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Abstract Image restoration is a fundamental problem in various areas of imaging sciences. This paper presents a class of
adaptive proximal point algorithms (APPA) with contraction strategy for total variational image restoration. In each iteration,
the proposed methods choose an adaptive proximal parameter matrix which is not necessary symmetric. In fact, there is an
inner extrapolation in the prediction step, which is followed by a correction step for contraction. And the inner extrapolation
is implemented by an adaptive scheme. By using the framework of contraction method, global convergence result and a
convergence rate of O(1/N) could be established for the proposed methods. Numerical results are reported to illustrate the
efficiency of the APPA methods for solving total variation image restoration problems. Comparisons with the state-of-the-art
algorithms demonstrate that the proposed methods are comparable and promising.
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1. Introduction

Image restoration is a fundamental problem in various areas of applied sciences such as medical imaging,
microscopy, astronomy, film restoration, and image and video coding. Image reconstruction is to recover an original
clean image from the degraded image,

f = Kw + n, (1)

where w is the original image and f represents the given observed image, K is a line blurring operator, and n is an
additive zero-mean Gaussian white noise. In general, a regularization method need to be used in image restoration
since (1) is an ill-conditioned problem. One of the most popular regularization methods is total variational (TV)
regularization technique which was due to Rudin, Osher, and Fatemi [29]. A discrete version of the TV deblurring
problem is given by

min
w

∥w∥TV +
λ

2
∥Kw − f∥2, (2)

where λ > 0 is a fit-to-data parameter. Here, ∥ · ∥ denotes the usual Euclidean norm (ℓ2) of a vector. ∥w∥TV is the
discrete TV semi-norm defined by ∥w∥TV =

∑
1≤i,j≤n ∥(∇w)i,j∥, and ∇w is the discrete gradient operator.

∗Correspondence to: School of Mathematics and Computer Sciences, Gannan Normal University, Ganzhou, 341000, China. Email:
maghyu@163.com

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright c⃝ 2015 International Academic Press



16 Y. CHEN, J. WU AND G. YU

In [29], the authors proposed a time marching scheme to solve the associated Euler-Lagrange equation of (2).
Vogel and Oman proposed in [34] a “lagged diffusivity” fixed point iteration method for solving the same Euler-
Lagrange equation of (2) directly. Chambolle in [11] gave a semi-implicit gradient descent algorithm based on the
dual formulation. In [36], Yu et al accelerated the Chambolle gradient projection method for total variation image
restoration via choosing Barzilai-Borwein stepsize instead of the fix time step. In [38], the authors developed
duality-based gradient projection algorithms for total variation image restoration problems. Beck and Teboulle in
[7] proposed a fast iterative soft-thresholding algorithm (FISTA) for the TV-based image deblurring problem.

In recent years, many researchers [8, 9, 10, 12, 13, 18, 22, 28, 32] study the TV minimization via solving the
following saddle-point problem:

min
y∈Y

max
x∈X

Φ(x, y) := yTAx+
λ

2
∥By − z∥2, (3)

in which, the image matrix w (resp. f ) is reordered row-wisely into a vector y (resp. z). Y ⊂ RN , x is the dual
variable, X = {x : x ∈ R2N , ∥xl∥ ≤ 1, for l = 1, 2, · · · , N}. The operator A = [A1, A2, · · · , AN ]T ∈ RN×2N is
the negative divergence operator. B is the discretization of the blurring operator K.

Since the seminal work of Arrow, Hurwicz and Uzawa [1, 4], classical methods based on the gradient/subgradient
for solving the saddle point problem have been proposed. Particularly, to achieve fast convergence, a class of
inexact Uzawa methods were proposed and analyzed in [4] for linear saddle points problem by introducing pre-
conditioning matrices. In [37], the authors generalized Bregman operator splitting (BOS) algorithm in a primal-
dual system, which can be called as a variant of inexact Uzawa method [1]. In [39], Zhu and Chan proposed a
primal-dual hybrid gradient (PDHG) algorithm to solved the saddle-point problem. Recently, In [18], Esser, Zhang
and Chan proposed a modified version of PDHG (PDHGMu and PDHGMp). More recently, Chen et al in [13]
designed a primal-dual fixed point algorithm based on the proximity operator (PDFP2Oκ for κ ∈ [0, 1)), which was
motivated by proximal forward-backward splitting (PFBS) proposed in [14] and fixed point algorithms based on
the proximity operator (FP2O) for image denoising in [26].

