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Abstract The problem of mean-square optimal estimation of the linear functional AT ξ =
∫ T
0

a(t)ξ(t)dt that depends on
the unknown values of a continuous time random process ξ(t), t ∈ R, with stationary nth increments from observations of
the process ξ(t) at time points t ∈ R \ [0;T ] is investigated under the condition of spectral certainty as well as under the
condition of spectral uncertainty. Formulas for calculation the value of the mean-square error and spectral characteristic of
the optimal linear estimate of the functional are derived under the condition of spectral certainty where spectral density of
the process is exactly known. In the case of spectral uncertainty where spectral density of the process is not exactly known,
but a class of admissible spectral densities is given, relations that determine the least favourable spectral density and the
minimax spectral characteristic are specified.
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1. Introduction

The classical methods of finding solutions to extrapolation, interpolation and filtering problems for stationary
random processes and sequences were developed by Kolmogorov [12], Wiener [35], Yaglom [36, 37]. In the paper
[38] Yaglom generalized the theory of continuous time stationary processes to the case of random processes with
stationary nth increments. He found spectral representation of the increment process, canonical factorization of
spectral density and solved the extrapolation problem for random processes with stationary increments. For more
details one can see papers by Yaglom and Pinsker [30], Pinsker [31]. A few years later Yaglom [39] applied the
theory of generalized random process to investigation random processes with stationary increments.

Most of results concerning estimation of the unknown (missed) values of random processes are based on
the assumption that spectral densities of random processes are exactly known. In practice, however, complete
information on the spectral densities is impossible in most cases. In such situations one finds parametric or
nonparametric estimates of the unknown spectral densities. Then the classical estimation method is applied under
the assumption that the estimated densities are true. This procedure can result in significant increasing of the value
of error of estimate as Vastola and Poor [34] have demonstrated with the help of some examples. This is a reason
to search estimates which are optimal for all densities from a certain class of admissible spectral densities. These
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estimates are called minimax since they minimize the maximal value of the error of estimate. A survey of results
in minimax (robust) methods of data processing can be found in paper by Kassam and Poor [11]. The paper by
Grenander [7] should be marked as the first one where the minimax extrapolation problem for continuous time
stationary processes was formulated and solved. Later Franke [8], Franke and Poor [9] investigated the minimax-
robust extrapolation and interpolation problems for stationary sequences by using methods of convex optimization.
In papers by Moklyachuk [19] - [26] the minimax approach was applied to extrapolation, interpolation and filtering
problems for functionals which depend on the unknown values of stationary processes. Methods of solution the
minimax-robust estimation problems for vector-valued stationary processes were developed by Moklyachuk and
Masyutka [23] - [28]. Analogous minimax estimation problems (extrapolation, interpolation and filtering) for linear
functionals which depend on unknown values of periodically correlated stochastic processes were investigated
by Dubovets’ka and Moklyachuk [2] - [6]. Minimax-robust extrapolation, interpolation and filtering problems
for random processes and sequences with stationary increments are investigated by Luz and Moklyachuk [13] -
[18]. In particular, solutions to the minimax-robust interpolation problem for stochastic sequences with stationary
increments are proposed in papers [13],[14].

In this paper we investigate the problem of mean-square optimal estimation of the linear functional AT ξ =∫ T

0
a(t)ξ(t)dt that depends on the unknown values of a continuous time random process ξ(t), t ∈ R, with stationary

nth increments from observations of this process at time points t ∈ R \ [0;T ]. Formulas for calculating the value
of the mean-square error and the spectral characteristic of the optimal estimate of the functional AT ξ are derived
under the condition of spectral certainty where spectral density of the process is exactly known. In the case where
spectral density is not known, but a set of admissible spectral densities is available, relations which determine
least favourable spectral densities and the minimax-robust spectral characteristics for different classes of spectral
densities are specified.

2. Stationary increment random process. Spectral representation

In this section we present a brief review of spectral properties of random processes with stationary increment. For
more detailed information see articles and books [30], [31], [36] – [38].

Definition 1
For a given random process {ξ(t), t ∈ R} the process

ξ(n)(t, τ) = (1−Bτ )
nξ(t) =

n∑
l=0

(−1)lCl
nξ(t− lτ), (1)

where Bτ is a backward shift operator with a step τ ∈ R such that Bτξ(t) = ξ(t− τ), is called random nth
increment process with step τ ∈ R.

