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Abstract Variational models with total variation (TV) regularization have long been known to preserve image edges and
produce high quality reconstruction. On the other hand, recent theory on compressive sensing has shown that it is feasible
to accurately reconstruct images from a few linear measurements via TV regularization. However, in general TV models
are difficult to solve due to the nondifferentiability and the universal coupling of variables. In this paper, we propose the
use of alternating direction method for image reconstruction from highly incomplete convolution data, where an image is
reconstructed as a minimizer of an energy function that sums a TV term for image regularity and a least squares term for
data fitting. Our algorithm, called RecPK, takes advantage of problem structures and has an extremely low per-iteration cost.
To demonstrate the efficiency of RecPK, we compare it with TwIST, a state-of-the-art algorithm for minimizing TV models.
Moreover, we also demonstrate the usefulness of RecPK in image zooming.
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1. Introduction

Total variation (TV) regularization for image restoration and reconstruction has been widely studied in the literature
since its introduction by Rudin, Osher and Fatemi [31], mainly due to the strong ability of TV in preserving edges
and object boundaries that are usually the most important features to recover. In image restoration, TV models with
the ℓ2-norm fidelity, which are suitable for data contaminated by independent and identically distributed Gaussian
noise, have been studied in, e.g., [10, 13]. When observed data suffer from impulsive noise, e.g., salt-and-pepper
noise, TV models with nonsmooth data fitting are desirable, e.g., TV regularization with the ℓ1-norm fidelity was
addressed in [12] with some interesting geometric properties.

Recently, exact recoverability of sparse signals from a few linear measurements is established based on ℓ1-
minimization. For two-dimensional image, exact recoverability is also attainable via TV minimization when
the underlying image has piecewise constant structure, or equivalently, sparse gradients, see e.g., [8] for exact
recoverability from incomplete frequency information. These theoretical results further justify the importance of
TV models in image reconstruction. Sparse and compressible signal recovery from incomplete linear measurements
is now widely referred as compressive sensing/sampling (CS, [7, 8, 14]) and has become an emerging methodology
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2 IMAGE RECONSTRUCTION FROM INCOMPLETE CONVOLUTION DATA

in the field of signal processing. In this paper, we concentrate on image reconstruction via TV minimization from
incomplete/partial convolution data. Our main contribution is a very simple and fast algorithm, called RecPK, for
solving TV problems with either the ℓ2-norm or the ℓ1-norm data fitting. In addition, we also present comparison
results with TwIST, a two-step iterative shrinkage/thresholding (TwIST) algorithm recently proposed in [2].

In the rest of this section, we present the optimization problem under consideration, review relevant algorithms
existing in the literature for TV minimization, introduce our notation, and describe the organization of the paper.

1.1. Image reconstruction via TV minimization

Let ū ∈ Rn2

be an original two-dimensional image with n2 pixels. We assume that ū is grayscale, though our
derivations can be equally applied to multichannel images. The incomplete convolution measurements of ū are
given by

f = PKū+ ω ∈ Rp,

where K ∈ Rn2×n2

, P ∈ Rp×n2

and ω ∈ Rp represent, respectively, a convolution matrix, a projection matrix
containing p rows of the identity matrix of order n2, and random noise. In CS, p is much smaller than n2. The
challenge is to recover ū from the seemingly insufficient measurements f , which is generally impossible without
prior constraints on the original image. However, when ū is sparse or compressible, basic CS results [7, 8, 14]
guarantee that ū can be accurately (or even exactly when ū is sparse and f is noise free) recovered via ℓ1-
minimization provided that the sensing system preserves certain desirable attributes. For piecewise constant images,
exact recoverability from incoherent measurements [6, 4] can be ensured by TV-minimization [8]. Moreover, it was
pointed out in [5] that minimizing TV is always beneficial even ū is sparse in a transform domain with a suitable
basis.