Most of these work solve the saddle-point problem (3) via following primal-dual procedure:

Primal-Dual procedure for solving (3)
Let τ > 0, σ > 0 and θ ∈ R. Given (xk, yk), the new iterate (xk+1, yk+1) is generated by:

yk+1 = Argmin
y∈Y

{σΦ(xk, y) +
1

2
∥y − yk∥2}, (4a)

yk = yk+1 + θ(yk+1 − yk), (4b)

xk+1 = Argmax
x∈X

{τΦ(x, yk)− 1

2
∥x− xk∥2}. (4c)

If θ = 0, the primal-dual procedure (4) reduces to the Arrow- Hurwicz algorithm in [1]. When θ = 0 with τ, σ
are made adaptive, the primal-dual procedure (4) become primal-dual hybrid gradient (PDHG) algorithm proposed
in [39]. When θ ∈ [0, 1], the primal-dual procedure (4) covers the primal-dual algorithms proposed in [12, 18].
Moreover, both the adaptive parameters are presented in [12, 18] to accelerate the primal-dual algorithms. In [12],
the authors show that for B being the identity, the primal-dual procedure (4) reduces to the Douglas Rachford
splitting algorithm [16], and it can also be regarded as a preconditioned version of the alternating direction method
of multipliers. In [22], a PPA perspective of (4) is given by He and Yuan. When θ = 1, primal-dual procedure (4)
can be viewed as a classical PPA, thus its convergence is guaranteed. Otherwise, the primal-dual procedure (4)
become the prediction step, which is followed by a correction step for contraction/convergence. Recently, some
nonlinear PPA methods were given and analysed in [35].

In this paper, we will study (4) from the perspective of PPA. The rest of this paper is organized as follows. In
Section 2, we review some basic knowledge of variational inequalities (VI) and the PPA method. Section 3 presents
an adaptive PPA, and establish its global convergence in the framework of contraction method. In Section 4, some
preliminary numerical results and performance comparisons are reported. Finally, we have a conclusion section.
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2. Preliminaries

2.1. The VI reformulation of (3)

Let (x∗, y∗) be a solution of the saddle-point problem (3) satisfies:

max
x∈X

Φ(x, y∗) ≤ Φ(x∗, y∗) ≤ min
y∈Y

Φ(x∗, y).

Therefore, the saddle-point problem (3) can be transformed into a variational inequality problem VI(Ω, F ) with F
and Ω defined as follows. Finding u∗ ∈ Ω such that:

VI(Ω,F) : (u− u∗)TF (u∗) ≥ 0, ∀u ∈ Ω, (5)

where

u =

(
x
y

)
, F (u) =

(
−AT y

Ax+ λBT (By − z)

)
, and Ω := X × Y.

The mapping F (u) is monotone , i.e. (u− v)T (F (u)− F (v)) ≥ 0, ∀u, v ∈ Ω.
Therefore, VI(Ω,F) is monotone and its solution set denoted by Ω∗ is nonempty.

2.2. PPA method

One of the most well-known methods for VIP(Ω, F ) is known as proximal point algorithm (PPA) [24], in which
the new iterate point uk+1 is obtained by solving the following variational inequality problem

uk+1 ∈ Ω , (u− uk+1)T (F (uk+1) + βk(u
k+1 − uk)) ≥ 0, ∀u ∈ Ω. (6)

However, solving the subproblem (6) exactly may be difficult or impossible in practice. So, it is essential to develop
implementable algorithms [2, 5, 6, 17, 19, 20, 21, 30, 31, 33]. The PPA in the context of G-norm was proposed in
[21]. The authors proposed a customized PPA for linearly constrained convex programming,

uk+1 ∈ Ω, (u− uk+1)T (F (uk+1) +G(uk+1 − uk)) ≥ 0, ∀u ∈ Ω,

where G(uk+1 − uk) is usually the gradient of a function and the corresponding Jacobian matrix. In [23], He et
al proposed a class of linear PPA where the proximal parameter matrix G is fixed as a constant matrix. One main
motivation in this paper is to develop an adaptive linear PPA.

3. Proposed Algorithm and Its Convergence

3.1. Algorithm

In this subsection, we present an adaptive proximal point algorithm model as follows.