The random nth increment process ξ(n)(t, τ) satisfies the relations

ξ(n)(t,−τ) = (−1)nξ(n)(t+ nτ, τ), (2)

ξ(n)(t, kτ) =
∑(k−1)n

l=0
Alξ

(n)(t− lτ, τ), ∀k ∈ N, (3)

with coefficients {Al, l = 0, 1, 2, . . . , (k − 1)n} determined from the representation

(1 + x+ . . .+ xk−1)n =

(k−1)n∑
l=0

Alx
l.

Definition 2
The random nth increment process ξ(n)(t, τ) generated by a random process {ξ(t), t ∈ R} is wide sense stationary
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32 MINIMAX INTERPOLATION PROBLEM FOR RANDOM PROCESSES

if the mathematical expectations
Eξ(n)(t0, τ) = c(n)(τ),

Eξ(n)(t0 + t, τ1)ξ
(n)(t0, τ2) = D(n)(t, τ1, τ2)

exist for all t0, τ, t, τ1, τ2 and do not depend on t0. The function c(n)(τ) is called the mean value of the nth increment
process and the function D(n)(t, τ1, τ2) is called the structural function of the stationary nth increment process (or
the structural function of nth order of the random process {ξ(t), t ∈ R}).

The random process {ξ(t), t ∈ R} which determines the stationary nth increment process ξ(n)(t, τ) by formula
(1) is called random process with stationary nth increments.

Theorem 1
The mean value c(n)(τ) and the structural function D(n)(t, τ1, τ2) of a random stationary nth increment process
ξ(n)(t, τ) can be represented in the following forms

c(n)(τ) = cτn, (4)

D(n)(t, τ1, τ2) =

∫ ∞

−∞
eiλt(1− e−iτ1λ)n(1− eiτ2λ)n

(1 + λ2)n

λ2n
dF (λ), (5)

where c is a constant, F (λ) is a left-continuous nondecreasing bounded function with F (−∞) = 0. The constant c
and the spectral function F (λ) are determined uniquely by the increment process ξ(n)(t, τ).

On the other hand, a function c(n)(τ) which has form (4) with a constant c and a function D(n)(t, τ1, τ2) which
has form (5) with a function F (λ) which satisfies the indicated conditions are the mean value and the structural
function of some stationary nth increment process ξ(n)(t, τ).

Using representation (5) of the structural function of the stationary nth increment process ξ(n)(t, τ) and the
Karhunen theorem (see Karhunen [10]), we get the following spectral representation of the stationary nth increment
process ξ(n)(t, τ):

ξ(n)(t, τ) =

∫ ∞

−∞
eitλ(1− e−iλτ )n

(1 + iλ)n

(iλ)n
dZ(λ), (6)

where Z(λ) is a random process with independent increments on R connected with the spectral function F (λ) by
the relation

E|Z(t2)− Z(t1)|2 = F (t2)− F (t1) < ∞ for all t2 > t1. (7)

In the following we will consider increments ξ(n)(t, τ) with step τ > 0 and mean value 0.

3. Interpolation problem

Consider a random process {ξ(t), t ∈ R} which determines a stationary nth increment ξ(n)(t, τ) with an absolutely
continuous spectral function F (λ) which has spectral density f(λ) satisfying the minimality conditions:∫ +∞

−∞

|γ(λ)|2

f(λ)
dλ < ∞,

∫ +∞

−∞

|γ(λ)|2λ2n

|1− eiλτ |2n(1 + λ2)nf(λ)
dλ < ∞ (8)

for all non-zero function of the exponential type γ(λ) =
∫ T+τn

0
α(t)eiλtdt.

Suppose that we observe values of the process ξ(t) at time points t ∈ R \ [0, T ]. The interpolation problem
consists in finding the mean-square optimal linear estimate of the functional AT ξ =

∫ T

0
a(t)ξ(t)dt which depends

on the unknown values of the considered process ξ(t). Denote this estimate by ÂT ξ.
In this article we use an approach to solution the interpolation problem which consists in representation of the

functional AT ξ =
∫ T

0
a(t)ξ(t)dt as a difference of two functionals, one of which depends on increments ξ(n)(t, τ),

t > 0, for a fixed τ > 0, and the other one depends on the observed values of the process ξ(t). Such a representation,
which is obtained in [16], is described in the following lemma.
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Lemma 1
The linear functional AT ξ =

∫ T

0
a(t)ξ(t)dt admits the representation

AT ξ = BT ξ − VT ξ,

BT ξ =

∫ T

0

bτ,T (t)ξ
(n)(t, τ)dt, VT ξ =

∫ 0

−τn

vτ,T (t)ξ(t)dt,

vτ,T (t) =

min{[T−t
τ ],n}∑

l=[− t
τ ]

′

(−1)lCl
nbτ,T (lτ + t), t ∈ [−τn; 0), (9)

bτ,T (t) =

[T−t
τ ]∑

k=0

a(t+ τk)d(k) = Dτ
Ta(t), t ∈ [0;T ], (10)

where [x]′ denotes the least integer number among numbers greater than or equal to x, {d(k) : k ≥ 0} are

coefficients determined by the relation
∑∞

k=0 d(k)x
k =

(∑∞
j=0 x

j
)n

, Dτ
T is a linear transformation which acts

on arbitrary function x(t), t ∈ [0, T ], in the following way:

Dτ
Tx(t) =

[T−t
τ ]∑

k=0

x(t+ τk)d(k).