In this paper, we reconstruct ū from f via the CS methodology. Specifically, ū is reconstructed as a solution of
the following TV model

min
u

∑
i
∥Diu∥2 +

µ

2
∥PKu− f∥22, (1)

where
∑

i is taken over all pixels,
∑

i ∥Diu∥2 is a discretization of the TV of u, and µ > 0 is a scalar which is
used to balance regularization and data fidelity. Theoretical supports for this approach of recovering ū from partial
convolution data are provided in [30]. Clearly, the rationale behind model (1) is similar to the following well-known
TV/L2 model for image deconvolution:

min
u

∑
i
∥Diu∥2 +

µ

2
∥Ku− f∥22. (2)

1.2. A brief review of existing methods

In the following, we let ∥ · ∥ = ∥ · ∥2. In this section, we review briefly some existing methods for solving the
TV/L2 problem (2), many of which can be easily extended to solve (1). The first class of methods are based
on smoothing the TV term. Since TV is nonsmooth, which causes the main difficulty, a number of methods
are based on smoothing it and solving the resulting approximation problems. The TV/L2 problem (2) is usually
approximated by

min
u

∑
i

√
∥Diu∥2 + ϵ+

µ

2
∥Ku− f∥2, (3)

where ϵ > 0 is a small constant. As such, ordinary methods for unconstrained optimization can be applied, such
as the gradient descent method. In the pioneering work [31], a time-marching scheme was used to solve a partial
differential equation system, which in optimization point of view is equivalent to a constant steplength gradient
descent method. This time-marching scheme suffers from slow convergence especially when the iterate point
approaches the solution set. Although certain line search strategy can be incorporated to speed up convergence,
it still converges slowly especially when ϵ becomes small. Another well-known method for the smoothed TV/L2

problem (3) is the linearized gradient method proposed in [36] for denoising and in [35] for deblurring. The idea of
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the linearized gradient method is to solve the Euler-Lagrangian equation via a fixed-point iteration. In each iteration
of the linearized gradient method, a linear system needs to be solved, which becomes more and more difficult as ϵ
goes to 0, or as K becomes more ill-conditioned. As a result, it is not efficient especially for large and/or severely
ill-conditioned problems. Furthermore, both the explicit time-marching scheme and the linearized gradient method
are first-order methods and thus are linearly convergent at best. To overcome the linear convergence of first-order
methods, the authors of [36] incorporated Newton method to solve (3). Indeed quadratic convergence was observed.
However, the large per-iteration cost of Newton method prevents its practical applicability, especially to large sized
images. Moreover, as ϵ becomes smaller, the computation of Newton directions becomes more difficult.

Another class of algorithms for solving TV problems are the iterative shrinkage/thresholding (IST) algorithms,
which are independently proposed and analyzed by several authors in different fields, see, e.g., [17, 18, 34, 33].
In [2], Bioucas-Dias and Figueiredo introduced a two-step IST (TwIST) algorithm, which exhibits much faster
convergence than the primal IST algorithm for ill-conditioned problems. Recently, Beck and Teboulle [1] present
a new fast IST algorithm, which not only preserves the computational simplicity of IST but also has an optimal
global rate of convergence. We note that IST-based algorithms for TV deconvolution require to solve an expensive
TV denoising subproblem at each iteration and do not able to take advantage of problem structures.

Recently, a fast TV deconvolution algorithm called FTVd was proposed in [37] for the solution of (2). Since both
K and the finite difference operators have structures, it is desirable to design an algorithm that can take advantage of
problem structures. For this purpose, the authors of [37] first transformed (2) to an equivalent constrained problem
of the form

min
u,w

{∑
i
∥wi∥+

µ

2
∥Ku− f∥2 : s.t. wi = Diu, i = 1, . . . , n2

}
, (4)

where, for each i, wi ∈ R2 is an auxiliary vector, and considered solution algorithms for (4) that are capable
of utilizing convolution structures. We note that in (4) the objective function is separable and the constraints
are linear. For convenience, we let w = (w1;w2) ∈ R2n2

, where w1 and w2 are vectors of length n2 satisfying
((w1)i; (w2)i) = wi ∈ R2 for i = 1, . . . , n2. Then, the classical quadratic penalty method was applied to (4) in
[37], which gives the following formulation

min
u,w

∑
i

(
∥wi∥+

β

2
∥wi −Diu∥2

)
+

µ

2
∥Ku− f∥2, (5)

where β > 0 is a penalty parameter. Finally, an alternating minimization with respect to u and w was applied to (5).
Since the objective function in (5) is separable with respect to each wi, and both K and the finite different operators
are convolution matrices, both subproblems can be solved easily and exactly by either simple shrinkage or fast
Fourier transforms (FFTs). Furthermore, the overall convergence of FTVd is accelerated by heuristic continuation
on β. Experimental results provided in [37] show that FTVd converges much faster than those algorithms that
cannot make use of problem structures.

