step0. Given a tolerance ε > 0. Input Y 1 = X0, t1 = 1. Set k = 1. Iterate the
following steps.

Step1. Solve Xk via (31).

Step2. Update tk+1 =
1+

√
1+4t2k
2 .

Step3. Compute Y k+1 = Xk + ( tk−1
tk+1

)(Xk −Xk−1).

(iii) Note that we can always choose Hk = LI if there are no other better
choices, where L is the Lipschitz constant. We denote this algorithm as IAPG-
L, the steps follow similar arguments as in Algorithm 3 and we omit it here.

4. Numerical results

In this section we report our numerical experiments conducted for the matrix
l2,1-norm minimization problem (3) in MATLAB R2010a running on a PC
Intel Pentium CPU at 2.8 GHz and 1 GB of memory. We perform two types
of experiments concentrating on the simulated data and real data to show the
performance of the proposed algorithms IAPG-L, IAPG-EIG and IAPG-BB. In
each test, we compare our algorithm to the IADM-MFL algorithm [19], which has
been verified that it outperforms the SLEP algorithm. For convenience, we use
the IADM-MFL Matlab package provided by Y. Xiao to do comparison. For each
test, we start at zeros points and stop these algorithms when the relative change
between successive iterations falls below a small number tol, i.e.

RelChg =
∥Xk −Xk−1∥F

∥Xk−1∥F
≤ tol. (32)

Those algorithms is also forced to stop when the number of iterations exceeds
1000.

4.1. Simulated data

As [1], we create synthetic data sets by generating task parameters X̄:,j from
a 5-dimensional Gaussian distribution with zero mean and covariance equal to
diag{1, 0.64, 0.49, 0.36, 0.25}. To these 5-dimensional X̄:,j , we keep adding up to
20 irrelevant dimensions which are exactly zero. The training and test data Aj

are the Gaussian matrices whose elements are generated by Matlab command
randn(mj , n). The outputs bj are computed from the Aj and X̄:,j as

bj = AjX̄:,j + ω,

where ω is zero-mean Gaussian noise with standard deviation equal to 1.e-2. Let
X∗ be the ’optimal’ solution produced by algorithm, we use the relative error to
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measure the quality of X∗ to original X̄ , i.e.

RelErr =
∥X∗ − X̄∥F

∥X̄∥F
. (33)

First, we take µ = 1e− 2, t = 200, n = 15, tol = 1e− 3, and mj = 100 for all
j = 1, 2, · · · , t in those algorithms, and examine the objective function values
and the testing error rate behavior when each algorithm is proceeding. The
convergence behavior of both algorithms are reported in Figure 4.1. To illustrate
the convergence behavior of those solvers, we draw four figures to show the
decreasing function values as the iteration and CPU time increase. It is clear that
each algorithm generates decreasing sequences and eventually attains nearly equal
function values in the end. The preliminary numerical comparisons indicate that
those algorithms are efficient, but the CPU time plots show that IAPG-BB is the
fastest and the proposed algorithms IAPG-L, IAPG-EIG, IAPG-BB are better than
IADM-MFL.
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Figure 4.1. Convergence performance of IAPG-L, IAPG-EIG, IAPG-BB and IADM-MFL
on simulated data. First row: Relative error; Second row: objective function values; The

x-axes represents the number of iterations in first column and CPU time in second column.

Second, the number of tasks and dimensions may also affect the performance of
the method, so we report the numerical results of IAPG-L, IAPG-EIG, IAPG-BB
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and IADM-MFL with different number of tasks and dimensions. The columns of
Tables 4.1 and 4.2 have the following meanings, m: the dimension of the outputs;
n: the dimension of the test data; t: the total number of tasks; ITER: the total
number of iterations; TIME: the CPU time in second; RelErr: the relative error of
solution; RelChg: the relative change of solution when the program stops.