Having observations of the random process ξ(t) at time points t ∈ R \ [0;T ] we get values of the increment
process ξ(n)(t, τ) at points t ∈ R \ [0;T + τn] by formula (1) and construct a mean-square optimal estimate B̂T ξ
of the functional BT ξ based on these observations. We conclude from Lemma 1 that

ÂT ξ = B̂T ξ − VT ξ, (11)

and the mean square errors ∆(f, ÂT ξ) = E
∣∣∣AT ξ − ÂT ξ

∣∣∣2 and ∆(f, B̂T ξ) = E
∣∣∣BT ξ − B̂T ξ

∣∣∣2 of the estimates ÂT ξ

and B̂T ξ satisfy the following equalities

∆(f, ÂT ξ) = E
∣∣∣AT ξ − ÂT ξ

∣∣∣2 = E
∣∣∣AT ξ + VT ξ − B̂T ξ

∣∣∣2 = E
∣∣∣BT ξ − B̂T ξ

∣∣∣2 = ∆(f, B̂T ξ).

So we have to find the optimal estimate B̂T ξ of the linear functional BT ξ in order to solve the interpolation problem
for the linear functional AT ξ.

Every linear estimate B̂T ξ of the linear functional BT ξ admits the spectral representation

B̂T ξ =

∫ +∞

−∞
hτ (λ)dZ(λ), (12)

where hτ (λ) is the spectral characteristic of the estimate. This spectral characteristic can be found by using the
Hilbert space orthogonal projection method proposed by Kolmogorov [12].

Let us define some spaces associated with the increment process ξ(n)(t, τ). Let H0−(ξ
(n)
τ ) denote a closed

linear subspace in the space H = L2(Ω,F , P ) of second order random variables generated by nth increments
{ξ(n)(t, τ) : t < 0} and let HT+(ξ

(n)
−τ ) denote a closed linear subspace in the space H = L2(Ω,F , P ) generated by

nth increments {ξ(n)(t,−τ) : t > T}. It follows from the equality

eiλt(1− eiλτ )n = (−1)neiλ(t+τn)(1− e−iλτ )n
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34 MINIMAX INTERPOLATION PROBLEM FOR RANDOM PROCESSES

that ξ(n)(t,−τ) = (−1)nξ(n)(t+ τn, τ). Therefore, HT+(ξ
(n)
−τ ) = H(T+τn)+(ξ

(n)
τ ). Let us define subspaces

L0−
2 (f) and LT+

2 (f) of the Hilbert space L2(f) which are generated by the sets of functions{
eiλt(1− e−iλτ )n

(1 + iλ)n

(iλ)n
: t < 0

}
and

{
eiλt(1− e−iλτ )n

(1 + iλ)n

(iλ)n
: t > T

}
.

It follows from formula (6) that we have one to one correspondence between elements ξ(n)(t, τ) from the space

H and elements eiλt(1− e−iλτ )n
(1 + iλ)n

(iλ)n
from the space L2(f).

In terms of the defined Hilbert spaces the optimal linear estimate B̂T ξ is a projection of the element BT ξ of
the space H = L2(Ω, F, P ) on the subspace H0−(ξ

(n)
τ )⊕HT+(ξ

(n)
−τ ) = H0−(ξ

(n)
τ )⊕H(T+τn)+(ξ

(n)
τ ) generated

by observations of the process ξ(t). Due to the isometry between the spaces H and L2(f) it is enough to find the
spectral characteristic hτ (λ) ∈ L0−

2 (f)⊕ L
(T+τn)+
2 (f) of the projection B̂T ξ. Properties of orthogonal projections

in Hilbert spaces give us two conditions determining the spectral characteristic hτ (λ) :

1) hτ (λ) ∈ L0−
2 (f)⊕ L

(T+τn)+
2 (f);

2)
(
Bτ

T (λ)(1− e−iλτ )n
(1 + iλ)n

(iλ)n
− hτ (λ)

)
⊥ L0−

2 (f)⊕ L
(T+τn)+
2 (f), where

Bτ
T (λ) =

∫ T

0

bτ (t)e
iλtdt.