From optimization theory, the solution of (5) well approximates that of (4) only when β becomes large, in which
case numerical difficulties arise. For β > 0 and s, t, ν ∈ R2, we define

ϕβ(s, t, ν) := ∥s∥ − ν⊤(s− t) +
β

2
∥s− t∥2. (6)

Furthermore, let the augmented Lagrangian function of (4) be defined by

LA (u,w, λ) :=
∑

i
ϕβ(wi, Diu, λi) +

µ

2
∥Ku− f∥2,

where each λi is a vector in R2 and, similar to w, λ ∈ R2n2

is combination of {λi, i = 1, 2, . . . , n2} in a suitable
order. To avoid β going to infinity, the classical augmented Lagrangian method (ALM, [27, 29]) was applied in
[25] resulting the following iterative framework{

(uk+1, wk+1)← argminu,w LA

(
u,w, λk

)
,

λk+1 ← λk − β(wk+1 −Duk+1).
(7)
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4 IMAGE RECONSTRUCTION FROM INCOMPLETE CONVOLUTION DATA

In [25], the authors derived (7) from the Bregman iterative method [28]. It is well-known that the presence and
iterative updates of multiplier λ avoids β going to infinity and guarantees convergence of (7) to a solution of (4).
The disadvantage of (7) is the exact minimization of LA with respect to (u,w) at each iteration, which requires
its own iteration. In this paper, we propose the use of alternating direction method (ADM) for the solution of (1),
which is a variant of the classical ALM.

1.3. Notation

Let the superscript “⊤” denote the transpose (conjugate transpose) operator for real (complex) matrices or vectors.
For vectors vi and matrices Ai, i = 1, 2, we let (v1; v2) = (v⊤1 , v

⊤
2 )

⊤ and (A1;A2) = (A⊤
1 , A

⊤
2 )

⊤. For any i, Di in
(1) is a 2-by-n2 matrix such that the two entries of Diu represent the horizontal and vertical local finite differences
of u at pixel i whereas Di near the boundary are defined using periodic boundary conditions. The horizontal and
vertical global finite difference matrices are denoted by D(1) and D(2), respectively. As such, D(1) and D(2) contain,
respectively, the first and second rows of Di for all i. With a bit abuse of notation, we let the index set corresponding
to the selection operator P be denoted by itself, and let the complement of P be defined as Q = {1, . . . , n2} \ P .
In the rest of this paper, we let ∥ · ∥ = ∥ · ∥2. Additional notation is defined where it occurs.

1.4. Organization

The rest of this paper is organized as follows. In Section 2, we present the basic algorithm RecPK for (1). We also
discuss in this section connections to some recent work in the field of signal and image processing. In Section 3 , we
extend the ADM approach to solve two other TV-based models. Section 4 contains our experimental results, where
RecPK is compared to TwIST [2]. In this section, we also present recovery results from incomplete convolution
data corrupted by impulsive noise and demonstrate the usefulness of RecPK in image zooming. Finally, some
concluding remarks are given in Section 4.

2. Basic algorithm and extensions

Two main difficulties exist in solving (1), one is caused by the nondifferentiability of the TV and the other is by
PK which does not maintain the circulant structure of convolution operator. We overcome both difficulties by
reformulating (1) as a linearly constrained problem and considering its augmented Lagrangian function. Instead of
using the classic ALM, which needs to solve unconstrained subproblems relatively accurately, we propose the use
of the cheaper ADM.

In the following of this section, we describe the ALM and the ADM for the solution of (1). We also connect the
ADM to some recent work in signal and image processing and discuss some extensions to other TV-based models.