APPA : Adaptive PPA method with Correction Step
Given an adaptive positive-definite matrix Mk, an arbitrary symmetric positive definite fixed matrix H and a
constant γ ∈ (0, 2).
Prediction Step: Produce a proximal point ũk which is the solution of the following VI:

u ∈ Ω, (u′ − u)T (F (u) +Mk(u− uk)) ≥ 0, ∀u′ ∈ Ω. (7a)

Correction Step: The new iterate is updated by

uk+1 = uk − αkH
−1Mk(u

k − ũk), (7b)
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where

αk = γα∗
k, α∗

k =
(uk − ũk)TMk(u

k − ũk)

∥H−1Mk(uk − ũk)∥2H
. (7c)

In (7c), ∥ · ∥2H is defined as ∥ · ∥2H = (·)TH(·). If we translate the prediction step (7a) to the primal-dual
procedure: 

ỹk = Argmin
y∈Y

{σΦ(xk, y) +
1

2
∥y − yk∥2} (8a)

yk = ỹk + θk(ỹ
k − yk) (8b)

x̃k = Argmax
x∈X

{τΦ(x, yk)− 1

2
∥x− xk∥2}, (8c)

then the proximal parameter Mk and the H can be formulated as:

Mk =

(
1
τ I −θkA

T

−A 1
σ I

)
,H =

(
1
τ I

1
σ I

)
, (9)

and the positive parameters should be satisfy the following requirement[22]:

τσ
(1 + θk)

2

4
∥ATA∥ < 1, θk ∈ (−1, 1). (10)

In order to establish the global convergence for the proposed APPA model, the adaptive metric proximal
parameter matrix Mk need to satisfy the following assumptions:
A1: The sequence {Mk} is uniformly positive-defined (not necessarily symmetric) matrix, i.e., there exist a
constant c such that

utMku ≥ c∥u∥2, ∀u ∈ Rn, k ∈ N∗ andu ̸= 0. (11)

A2: The sequence ∥MT
k H−1Mk∥ is uniformly bounded, where H is an arbitrary symmetric positive definite fixed

matrix.
Here and throughout the paper, B : X → Y is a continuous linear operator with induced norm

∥B∥ = max{∥Bx∥ : x ∈ X, ∥x∥ ≤ 1}.

As we can see in Appendix section, these conditions can be easily satisfied.

3.2. Convergence

This subsection is devoted to the convergence analysis of the proposed algorithm. The following theorem states
that the APPA possesses Fejèr monotone contraction proposition.

Theorem 1
For any {u∗} ∈ Ω∗, the sequence {uk} generated by the proposed APPA Algorithm satisfies

∥uk+1 − u∗∥2H ≤ ∥uk − u∗∥2H − C∥uk − ũk∥2, (12)

where C > 0 is a constant.

Proof. From (7b) and (7a), we have

∥uk+1 − u∗∥2H
= ∥(uk − u∗)− αkH

−1Mk(u
k − ũk)∥2H

= ∥uk − u∗∥2H − 2αk(u
k − u∗)TMk(u

k − ũk) + α2
k∥H−1Mk(u

k − ũk)∥2H
≤ ∥uk − u∗∥2H − 2αk(u

k − ũk)TMk(u
k − ũk) + α2

k∥H−1Mk(u
k − ũk)∥2H

= ∥uk − u∗∥2H − γ(2− γ)α∗
k(u

k − ũk)TMk(u
k − ũk). (13)
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If the assumptions A1 and A2 hold, there respectively exist a constant c0 and m such that

(uk − ũk)TMk(u
k − ũk) ≥ c0∥uk − ũk∥2, ∥MT

k H−1Mk∥ ≤ m.

Therefore

α∗
k(u

k − ũk)TMk(u
k − ũk)

=
(uk − ũk)TMk(u

k − ũk)

∥H−1Mk(uk − ũk)∥2H
(uk − ũk)TMk(u

k − ũk)

≥ c20∥uk − ũk∥4

∥MT
k H−1Mk∥∥uk − ũk∥2

≥ c20∥uk − ũk∥2

m
. (14)

By setting C =
γ(2−γ)c20

m , assertion (12) is proved. 2

The theorem above means the sequence {uk} generated by the proposed algorithm is Fejèr monotone with
respect to Ω∗, hence the proposed algorithm (7) is a contraction method under the H-norm. He et al presented
a analytic framework of contraction methods [22, 23], which simplifies convergence analysis. Now we are in a
position to present the main convergence theorem of our algorithm.