The second condition implies that for all t < 0 and for all t > T + τn the function hτ (λ) satisfies the equality∫ +∞

−∞

(
Bτ

T (λ)(1− e−iλτ )n
(1 + iλ)n

(iλ)n
− hτ (λ)

)
e−iλt(1− eiλτ )n

(1− iλ)n

(−iλ)n
f(λ)dλ = 0. (13)

Define the function

Cτ
T (λ) =

(
Bτ

T (λ)(1− e−iλτ )n
(1 + iλ)n

(iλ)n
− hτ (λ)

)
(1− eiλτ )n(1− iλ)n

(−iλ)n
f(λ), λ ∈ R

and its Fourier transformation

cτ (t) =

∫ ∞

−∞
Cτ

T (λ)e
−iλtdλ, t ∈ R.

It comes from condition (13) that the function cτ (t) equals to 0 outside the interval [0;T + τn]. Therefore,

Cτ
T (λ) =

∫ T+τn

0

cτ (t)e
iλtdt,

and the spectral characteristic hτ (λ) of the estimate B̂T ξ can be represented as

hτ (λ) = Bτ
T (λ)(1− e−iλτ )n

(1 + iλ)n

(iλ)n
− (−iλ)nCτ

T (λ)

(1− iλ)n(1− eiλτ )nf(λ)
.

Condition 1) implies the following representation of the spectral characteristic hτ (λ):

hτ (λ) = h(λ)(1− e−iλτ )n
(1 + iλ)n

(iλ)n
, h(λ) =

∫ 0

−∞
s1(t)e

iλtdt+

∫ ∞

T+τn

s2(t)e
iλtdt,

for some functions s1(t) ∈ L0−
2 and s2(t) ∈ L

(T+τn)+
2 as well as conditions∫ +∞

−∞
|hτ (λ)|2f(λ)dλ < ∞,

(iλ)nhτ (λ)

(1 + iλ)n(1− e−iλτ )n
∈ L0−

2 ⊕ L
(T+τn)+
2 .
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From this reasoning it follows that∫ +∞

−∞

(
Bτ

T (λ)−
λ2nCτ

T (λ)

|1− eiλτ |2n(1 + λ2)nf(λ)

)
e−iλsdλ = 0, s ∈ [0;T + τn]. (14)

Formula (10) determines a function bτ (t) = bτ (t) for t ∈ [0;T ]. Put bτ (t) = 0 for t ∈ (T ;T + τn]. Then formula
(14) implies the following equation that determines the unknown function cτ (t), t ∈ [0;T + τn]:

bτ (t) =

∫ T+τn

0

cτ (s)

∫ +∞

−∞
eiλ(s−t) λ2n

|1− eiλτ |2n(1 + λ2)nf(λ)
dλds, t ∈ [0;T + τn]. (15)

Assume that the linear bounded operator Fτ
T+τn ∈ L2([0;T + τn]) defined by the formula

(Fτ
T+τncτ )(t) =

∫ T+τn

0

cτ (s)

∫ +∞

−∞

eiλ(s−t)λ2n

|1− eiλτ |2n(1 + λ2)nf(λ)
dλds, t ∈ [0;T + τn],

has an inverse operator. In this case equation (15) has a solution

cτ (t) = ((Fτ
T+τn)

−1bτ )(t), t ∈ [0;T + τn],

and the spectral characteristic hτ (λ) of the optimal estimate B̂T ξ of the functional BT ξ is calculated by the formula

hτ (λ) = Bτ
T (λ)(1− e−iλτ )n

(1 + iλ)n

(iλ)n
− (−iλ)nCτ

T (λ)

(1− eiλτ )n(1− iλ)nf(λ)
, (16)

Cτ
T (λ) =

∫ T+τn

0

((Fτ
T+τn)

−1bτ )(t)e
iλtdt.

The value of the mean-square error of the estimate is calculated by the formula

∆(f, B̂T ξ) =
1

2π

∫ +∞

−∞

λ2n |Cτ
T (λ)|

2

|1− eiλτ |2n(1 + λ2)nf(λ)
dλ = ⟨(Fτ

T+τn)
−1bτ ,bτ ⟩. (17)

Summarizing our reasoning we come to conclusion that the following theorem holds true.

Theorem 2
Let {ξ(t), t ∈ R} be a continuous time random process with stationary nth increments ξ(n)(t, τ) which has spectral
density f(λ) satisfying the minimality conditions (8). The optimal linear estimate B̂T ξ of the functional BT ξ which
is determined by unknown values ξ(n)(t, τ), t ∈ [0;T ], τ > 0, from observations of the process ξ(t) at time points
t ∈ R \ [0;T ] is determined by formula (12). The spectral characteristic hτ (λ) and the value of the mean-square
error ∆(f, B̂T ξ) of the optimal estimate B̂T ξ are calculated by formulas (16) and (17).