2.1. The ALM

By introducing auxiliary variables w = [w1, . . . ,wn2 ], where each wi ∈ R2, and v ∈ Rn2

, problem (1) is
equivalently transformed to

min
w,v,u

{∑
i
∥wi∥+

µ

2
∥Pv − f∥2 : s.t. wi = Diu, ∀i; Ku = v

}
(8)

To tackle the linear constraints, we consider the augmented Lagrangian function defined by

LA (w, v, u, λ1, λ2) :=
∑

i
ϕβ1 (wi, Diu, (λ1)i)− λ⊤

2 (Ku− v)

+
β2

2
∥Ku− v∥2 + µ

2
∥Pv − f∥2, (9)
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where (λ1)i ∈ R2 for each i, β1, β2 > 0 are penalty parameters and λ2 ∈ Rn2

is the Lagrangian multiplier. Given
(w, v, u)k = (wk, vk, uk), (λ1)

k and (λ2)
k, the classic ALM for (8) iterates as

(w, v, u)k+1 ← argminw,v,u LA

(
w, v, u, (λ1)

k, (λ2)
k
)
,

(λ1)
k+1
i ← (λ1)

k
i − γβ1(w

k+1
i −Diu

k+1), ∀i,
(λ2)

k+1 ← (λ2)
k − γβ2(Kuk+1 − vk+1),

(10)

where γ ∈ (0, 2) guarantees the convergence. In the ALM, each subproblem needs to be solved to certain high
accuracy before the update of multipliers. In our case, the joint minimization of LA with respect to (w, v, u) is
needed, which is not numerically efficient. Thus, the per-iteration cost of the ALM is relatively expensive. In
contrast, the ADM approach described below has a much cheaper per-iteration cost.

2.2. The ADM

The basic idea of the ADM goes back to the work by Glowinski and Marocco [24] and Gabay and Mercier [21].
Following the pioneering work, the ADM was extensively studied in optimization and variational analysis. For
example, in [23] it was interpreted as the Douglas-Rachford splitting method [15] applied to a dual problem. The
equivalence between the ADM and a proximal point method was shown in [16]. Moreover, the ADM has been
extended to inexact minimization of subproblems in [16] and [26] and with a steplength criterion introduced in
[41].

In a nut shell, the ADM takes advantage of the separable structure of variables in the objective of (8) and
decreases LA by just one round alternating minimization followed by immediate multipliers update. We note that,
for fixed λ (hereafter λ = (λ1;λ2)), it is easy to apply alternating minimization to LA with respect to (w, v) and u,
as described below. First, for fixed λ and u, the minimization of LA with respect to each wi has an explicit formula
given by

wi = Shrink (Diu+ (λ1)i/β1, 1/β1) , ∀i, (11)

where Shrink(·, 1/β1) is generally regarded as the two-dimensional shrinkage operator and is defined as

Shrink(ξ, 1/β1) , max {∥ξ∥ − 1/β1, 0} · ξ/∥ξ∥, ξ ∈ R2, (12)

where 0 · (0/0) = 0 is assumed, and the minimization of LA with v satisfies the normal equations(
I +

µ

β2
P⊤P

)
v = Ku− λ2

β2
+

µ

β2
P⊤f, (13)

where I represents the identity matrix. Since P is a selection matrix, P⊤P is diagonal and thus the solution to (13)
is easy. We point out that both computations of w and v are linear in terms of n2. Second, for fixed λ and (w, v),
the minimization of LA with respect to u becomes a least squares problem. To simplify representation, we let
wj = (w1(j); . . . ;wn2(j)), j = 1, 2, w = (w1;w2) and D = (D(1);D(2)). With this notation, the normal equations
corresponding to the minimization of LA with respect to u, after reordering variables, can be written as

Mu = y, (14)

where

M = D⊤D + (β2/β1) ·K⊤K,

y = D⊤(w − λ1/β1) +K⊤(λ2 + β2v)/β1.

Since D(1) and D(2) are finite difference matrices and K is a convolution matrix, under the periodic boundary
conditions for u, they are block circulant matrices and can be diagonalized by the 2D discrete Fourier transform
F . Let K̂ = FKF⊤ and D̂(j) = FD(j)F⊤ (j = 1, 2), which are diagonal. Let D̂ = (D̂(1); D̂(2)). Multiplying by
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6 IMAGE RECONSTRUCTION FROM INCOMPLETE CONVOLUTION DATA

F on both sides of (14), we obtain

M̂F(u) = ŷ, (15)

where ŷ = F(y) and M̂ = D̂⊤D̂ + (β2/β1)K̂
⊤K̂ is a diagonal matrix. Therefore, (14) can be easily solved from

given w and v as follows. Before iterations begin, compute M̂ . At each iteration, first compute y and obtain ŷ by
applying an FFT. Then, solve (15) by using M̂ to obtain F(u) and thus u after applying an inverse FFT to F(u).