Theorem 2
The sequence {uk} generated by the proposed algorithm (7) converges to some u⋆ which is a solution point of
VIP(Ω, F).

Proof. It follows from (12) that {uk} is bounded and thus

lim
k→∞

∥uk − ũk∥ = 0.

Consequently, {ũk} is also bounded. Let u⋆ be a cluster point of {ũk} and there exist a subsequence {ũk
j } that

converges to u⋆. For every ũk
j , we have

ũk
j ∈ Ω, (u− ũk

j )
T {F (ũk

j ) +Mk(u
k
j − ũk

j )} ≥ 0, ∀u ∈ Ω.

Since {ũk
j } → u⋆ and limj→∞ ∥uk

j − ũk
j ∥ = 0, we have

u⋆ ∈ Ω, (u− u⋆)TF (u⋆) ≥ 0, ∀u ∈ Ω,

and thus u⋆ is a solution point. Note that inequality (12) is true for all solution point of VI(Ω, F); hence, we have

∥uk+1 − u⋆∥2 ≤ ∥uk − u⋆∥2, ∀k > 0,

and thus the sequence {uk} converges to u⋆. 2

3.3. Convergence rate

Classical linear PPA poses a convergence rate of O(1/N) [15, 27]. We would show in this subsection that the
proposed methods can reach an O(1/N) convergence rate as well.

Lemma 1
Let the sequences {uk} and {ũk} be generated by the proposed APPA Algorithm. Then, we have

(u− ũk)TF (ũk) +
1

2γα∗
k

(∥u− uk∥2H − ∥u− uk+1∥2H) ≥ (1− 1

γ
)∥uk − ũk∥2H . (15)
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Proof. It follows (7a) that
(u− ũk)TF (ũk) ≥ (u− ũk)TMk(u

k − ũk). (16)

Form the correction step (7b) that (uk − ũk) = 1
γα∗

k
M−1

k H(uk − uk+1), we have

(u− uk+1)TMk(u
k − ũk)

=
1

γα∗
k

(u− uk+1)TH(uk − uk+1)

=
1

γα∗
k

(∥u− uk+1∥2H − ∥u− uk∥2H) +
1

α∗
k

∥uk − uk+1∥2H . (17)

On the other hand, using the (7b) we have

(uk+1 − ũk)TMk(u
k − ũk)

= [(uk − ũk)− γα∗
kH

−1Mk(u
k − ũk)]TMk(u

k − ũk)

= ∥(uk − ũk)∥2Mk
− γα∗

k∥H−1Mk(u
k − ũk)∥2H

= (1− γ)∥(uk − ũk)∥2Mk
. (18)

By adding (17) and (18), using the the fact that uk − uk+1 = γαkH
−1Mk(u

k − ũk), we obtain that

(u− ũk)TMk(u
k − ũk)

=
1

γα∗
k

(∥u− uk+1∥2H − ∥u− uk∥2H)

+
1

α∗
k

∥uk − uk+1∥2H + (1− γ)∥(uk − ũk)∥2Mk

=
1

γα∗
k

(∥u− uk+1∥2H − ∥u− uk∥2H) + (1− γ

2
)∥(uk − ũk)∥2Mk

. (19)

Combining (16) and (19), it is easy to derive the (15). Hence, the Lemma is proved.

Theorem 3
Let the sequences {ũk} be generated by the proposed APPA Algorithm. For an integer N > 0, let

uN :=
1

N

N∑
k=1

ũk, (20)

then uN ∈ Ω and
(uN − u)TF (u) ≤ m

2c0γN
∥u− u1∥. (21)

Proof. It is easy to get that uN ∈ Ω. In fact, uN = 1
N

∑N
k=1 ũ

k is a convex combination of ũk. Since γ ∈ (0, 2),
it follows from Lemma 1 that

(u− ũk)TF (ũk) +
1

2γα∗
k

(∥u− uk∥2H − ∥u− uk+1∥2H) ≥ 0, ∀u ∈ Ω.