Formula (11) and Theorem 2 allow us to find the optimal estimate

ÂT ξ = −
∫ 0

−τn

vτ,T (t)ξ(t)dt+

∫ +∞

−∞
h(a)
τ (λ)dZ(λ) (18)

of the functional AT ξ. Define the function a(t) on the interval [(0;T + τn] in the following way: a(t) = a(t),
t ∈ [0;T ], and a(t) = 0, t ∈ (T ;T + τn]. After putting the function bτ (t) = Dτ

Ta(t), t ∈ [0;T + τn], into relations
(16) and (17) we obtaine the following formulas for calculating the spectral characteristic and the value of the
mean-square error of the estimate ÂT ξ:

h(a)
τ (λ) = AT (λ)(1− e−iλτ )n

(1 + iλ)n

(iλ)n
−

(−iλ)nCτ,a
T (λ)

(1− eiλτ )n(1− iλ)nf(λ)
, (19)
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where

AT (λ) =

∫ T

0

Dτ
Ta(t)e

iλtdt, Cτ,a
T (λ) =

∫ T+τn

0

((Fτ
T+τn)

−1Dτ
Ta)(t)e

iλtdt,

∆(f, ÂT ξ) =
1

2π

∫ +∞

−∞

λ2n |Cτ,a
T (λ)|2

|1− eiλτ |2n(1 + λ2)nf(λ)
dλ = ⟨(Fτ

T+τn)
−1Dτ

Ta,D
τ
Ta⟩. (20)

These reasons give us a possibility to conclude that the following theorem holds true.

Theorem 3
Let {ξ(t), t ∈ R} be a random process with stationary nth increments ξ(n)(t, τ) which has spectral density f(λ)

satisfying the minimality conditions (8). Then the optimal linear estimate ÂT ξ of the functional AT ξ which
depends on unknown values ξ(t), t ∈ [0;T ], from observations of the process ξ(t) at time points t ∈ R \ [0;T ]
is determined by formula (18), where the function vτ,T (t), t ∈ [−τn; 0), τ > 0, is calculated by formula (9). The
spectral characteristic h

(a)
τ (λ) of the optimal estimate ÂT ξ is calculated by formula (19). The value of the mean-

square error ∆(f, ÂT ξ) of the estimate is calculated by formula (20).

As a matter of fact, Theorems 2 and 4 let us obtain more general result than the one given in Theorem 4. Consider
the functional

AT+τnξ =

∫ T+τn

0

aα(t)ξ(t)dt,

where the function aα(t) on the interval [0;T + τn] is defined in the following way: aα(t) = a(t) t ∈ [0;T ], a(t)
is a given function, and aα(t) = α(t), t ∈ (T ;T + τn], α(t) is an arbitrary function. The following representations
hold true:

AT+τnξ = Bτ,T+τnξ − Vτ,T+τn =

=

∫ T+τn

0

bτ,T+τn(t;α)ξ
(n)(t, τ)dt−

∫ 0

−τn

vτ,T+τn(t;α)ξ(t)dt,

AT ξ = −
∫ T+τn

T

α(t)ξ(t)dt−
∫ 0

−τn

vτ,T+τn(t;α)ξ(t)dt+Bτ,T+τnξ,

where the functions vτ,T+τn(t;α),t ∈ [0;T + τn], and bτ,T+τn(t;α), t ∈ [0;T + τn], are defined by formulas (9)
and (10). Since we know values of the process ξ(t) at points t ∈ [−τn; 0) and t ∈ (T ;T + τn], we have the
following relation

∆(f, ÂT ξ) = E|AT ξ − ÂT ξ|2 = E|BT+τnξ − B̂T+τnξ|2 = ∆(f, B̂T+τnξ).