One can circularly apply (11), (13) and (14) until LA is minimized jointly with respect to (w, v, u) and update
the multipliers as in the ALM framework (10). However, we choose to update λ immediately after computing (11),
(13) and (14) just once. This gives the ADM as follows.

Algorithm 1 (RecPK)
Input problem data P , K, f and model parameter µ > 0. Given β1, β2 > 0 and γ ∈

(
0, (
√
5 + 1)/2

)
. Initialize

u = u0, λ1 = (λ1)
0 and λ2 = (λ2)

0. Set k = 0.

While “not converged”, Do
1) Compute v and w by

wk+1
i ← Shrink

(
Diu

k + (λ1)
k
i /β1, 1/β1

)
, ∀i;

vk+1 ← solution to (13), where (u, λ2) = (uk, (λ2)
k).

2) Compute uk+1 by solving (14), where y depends on λ = ((λ1)
k, (λ2)

k)
and (w, v) = (wk+1, vk+1).

3) Update λ1 and λ2 by
(λ1)

k+1
i ← (λ1)

k
i − γβ1(w

k+1
i −Diu

k+1), ∀i
(λ2)

k+1 ← (λ2)
k − γβ2(Kuk+1 − vk+1);

4) k ← k + 1.
End Do

In our experiments, we simply terminated Algorithm 1 when the relative change in u is small, i.e.,

∥uk+1 − uk∥ ≤ ϵ(1 + ∥uk∥), (16)

for some tolerance ϵ > 0. In step 3) of Algorithm 1, a relaxation parameter γ ∈ (0, (
√
5 + 1)/2) is permitted. The

shrinkage in the permitted range of γ from (0, 2) in the ALM to (0, (
√
5 + 1)/2) in the ADM is related to relaxing

the exact minimization of LA to merely one round of alternating minimization. The convergence of ADM with such
a steplength attached to multipliers was first established in [22] in the context of variational inequality. Following
[22], for any β1, β2 > 0 and γ ∈ (0, (

√
5 + 1)/2), the sequence {(uk, vk, wk)} generated by Algorithm 1 from any

starting point (u0, λ0) converges to a solution of (8).
The splitting technique for TV shown in (8) for model (1) was first proposed in [37] without using the Lagrange

multipliers, in the context of image deconvolution, where the authors used the classic quadratic penalty method to
enforce the equality constraints and continuation technique to accelerate convergence. Similar ideas were applied to
multichannel deconvolution in [38] and impulsive noise removal in [39]. By combining the splitting technique for
TV [37] and the Bregman iterative algorithm [28, 43], a split Bregman method was proposed in [25] for a class of
inverse problems, which is equivalent to the ALM. Also, a variable splitting and constrained optimization approach
was recently applied to frame-based deconvolution in [20]. The split Bregman algorithm and its relationship with
the Douglas-Rachford splitting were analyzed in [32]. The relationships between the split Bregman method, the
ALM and the ADM were described in [19]. The ADM was also applied to image reconstruction from incomplete
frequency data in [40] and Toeplitz and circulant measurements in [42]. Till today, the ADM has been applied to
numerous applications, and the application of ADM to image reconstruction from incomplete convolution data in
this paper is demonstrated with convincing numerical comparison results.
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3. Extensions

In this section, we extend the ADM to solve two other TV-based models. When measurements are free of noise,
we consider the following constrained TV minimization

min
u

{∑
i
∥Diu∥ : s.t. PKu = f

}
, (17)

which, similar to (8), is equivalent to

min
w,u,v

{∑
i
∥wi∥ : s.t. wi = Diu,∀i, Pv = f,Ku = v

}
. (18)

The augmented Lagrangian problem for (18) is given by

min
{w,v,u}, Pv=f

∑
i
ϕβ1 (wi, Diu, (λ1)i)− λ⊤

2 (Ku− v) +
β2

2
∥Ku− v∥2, (19)

where ϕβ is defined in (6). The only difference between (19) and the minimization of LA defined in (9) lies in the
v-subproblem. Therefore, the ADM for (18) takes exactly the same form as described in Algorithm 1 except that,
by letting P(·) be the projection onto {v : Pv = f}, v is updated by vk+1 ← P

(
Kuk − (λ2)

k/β2

)
.