By combining the monotonicity of F with the last inequality, we obtain

(u− ũk)TF (u) +
1

2γα∗
k

(∥u− uk∥2H − ∥u− uk+1∥2H) ≥ 0, ∀u ∈ Ω.
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Summing the above inequality over k = 1, 2, · · · , N , we derive that

(Nu−
N∑

k=1

ũk)TF (u) +
1

2γα∗
k

(∥u− u1∥2H − ∥u− uk+1∥2H) ≥ 0, ∀u ∈ Ω.

And it is obvious that

(Nu−
N∑

k=1

ũk)TF (u) +
1

2γα∗
k

∥u− u1∥2H ≥ 0, ∀u ∈ Ω.

From Lemma A1 and Lemma A2, we have 1
α∗

k
≤ m

c0
. Thus, we can obtain

(
1

N

N∑
k=1

ũk − u)TF (u) ≤ m

2c0γN
∥u− u1∥.

The proof is completed. 2
For any given compact set D ∈ Ω, let d := sup{ m

2c0γ
∥u− u1∥2H |u ∈ D}. By using Theorem 3, we know that

after N iteration of the proposed algorithm, the point uN defined in (20) satisfies

sup
u∈D

{(uN − u)TF (u)} ≤ d

N
,

which means that uN is an approximate solution of (5) with the accuracy O(1/N).

4. Numerical Results for TV image restoration

In this section, we will test the proposed method for TV image deblurring problem, and compare it to the He
and Yuan’s Algorithm 1 (denote it as “HYPD” for short) in [22] and PDHG Algorithm in [39]. All the programs
were coded in MATLAB R2007a and run on a personal computer with an Intel Core 2 Duo CPU at 2.4 GHz and
4GB of memory.

Firstly, we would like to present the APPA algorithm applying to TV image restoration as follows. We also call
it Adaptive Primal-Dual Algorithm (APDA) with contraction strategy.

APDA : Adaptive Primal-dual Algorithm
Prediction Step: Generate the predictor ũk = (x̃k, ỹk)

ỹk = F−1[
F(yk − σAxk) + σλF(K)∗ ⊙F(z)

1 + σλF(K)∗ ⊙F(K)
]

yk = ỹk + θk(ỹ
k − yk)

x̃k = PX (xk + τAT yk)

Correction Step: Let αk be defined in (7c), and Mk,H be defined in (9). Correct the predictor and generate the
new iterate uk+1 = (xk+1, yk+1) via:

uk+1 = uk − γα∗
kH

−1Mk(u
k − ũk)

APDA1 Algorithm: θ1k =
tk−1−1

tk
with tk = 1

2 (1 +
√

1 + 4t2k−1), t1 = 1.

APDA2 Algorithm: θ2k = k+1
k+2 .
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Remarks:
R1: The choice of θ1k comes from Nesterov acceleration strategy [7], and the θ2k is the same parameter used in
adaptive PDHGMu for image denoising [18] (in which θk = τk

τk−1
and τk = 1

k+2 .)
R2: In fact, except from the above two choices, the sequence {θk} can also be chosen according to one of the
following rules:

Rule 1: θk =
tk−1−1

tk
, reference to [25, 3]

Rule 2: θk = tk−1
tk

, which is the modification of Rule 1,

with {tk} satisfying

t2k+1 − tk+1 ≤ t2k, tk ≥ k + 2

2
, ∀k ≥ 2, t1 = 1.

According to the above two rules, we can get some other choices for θk as follows:

• θ3k = k−1
k+2 which is taken tk = k+2

2 according to rule 1;
• θ4k = tk−1

tk
and take t2k+1 − tk+1 = t2k according to rule 2;

• θ5k = k
k+2 which is taken tk = k+2

2 according to rule 2.

It is justified in Appendix that each choice for Mk could satisfy the conditions in A1, A2. In our experiments,
we just report the numerical results for θ1k and θ2k.

We test the numerical performances of APDA1 and APDA2 and compare them to PDHG, HYPD on image
restoration problems of three images of various sizes. The original and clean images are degraded by convolutions
and the zero-mean Gaussian noise with the standard deviation 10−3. The blur operator and the additive noise are
generated by the respective scripts fspecial and imnoise in Matlab Image Processing Toolbox. We set medium and
severe motion blur in the scenarios fspecial (’motion’, 21, 135) and fspecial (’motion’, 91, 135), respectively. And
set medium and severe gaussian blur in the scenarios fspecial (’gaussian’, 21, 5) and fspecial (’gaussian’, 41, 10),
respectively.