For these reasons the optimal estimate ÂT ξ of the functional AT ξ can be calculated by the formula

ÂT ξ = −
∫ T+τn

T

α(t)ξ(t)dt−
∫ 0

−τn

vτ,T+τn(t;α)ξ(t)dt+

∫ +∞

−∞
h(a,α)
τ (λ)dZ(λ). (21)

The spectral characteristic h(a,α)
τ (λ) and the value of the mean-square error ∆(f, ÂT ξ) of the optimal estimate ÂT ξ

are calculated by the formulas

h(a,α)
τ (λ) = AT+τn(λ)(1− e−iλτ )n

(1 + iλ)n

(iλ)n
−

(−iλ)nCτ,a,α
T+τn(λ)

(1− eiλτ )n(1− iλ)nf(λ)
, (22)

where

AT+τn(λ) =

∫ T+τn

0

Dτ
T+τna

α(t)eiλtdt,

Cτ,a,α
T+τn(λ) =

∫ T+τn

0

((Fτ
T+τn)

−1Dτ
T+τna

α)(t)eiλtdt,

Stat., Optim. Inf. Comput. Vol. 3, March 2015



M. LUZ AND M. MOKLYACHUK 37

∆(f, ÂT ξ) =
1

2π

∫ +∞

−∞

λ2n
∣∣Cτ,a,α

T+τn(λ)
∣∣2

|1− eiλτ |2n(1 + λ2)nf(λ)
dλ = ⟨(Fτ

T+τn)
−1Dτ

T+τna
α,Dτ

T+τna
α⟩. (23)

The following statement holds true.

Theorem 4
Let {ξ(t), t ∈ R} be a random process with stationary nth increments ξ(n)(t, τ) which has spectral density
f(λ) satisfying the minimality conditions (8). For a given function a(t), t ∈ [0;T ], and arbitrary function α(t),
t ∈ (T ;T + τn], τ > 0, the optimal linear estimate ÂT ξ of the functional AT ξ which depends on unknown values
ξ(t), t ∈ [0;T ], from observations of the process ξ(t) at time points t ∈ R \ [0;T ] is determined by formula
(21), where the function vτ,T+τn(t), t ∈ [−τn; 0), is calculated by formulas (9), (10). The spectral characteristic
h
(a,α)
τ (λ) of the optimal estimate ÂT ξ is calculated by formula (22). The value of the mean-square error ∆(f, ÂT ξ)

is calculated by formula (23).

4. Minimax-robust method of interpolation

The value of the mean-square error ∆(h
(a,α)
τ (f); f) := ∆(f, ÂT ξ) and the spectral characteristic h

(a,α)
τ of the

optimal estimate ÂT ξ of the functional AT ξ that depends on unknown values of the random process ξ(t) with nth
stationary increments can be calculated by formulas (22) and (23) if we know the spectral density f(λ) of the
random process ξ(t). In practice, however, complete information on the spectral density of the random process is
impossible in most cases, but, instead, we can obtain a set D of admissible spectral densities. In this case we can
apply the minimax-robust method of estimation to the interpolation problem. This method gives us a possibility to
find an estimate that minimizes the maximum of mean-square errors for all spectral densities from the given set D
of admissible spectral densities simultaneously.

Definition 3
For a given class of spectral densities D the spectral densitiy f0(λ) ∈ D is called least favourable in the class D for
the optimal linear interpolation of the functional AT ξ if the following relation holds true

∆(f0) = ∆(h(a,α)
τ (f0); f0) = max

f∈D
∆(h(a,α)

τ (f); f).

Definition 4
For a given class of spectral densities D the spectral characteristic h0(λ) of the optimal linear estimate of the
functional AT ξ is called minimax-robust if

h0(λ) ∈ HD =
∩
f∈D

L0−
2 (f)⊕ L

(T+τn)+
2 (f),

min
h∈HD

max
f∈D

∆(h; f) = sup
f∈D

∆(h0; f).

The following lemma is a consequence of Theorem 4 and the former definition.

Lemma 2
Spectral density f0 ∈ D which satisfies the minimality conditions (8) is least favourable in the class D for the
optimal linear interpolation of the functional AT ξ if the operator (Fτ

T+τn)
0 determined by the Fourier coefficients

of the function
λ2n

|1− eiλτ |2n(1 + λ2)nf0(λ)
,

is a solution of the conditional extremum problem

max
f∈D

⟨(Fτ
T+τn)

−1Dτ
T+τna

α,Dτ
T+τna

α⟩ = ⟨((Fτ
T+τn)

0)−1Dτ
T+τna

α,Dτ
T+τna

α⟩. (24)

Stat., Optim. Inf. Comput. Vol. 3, March 2015



38 MINIMAX INTERPOLATION PROBLEM FOR RANDOM PROCESSES

Under the condition h
(a,α)
τ (f0) ∈ HD the minimax-robust spectral characteristic of the optimal linear estimate

of the functional AT ξ is defined by the relation h0 = h
(a,α)
τ (f0).