When the measurements are corrupted by impulsive noise, it is suitable to consider TV regularization with the
ℓ1-norm data fidelity, i.e.,

min
u

∑
i
∥Diu∥+ µ∥PKu− f∥1. (20)

Problem (20) can also be incorporated into the two stage algorithm introduced in [3] for deconvolution in the
presence of high level impulsive noise, where f is obtained from a first stage algorithm which detects and eliminates
corrupted data by certain median-type filter. By introducing auxiliary variables, (20) is transformed to

min
w,v,u

{∑
i
∥wi∥+ µ∥Pv − f∥1 : s.t. wi = Diu,∀i,Ku = v

}
,

the augmented Lagrangian problem of which is given by

min
w,v,u

∑
i
ϕβ1 (wi, Diu, (λ1)i)− λ⊤

2 (Ku− v) +
β2

2
∥Ku− v∥2 + µ∥Pv − f∥1. (21)

Likewise, the only difference between (21) and the minimization of LA defined in (9) lies in the v-subproblem.
Thus, the ADM for (20) has exactly the same form as described in Algorithm 1 except that v is updated by

vk+1
i ←

{
zki − P[−τ,τ ]

(
zki − fi

)
, i ∈ P ;

zki , o.w. (22)

where zk = Kuk − (λ2)
k/β2, and P[−τ,τ ](·) represents the projection onto [−τ, τ ] with τ = µ/β2. Formula (22)

can be easily verified by noting that v is component-wise separable in (21).

4. Experimental results

In the remaining of this paper, Algorithm 1 and its variants for the solution of (1), (17) and (20) are referred as
RecPK (reconstruction from partial convolution). In this section, we present image reconstruction results of RecPK
and compare to TwIST [2], which can be applied to (1) with PK being replaced by a general sensing matrix. All
experiments were performed under Windows Vista Premium and MATLAB v7.8 (R2009a) running on a Lenovo
laptop with an Intel Core 2 Duo CPU at 1.8 GHz and 2 GB of memory.
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8 IMAGE RECONSTRUCTION FROM INCOMPLETE CONVOLUTION DATA

Figure 1. Original images. From upper-left to lower-right: Lena, Shepp-Logan phantom, Cameraman and Eye.

In our experiments, we used the Lena image (512×512), the Shepp-Logan phantom image (512×512), the
Cameraman image (256×256) and the Eye image (384×384), which are widely used in the field of image
processing for testing TV regularization models. The original images have intensity values between 0 and 1 and
are given in Figure 1.

In all tests, we generated f in three steps. First, apply certain convolution to ū to obtain Kū. Two types
of convolution kernel were used — Gaussian and average, which were generated in MATLAB by scripts
fspecial(‘gaussian’,15,11) and fspecial(‘average’,15), respectively. Second, take random
samples to obtain PKū. We tested different sample ratios ranging from 5% to 50%. Finally, for noisy cases, add
Gaussian noise of mean zero and standard deviation 10−3 to PKū.

Now we describe settings for RecPK. We tried different starting points and found that the performance of RecPK
is insensitive. We simply set the starting image to be P⊤f , i.e., the missing samples are filled out with zeros. We
set (λ1)

0 and (λ2)
0 to be zero in all tests. In theory, RecPK is applicable for any β1, β2 > 0 and γ ∈ (0,

√
5+1
2 ).

However, different choices of parameters lead to different algorithmic speed. Based on our previous results for
TV image reconstruction from incomplete frequency data [40], we simply set β1 = 10 and γ = 1.618 for RecPK,
which, though may be suboptimal, worked sufficiently well to demonstrate the efficiency of the ADM. As for β2,
we tried different choices and observed the following. When β2 is set to be relatively small, RecPK converges
well and solution quality improves steadily but at a rather slow speed. When β2 is set to be relatively large, the
intermediate images are usually deteriorated at the beginning iterations and improved quickly after u enters certain
“good” region.