As we can see from Table 4.1 that all of those algorithms terminate successfully
at a solution of the problem and all algorithms have good performance for all
tests. The proposed algorithms IAPG-L, IAPG-EIG, IAPG-BB are better than
IADM-MFL, and IAPG-BB is more competitive than other algorithms as IAPG-
BB algorithm can get the solution of all the test data at a smaller number of
iterations and smaller CPU time.

Table 4.1. Numerical Results for Random Problems
b,X IAPG-L IAPG-EIG IAPG-BB IADM-MFL

(m, n, t) ITER/TIME/RelErr ITER/TIME/RelErr ITER/TIME/RelErr ITER/TIME/RelErr
(5000,5, 50) 13/0.0936/2.07e-003 18/0.0468/4.14e-003 11/0.0780/1.45e-003 23/0.1092/3.56e-003

(10000,5,100) 11/0.0780/2.17e-003 17/0.1248/3.59e-003 10/0.0936/1.45e-003 24/0.1404/1.63e-003
(15000,5,150) 12/0.1404/2.11e-003 18/0.2184/3.50e-003 10/0.1404/1.64e-003 24/0.3588/1.82e-003
(20000,5,200) 11/0.1716/2.25e-003 17/0.2184/3.65e-003 10/0.4836/1.52e-003 24/0.4056/1.68e-003
(25000,5,250) 11/0.2184/2.06e-003 17/0.3900/3.34e-003 10/0.4992/1.51e-003 24/0.6084/1.58e-003
(30000,5,300) 13/0.2964/2.25e-003 19/0.7488/4.06e-003 11/0.6084/1.52e-003 26/0.8268/1.78e-003
(5000,10,50) 17/0.0936/3.73e-003 25/0.1092/5.63e-003 12/0.0624/2.50e-003 33/0.1560/3.34e-003

(10000,10,100) 17/0.0780/3.60e-003 24/0.2496/6.09e-003 12/0.1716/2.60e-003 32/0.3120/3.36e-003
(15000,10,150) 16/0.2808/3.80e-003 24/0.3744/5.53e-003 12/0.2652/2.37e-003 32/0.5304/3.11e-003
(20000,10,200) 16/0.3432/3.13e-003 23/0.4212/5.26e-003 11/0.4524/2.37e-003 31/0.5928/2.97e-003
(25000,10,250) 17/0.4680/3.94e-003 25/0.6864/5.99e-003 12/0.5148/2.54e-003 33/0.8892/3.59e-003
(30000,10,300) 16/0.6396/3.64e-003 24/0.7800/5.32e-003 11/0.7488/2.60e-003 31/1.1232/3.25e-003
(5000,15,50) 21/0.0936/4.82e-003 30/0.1716/7.52e-003 13/0.0936/3.47e-003 43/0.2496/2.83e-003

(10000,15,100) 21/0.1872/4.95e-003 30/0.3276/7.63e-003 13/0.2496/3.75e-003 42/0.4836/3.49e-003
(15000,15,150) 21/0.3276/5.71e-003 30/0.5148/8.58e-003 13/0.4212/4.48e-003 42/0.7020/4.08e-003
(20000,15,200) 20/0.4524/5.06e-003 29/0.7020/7.40e-003 13/0.4992/3.71e-003 41/1.0296/3.24e-003
(25000,15,250) 22/0.7488/5.15e-003 31/0.9204/8.16e-003 13/0.7488/4.15e-003 45/1.4040/3.27e-003
(30000,15,300) 21/0.8580/5.71e-003 31/1.2324/7.89e-003 13/1.1076/4.15e-003 44/1.7472/3.47e-003
(5000,20,50) 26/0.1560/7.24e-003 36/0.1716/1.12e-002 21/0.2184/2.99e-003 54/0.3432/4.27e-003