The minimax-robust spectral characteristic h0 and least favourable spectral density f0 form a saddle point of the
function ∆(h; f) on the set HD ×D. The saddle point inequalities

∆(h; f0) ≥ ∆(h0; f0) ≥ ∆(h0; f) ∀f ∈ D, ∀h ∈ HD

hold true if h0 = h
(a,α)
τ (f0) and h

(a,α)
τ (f0) ∈ HD, where the function f0 is a solution of the conditional extremum

problem
∆̃(f) = −∆(h(a,α)

τ (f0); f) → inf, f ∈ D, (25)

∆(h(a,α)
τ (f0); f) =

=
1

2π

∫ +∞

−∞

∣∣∣∣∣
∫ T+τn

0

(((Fτ
T+τn)

0)−1Dτ
T+τna

α)(t)eiλtdt

∣∣∣∣∣
2

λ2nf−2
0 (λ)

|1− eiλτ |2n(1 + λ2)n
f(λ)dλ.

Conditional extremum problem (25) is equivalent to the unconditional extremum problem

∆D(f) = ∆̃(f) + δ(f |D) → inf,

where δ(f |D) is the indicator function of the set D. Solution f0 to this unconditional extremum problem is
characterized by the condition 0 ∈ ∂∆D(f0) [32], [29], where ∂∆D(f0) is a subdifferential of the functional
∆D(f). In the following sections we obtained formulas which gives us a method of description of the least
favourable spectral densities in some classes of admissible densities.

5. Least favourable spectral density in the class D0

Consider the following class of admissible spectral densities

D0 =

{
f(λ)| 1

2π

∫ +∞

−∞
f(λ)dλ ≤ P

}
.

Let us assume that f0(λ) ∈ D0 and the function

hf (f0) =

∣∣∣∣∣
∫ T+τn

0

(((Fτ
T+τn)

0)−1Dτ
T+τna

α)(t)eiλtdt

∣∣∣∣∣ λnf−1
0 (λ)

|1− eiλτ |n|1 + iλ|n
(26)

is bounded. Then the condition 0 ∈ ∂∆D(f0) obtained in the previous section implies the following equality which
determines the least favourable spectral density:∣∣∣∣∣

∫ T+τn

0

(((Fτ
T+τn)

0)−1Dτ
T+τna

α)(t)eiλtdt

∣∣∣∣∣ = βf0(λ)|λ|−n|1− eiλτ |n|1 + iλ|n,

where β ≥ 0 is a constant such that β ̸= 0 in the case where
∫ +∞
−∞ f0(λ)dλ = 2πP .

Summing up the results described above we can formulate the following statement.

Theorem 5
Let spectral density f0(λ) ∈ D0 satisfy the minimality conditions (8) and let the function hf (f0) defined by formula
(26) be bounded. Then for a given function a(t), t ∈ [0;T ] and an arbitrary function α(t), t ∈ (T ;T + τn], the
spectral density f0(λ) is least favourable in the class D0 for the optimal interpolation of the functional AT ξ from
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observations of the random process ξ(t) at time points t ∈ R \ [0;T ] if it is of the form

f0(λ) =
|λ|nβ−1

∣∣Cτ,a,α
T+τn(λ)

∣∣
|1− eiλτ |n|1 + iλ|n

and f0(λ) is a solution to conditional extremum problem (24). The minimax-robust spectral characteristic h0 =

h
(a,α)
τ (f0) of the optimal estimate ÂT ξ of the functional AT ξ is calculated by formula (22).

6. Least favourable spectral density in the class Du
v

In this section let us consider the minimax-robust interpolation problem for the functional AT ξ in the case where
the class of admissible spectral densities is defined as follows:

Du
v =

{
f(λ)|v(λ) ≤ f(λ) ≤ u(λ),

1

2π

∫ +∞

−∞
f(λ)dλ ≤ P

}
,

where spectral densities u(λ) and v(λ) are known, fixed and bounded.
Let us assume that the spectral density f0(λ) ∈ Du

v determines a bounded function hf (f0) by formula (26). It
comes from the condition f0 ∈ ∂∆D(f0) that the least favourable spectral density satisfies the equation∣∣∣∣∣

∫ T+τn

0

(((Fτ
T+τn)

0)−1Dτ
T+τna

α)(t)eiλtdt

∣∣∣∣∣ = f0(λ)(γ1(λ) + γ2(λ) + β)

|λ|n|1− eiλτ |−n|1 + iλ|−n
, (27)

where γ1(λ) ≤ 0 and γ1(λ) = 0 in the case where f0(λ) ≥ v(λ); γ2(λ) ≥ 0 and γ2(λ) = 0 in the case where
f0(λ) ≤ u(λ).

The following statement holds true.