To demonstrate these statements, we tested on the Lena image using an average kernel of size 15×15 and sample
ratio 10%. The tested results of four β2 values ranging from “small” to “large” are given in Figure 2, where the
SNR results are depicted with the increase of iteration numbers. In order to avoid deteriorated intermediate results
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for large β2 while still able to maintain fast convergence, we are motivated by the results given in Figure 2 to
implement continuation on β2, i.e., initialize β2 at a small value and increase it step-by-step. Figure 2 also contains
the SNR results in which we initialized β2 = min{10× 1.2k, 104}, where k counts the number of iterations. As
can be seen from Figure 2, with such continuation on β2, the SNR values improved steadily and quickly throughout
the whole iteration process. We also tested on different sample ratios and with other kernels such as the Gaussian
kernel and observed consistent results. Therefore, in our experiments we applied such a continuation on β2.
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Figure 2. Test results on different values of β2. “Cont. β2” represents the results obtained from β2 = min{10× 1.2k, 104},
where k counts the number of iterations.

4.1. Comparison with TwIST

In this subsection, we compare RecPK with TwIST, which, in general, can be applied to solve

min
u

Φreg(u) +
µ

2
∥Au− b∥2, (23)

where Φreg(·) can be either TV or ℓ1 regularization, A is a linear operator and µ > 0. Given the current point uk,
TwIST obtains uk+1 as follows{

vk = uk +A⊤(b−Auk),
uk+1 = (1− α)uk−1 + (α− δ)uk + δΨµ(vk),

where α, δ > 0 are parameters and

Ψµ(vk) := argmin
u

Φreg(u) +
µ

2
∥u− vk∥2. (24)

To compare TwIST with RecPK, we let b = f , A = PK and Φreg(u) =
∑

i ∥Diu∥. TwIST solves the subproblem
(24) using Chambolle’s algorithm [9]. In contract, RecPK has a much cheaper per-iteration cost of 2 FFTs
(including 1 inverse FFT).
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10 IMAGE RECONSTRUCTION FROM INCOMPLETE CONVOLUTION DATA

We set ϵ = 10−3 in (16) for RecPK, and used the monotonic variant of TwIST, which was stopped when the
relative change in the objective function fell below tol = 10−3. We assigned a relatively small value 10−3 to the
TwIST parameter lam1 (which was used to compute α and δ), as recommended in the TwIST documentation
for ill-conditioned problems. Furthermore, to speed up convergence, TwIST is allowed maximally 10 iterations as
default for each call of Chambolle’s algorithm to solve (24).

In the comparison to TwIST, we used noisy data, i.e., ω distributes like Gaussian noise with mean zero and
standard deviation 10−3. For this level of noise, we first set µ = 104 in (1) and tested partial Gaussian convolution
data of different sample ratios. The recovered results by RecPK and TwIST are given in Figure 3 along with the
resulting signal-to-noise ratios (SNR, in decibel), consumed CPU times (in seconds) and numbers of iterations
taken (Iter). We also tested the two methods with incomplete data convolved by the average kernel. The recovered
results are similar to those recovered from partial Gaussian convolution data and are not presented here. We will
present recovery results from average kernel in the next subsections.

Figure 3. Reconstruction results from (1), where f contains partial Gaussian convolution data of sample ratios 30% (left),
10% (middle), and 5% (right). Top row: results of RecPK. From left to right: (SNR, CPU, Iter) = (14.1dB, 18s, 44), (13.0dB,
24s, 60), and (11.9dB, 34s, 90), respectively; Bottom row: results of TwIST. From left to right: (SNR, CPU, Iter) = (14.3dB,
407s, 190), (13.0dB, 406s, 185) and (12.1dB, 405s, 186), respectively.

It can be seen from Figure 3 that RecPK obtained images of comparable quality as those from TwIST in much
less CPU time and the number of iterations, especially when the sample ratios are relatively high. This is because
TwIST does not take advantage of the structures of P and K but rather treats PK as a generic linear operator.
Additionally, compared with TwIST, which uses Chambolle’s algorithm for TV denoising, the per-iteration cost
of RecPK is very cheap and only takes 2 FFTs. Therefore in the results, we can see that RecPK takes less time
per-iteration. Generally speaking, from the above comparison results, it is safe to conclude that RecPK is more
efficient than TwIST when applied to (23).