We use the following stopping criterion:

∥yk+1 − yk∥
∥yk+1∥

< Tol, (22)

where {yk} is the sequence generated by the test algorithms. We also use signal-to-noise ratio (SNR)

SNR := 20 log10
∥y∗∥

∥y − y∗∥
,

as a measurement to evaluate the performance of the tested algorithms, where y is the image restored by certain
algorithm and y∗ is the original one.

Table 1. The value of parameters
APDA1 APDA2 HYPD PDHG
τ = 0.03 τ = 0.03 τ = 0.03 τk = 10 + 40k

σ = 5.0 σ = 5.0 σ = 5.0 σk = (1− 0.2
k

)/τk
γ = 1.3 γ = 1.3 γ = 1.6

θ1k =
tk−1−1

tk
θ2k = k+1

k+2
θ = −0.2(

tk = 1
2
(1 +

√
1 + 4t2k−1), t1 = 1

)

To deblur these corrupted images, we take λ = 250 and λ = 1000 in (3), Tol=10−4 and Tol=5× 10−5 in (22) for
the motion and gaussian blur cases, respectively. Table 1 presents parameters for all tested algorithms.
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Figure 1. Original images: Cameraman.png, Barbara.png, and Man.tiff.

Table 2. Numerical results of images with motion blur.
problem algorithm medium motion blur severe motion blur

Iter Time(s) SNR Iter Time(s) SNR
Cameraman PDHG 102 1.81 21.53 110 1.87 14.53
256× 256 HYPD 27 0.80 27.35 76 2.28 21.35

APDA1 28 0.83 27.36 46 1.54 20.88
APDA2 19 0.51 27.34 23 0.72 18.99

Barbara PDHG 100 9.33 21.76 104 9.47 15.96
512× 512 HYPD 26 3.92 24.53 71 11.17 18.95

APDA1 28 4.63 24.54 46 7.43 18.77
APDA2 17 2.65 24.61 20 3.06 18.03

Man PDHG 90 37.72 23.33 122 50.67 17.52
1024× 1024 HYPD 34 24.20 25.55 63 43.96 22.37

APDA1 29 20.11 25.54 40 28.70 22.20
APDA2 22 15.43 25.49 17 11.73 21.25

Table 3. Numerical results of images with Gaussian blur.
problem algorithm medium gaussian blur severe gaussian blur

Iter Time(s) SNR Iter Time(s) SNR
Cameraman PDHG 280 5.02 15.88 241 4.15 14.86
256× 256 HYPD 90 2.64 17.89 156 4.18 16.28

APDA1 54 1.50 17.90 71 1.98 16.21
APDA2 40 1.12 17.90 55 1.47 16.14

Barbara PDHG 265 25.57 15.93 219 20.44 15.82
512× 512 HYPD 80 12.78 17.26 137 21.47 16.54

APDA1 54 8.47 17.28 69 11.22 16.57
APDA2 40 6.21 17.30 54 8.39 16.57

Man PDHG 313 142.46 16.10 264 118.86 15.87
1024× 1024 HYPD 83 58.03 18.84 138 97.75 17.13

APDA1 53 37.32 18.86 70 49.62 17.12
APDA2 40 27.67 18.87 55 39.34 17.10

Numerical results are shown in tables 2 and 3 for the motion blur cases and gaussian blur cases, respectively. As
is demonstrated in these tables, the proposed algorithms have a comparative SNR with that of HYPD. But, in most
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Figure 2. Corrupted images: Top: medium motion blur; Bottom: severe motion blur.

Figure 3. Corrupted images: Top: medium gaussian blur; Bottom: severe gaussian blur.
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Figure 4. Evolutions of Relative error w.r.t computing times for Man.tiff.

cases, APDA methods, especially APDA2, use much less time and iterates than HYPD and PDHG. This advantage
is more apparent for the case of severe debluring.

Original images were shown in Figure 1: Cameraman.png(256×256), Barbara.png(512×512) and
Man.tiff(1024×1024). Figure 2 and 3 display the blurred images corrupted with different scenarios.

Figure 4 plots the relative error against the CPU time for ’Man.tiff’. Figures 5-8 display the restored images by
PDHG, HYPD, APDA1 and APDA2. As we can see from Table 2 and Table 3, the proposed method is competitive
to HYPD and outperforms PDHG for image debluring problems. According to Figure 4, we would like to point
out that in some case, APDA may possess a better convergence rate (say O(1/N2)).