(10000,20,100) 26/0.3588/6.66e-003 36/0.3432/1.06e-002 14/0.3588/6.13e-003 51/0.6552/4.55e-003
(15000,20,150) 27/0.4680/7.14e-003 38/0.6396/1.07e-002 17/0.6240/3.05e-003 53/0.9984/4.91e-003
(20000,20,200) 25/0.5772/7.42e-003 36/0.9048/1.03e-002 17/0.8580/3.11e-003 52/1.5132/4.27e-003
(25000,20,250) 26/1.1076/6.56e-003 36/1.3728/1.03e-002 14/0.9828/6.20e-003 52/1.7784/4.33e-003
(30000,20,300) 26/1.1232/7.66e-003 37/1.8720/1.11e-002 20/1.9500/3.00e-003 54/2.4804/4.35e-003
(5000,25,50) 31/0.1716/9.03e-003 42/0.2808/1.42e-002 21/0.2184/3.36e-003 61/0.4992/5.91e-003

(10000,25,100) 32/0.3432/9.64e-003 44/0.6240/1.45e-002 21/0.5460/3.50e-003 66/0.8892/4.94e-003
(15000,25,150) 33/0.5460/9.51e-003 45/0.8736/1.46e-002 21/0.8736/3.47e-003 69/1.3260/4.57e-003
(20000,25,200) 30/0.7020/9.84e-003 42/1.1700/1.40e-002 21/1.2480/3.58e-003 64/1.7472/4.94e-003
(25000,25,250) 32/1.0764/1.01e-002 44/1.6536/1.51e-002 21/1.8096/3.50e-003 67/2.2620/5.18e-003
(30000,25,300) 31/1.2792/9.90e-003 43/2.1684/1.46e-002 21/2.1996/3.55e-003 65/2.8392/5.11e-003

4.2. Real data

In this subsection, we evaluate the proposed method IAPG with the Lipschitz
constant and compare it with IADM-MFL by using the real data set. dmoz is
a text categorization data set available at http://www.dmoz.org/, in which each
of the 10 tasks corresponds to one of the subcategories of the Arts category. We
randomly sample 10%, 15%, 25%, 50% and 75% of this data set from each task for
training and run both algorithms simultaneously to learn the joint feature among
the task. The numerical results are listed in Table 4.2. When running both codes,
we set all the parameter values as the previous subsection except for µ = 1e− 4
and β = 0.01/mean(|y|). To illustrate the convergence behavior of both solvers,
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we draw two figures to show the decreasing function values in the first 200 steps as
the iteration increases. As can be seen from Figure 4.2, each algorithm generates
decreasing sequences and eventually attains nearly equal function values in the
end. From Table 4.2, we can get the conclusion that IAPG-L works better on these
problems.
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Figure 4.2. The convergence of IAPG-L and IADM-MFL on the demo data set
when 25% (left figure) and 50% (right figure) of the data are used for training.

Table 4.2. Numerical Results for Demo Data
Demo b,X IAPG-L IADM-MFL

(m, n, t) ITER TIME RelChg ITER TIME RelChg
10% (40,500,10) 191 0.84 9.94e-004 427 2.23 9.99e-004
15% (60,500,10) 179 0.78 9.93e-004 381 2.26 1.00e-003
25% (100,500,10) 341 3.53 9.98e-004 524 5.27 9.96e-004
50% (200,500,10) 292 1.76 9.99e-004 485 3.10 9.58e-004
75% (300,500,10) 365 3.78 9.99e-004 440 3.98 9.96e-004

5. Conclusion

In this paper, we extend the APG method to solve matrix l2,1-norm minimization
problem in multi-task feature learning. We investigate the performance of our
proposed algorithm in which the resulting inner subproblem has closed-form
solution. And it can be easily determined by taking the problem’s favorable
structures. We also present inexact APG framework with three different choices
of the self-adjoint positive definite linear operator Hk: (1) IAPG-EIG use the
eigenvalue of Hessian matrix, Hk = λmax(A

∗A)I; (2) IAPG-BB use the Barzilai
and Borwein parameter, Hk = αkI; (3) IAPG-L use the Lipschitz continuous,
Hk = LI . We design efficient implementations of the algorithm and give
comprehensive convergence results. The numerical experiments illustrate that the
proposed algorithm is very promising and competitive, and it also provides a new
approach to solve the joint feather selection problem in multi-task learning.
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