4.2. Reconstruction from noiseless data

When measurements are free of noise, it is desirable to consider constrained TV-minimization of the form (17).
In this section, we present recovery results of RecPK from (17). Different from Section 4.1, we use the average
kernel to generate convolution data. The test results on the Shepp-Logan phantom image, which is usually used as
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a benchmark image for TV regularization, are given in Figure 4, where in addition to SNR, CPU times and iteration
numbers, the relative residue defined by Res := ∥PKu− f∥/∥f∥ are also given. The changing behavior of residue
and SNR as RecPK proceeds is also given in Figure 5.

Figure 4. Reconstruction results from (17), where f contains noise free partial average convolution data of sample ratios
30% (left), 10% (middle), and 5% (right). RecPK was terminated by (16) with ϵ = 10−3. From left to right: (SNR, CPU,
Iter, Res) = (29.6dB, 37s, 97, 7.1e-5), (21.4dB, 66s, 181, 1.5e-4) and (17.0dB, 85s, 237, 2.1e-4), respectively.
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Figure 5. Residue (left) and SNR (right) improve as RecPK proceeds: ϵ was set to be 10−4 in (16) and 30% average
convolution data were used.

4.3. Reconstruction from impulsive noise corrupted data

In this subsection, we present recovery results from incomplete convolution data corrupted by impulsive noise.
After generating partial convolution data PKū, we let

f = Nimp(PKū),

where Nimp(v) corrupts a fraction of elements of v by its minimum and maximum values, each at probability 0.5.
In our experiments, we used partial average convolution data, corrupted 5% measurements by such noise, and set
µ = 102 in (20) and ϵ = 10−3 in (16). The recovered results are given in Figure 6.
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12 IMAGE RECONSTRUCTION FROM INCOMPLETE CONVOLUTION DATA

Figure 6. Reconstruction results from (20), where f contains impulsive noise corrupted partial average convolution data (5%
entries of PKū are corrupted randomly by either min(PKū) or max(PKū), each at probability 0.5). µ = 102 in (20) and
ϵ = 10−3 in (16). From left to right: sample ratios are 30%, 10% and 5%, (SNR, CPU, Iter) = (14.0dB, 9s, 86), (11.5dB, 9s,
92), and (10.2dB, 10s, 104), respectively.

4.4. The utilization of RecPK in image zooming

In image zooming, given an image of low resolution, one tries to recover an image with higher resolution. For
such purpose, it is usually assumed that the available low resolution image is obtained by down sampling a higher
resolution one blurred by an average kernel.

Figure 7. Reconstruction results by RecPK. Top row: original images and the corresponding low resolution ones (Down
sampling factor is 4. From left to right: Eye, Lena and Cameraman, respectively); Bottom row: results of RecPK.

Thus, to recover a high resolution image, it is natural to solve the model (1), where K is an average blur. In this
test, we set the down sample factor to be 4, which means that the sample ratio is 6.25%. We then zoomed the image
to its original size. We tested 3 images. In particular, the Eye image was also tested in [11]. The recovery results
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are shown in Figure 7. Roughly speaking, we have obtained recoveries of similar quality as presented in [11]. Note
that the algorithm in [11] is a linearized ADM, rather than ADM itself.

5. Conclusion

Based on the classic augmented Lagrangian approach and a simple splitting technique, we proposed the use of
ADM for solving TV image reconstruction problems with partial convolution data. Our algorithm minimizes the
sum of a TV regularization term and a fidelity term measured in either ℓ1 or ℓ1 norm. The per-iteration cost of our
algorithm contains simple shrinkages, matrix-vector multiplications and two FFTs. Extensive comparison results
on single-channel images with partial convolution data indicate that RecPK is highly efficient, stable and robust
and, in particular, faster than a state-of-the-art algorithm TwIST [2]. Moreover, its superior performance depends
on fewer fine tuning parameters than TwIST. We hope that RecPK is useful in relevant areas of compressive sensing
such as sparsity-based image reconstruction.
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