5. Conclusion

In this paper, we propose a class of adaptive proximal point algorithms (APPA) with contraction strategy for
solving TV image restoration problems. The proposed methods choose an adaptive proximal parameter matrix
in each iteration. In fact, there is an inner extrapolation in prediction step and it is accelerated by an adaptive
scheme such as Nesterov kind strategy. By using the framework of contraction method, global convergence and
a O(1/N) convergence rate for the proposed methods could be established. Numerical experiments verified that
APPA methods are competitive to HYPD and outperform PDHG for the test problems.
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PDHG SNR:21.53 HYPD SNR:27.35 APDA1 SNR:27.36 APDA2 SNR:27.34

PDHG SNR:21.76 HYPD SNR:24.53 APDA1 SNR:24.54 APDA2 SNR:24.61

Figure 5. From Left to Right: the medium motion blurred images restored by PDHG, HYPD, APDA1, APDA2, respectively.

PDHG SNR:15.88 HYPD SNR:17.89 APDA1 SNR:17.90 APDA2 SNR:17.90

PDHG SNR:15.93 HYPD SNR:17.26 APDA1 SNR:17.28 APDA2 SNR:17.30

Figure 6. From Left to Right: the medium gaussian blurred images restored by PDHG, HYPD, APDA1, APDA2, respectively.
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Appendix

This appendix is devoted to justifying that with Mk be defined in (9) assumptions A1, A2 hold.
Lemma A1: If the step sizes τ, σ and θk are defined as in Table 1, then for the matrix Mk we have

(u− ũ)TMk(u− ũ) ≥ δk
1 + δk

∥u− ũ∥2H > 0, ∀u ̸= ũ, (23)

where

δk =
2

1 + θk

√
1

τσ∥ATA∥
− 1, and δk > 0. (24)

Proof. From(24), we have that

τ(1 + δk)∥ATA∥ (1− θk)
2

4
=

1

σ(1 + δk)
.

Therefore, for any u ̸= ũ,

(u− ũ)TMk(u− ũ) = ∥u− ũ∥2H − (1 + θk)(y − ỹ)TA(x− x̃)

= ∥u− ũ∥2H + 2
(1− θk

2
(ỹ − y)T

)
A(x− x̃)

≥ ∥u− ũ∥2H − (τ(1 + δk)∥ATA∥) (1 + θk)
2

4
∥y − ỹ∥2

− 1

τ(1 + δk)∥ATA∥
∥A(x− x̃)∥2

= ∥u− ũ∥2H − 1

σ(1 + δk)
∥y − ỹ∥2

− 1

τ(1 + δk)∥ATA∥
∥A(x− x̃)∥2

≥ ∥u− ũ∥2H − 1

1 + δk
(
1

τ
∥x− x̃∥2 + 1

σ
∥y − ỹ∥2)

=
δk

1 + δk
∥u− ũ∥2H .

Since ∥u− ũ∥2H > 0 and δk > 0, thus the Lemma A1 is proved. Therefore, the Mk is positive-defined.2
Lemma A2: Let Mk be defined in (9) and H be an arbitrary symmetric positive definite fixed matrix, then there
exit a constant m, such that

∥MT
k H−1Mk∥ ≤ m.

Proof. From the defined of Mk, we have that

MT
k H−1Mk =

(
1
τ I + σATA −(θk + 1)AT

−(θk + 1)A 1
σ I + τθ2kAAT

)
. (25)

With the fact limk→∞ θk = 1, it is easy to get that

lim
k→∞

MT
k H−1Mk =

(
1
τ I + σATA −2AT

−2A 1
σ I + τAAT

)
.
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For convenience, we denoted M =

(
1
τ I + σATA −2AT

−2A 1
σ I + τAAT

)
.

With the continuity of the norm, we have

lim
k→∞

∥MT
k H−1Mk∥ = ∥M∥.

Then, exists a positive integer N , when k > N , we have

lim
k→∞

∥MT
k H−1Mk∥ ≤ ∥M∥+ 1.

Let m = max{∥MT
1 H−1M1∥, ∥MT

2 H−1M2∥, · · · ∥MT
NH−1MN∥, ∥M∥+ 1}, which complete the proof. 2
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