Theorem 6
Let spectral density f0(λ) ∈ Du

v satisfy the minimality conditions (8) and let the function hf (f0) determined by
formula (26) be bounded. Then for a given function a(t), t ∈ [0;T ] and an arbitrary function α(t), t ∈ (T ;T + τn],
the spectral density f0(λ) is least favourable in the class Du

v for the optimal interpolation of the functional AT ξ
from observations of the random process ξ(t) at time points t ∈ R \ [0;T ] if it is of the form

f0(λ) = max

{
v(λ),min

{
u(λ),

|λ|nβ−1
∣∣Cτ,a,α

T+τn(λ)
∣∣

|1− eiλτ |n|1 + iλ|n

}}
and f0(λ) is a solution to conditional extremum problem (24). The minimax-robust spectral characteristic h0 =

h
(a,α)
τ (f0) of the optimal estimate ÂT ξ of the functional AT ξ is calculated by formula (22).

7. Least favourable spectral density in the class D2ε

Consider another example of a class of admissible spectral densities, that is the class of densities that describe
an“ε–neighbourhood” in the space L2 of a given spectral density f1(λ):

D2ε =

{
f(λ)| 1

2π

∫ +∞

−∞
|f(λ)− f1(λ)|2dλ ≤ ε

}
.

Let a spectral density f0(λ) ∈ D2ε be such that the function determined by formula (26) is bounded. The
condition f0 ∈ ∂∆D(f0) gives us the equation∣∣∣∣∣

∫ T+τn

0

(((Fτ
T+τn)

0)−1Dτ
T+τna

α)(t)eiλtdt

∣∣∣∣∣
2

=
βf2

0 (λ)(f0(λ)− f1(λ))

|λ|n|1− eiλτ |−n|1 + iλ|−n
, (28)
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where β is a constant. The derived equation (28), extremum condition (24) and the condition

1

2π

∫ +∞

−∞
|f0(λ)− f1(λ)|2dλ = ε (29)

determine the least favourable spectral density f0(λ) ∈ D2ε. Let us present this result as the following statement.

Theorem 7
Let spectral density f0(λ) ∈ D2ε satisfy the minimality conditions (8) and let the function hf (f0) determined by
formula (26) be bounded. Then for a given function a(t), t ∈ [0;T ] and an arbitrary function α(t), t ∈ (T ;T + τn],
the spectral density f0(λ) is least favourable in the class D2ε for the optimal interpolation of the functional
AT ξ from observations of the random process ξ(t) at time points t ∈ R \ [0;T ] if it satisfies relations (28), (29)
and determines a solution to conditional extremum problem (24). The minimax-robust spectral characteristic
h0 = h

(a,α)
τ (f0) of the optimal estimate ÂT ξ of the functional AT ξ is calculated by formula (22).

8. Conclusions

In this article we proposed a solution of the problem of mean-square optimal estimation of the linear functional
AT ξ =

∫ T

0
a(t)ξ(t)dt which depends on the unknown (missed) values of a random process ξ(t) with nth stationary

increments from observations of this process ξ(t) at time points t ∈ R \ [0;T ]. Using Kolmogorov’s Hilbert
space projection method we derived formulas for calculating the value of the mean-square error and the spectral
characteristic of the optimal estimate of the functional AT ξ under the condition that spectral density of the process
is exactly known. In the case where spectral density is not exactly known, but a set of admissible spectral densities
is available, we applied the minimax-robust method of interpolation which provided us relations determining least
favourable spectral densities and minimax-robust spectral characteristics of the optimal estimates of the functional
AT ξ for different classes of spectral densities.
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10. K. Karhunen, Über lineare Methoden in der Wahrscheinlichkeitsrechnung, Annales Academiae Scientiarum Fennicae. Ser. A I, vol.

37, 1947.
11. S. A. Kassam and H. V. Poor, Robust techniques for signal processing: A survey, Proceedings of the IEEE, vol. 73, no. 3, pp.

433–481, 1985.
12. A. N. Kolmogorov, Selected works by A. N. Kolmogorov. Vol. II: Probability theory and mathematical statistics. Ed. by A. N.

Shiryayev. Mathematics and Its Applications. Soviet Series. 26. Dordrecht etc. Kluwer Academic Publishers, 1992.
13. M. M. Luz and M. P. Moklyachuk, Interpolation of functionals of stochastic sequences with stationary increments, Theory Probab.

Math. Stat., vol. 87, pp. 117–133, 2013.
14. M. M. Luz and M. P. Moklyachuk, Interpolation of functionals of stochastic sequences with stationary increments for observations

with noise, Prykl. Stat., Aktuarna Finans. Mat., no. 2, pp. 131–148, 2012.
15. M. M. Luz and M. P. Moklyachuk, Minimax-robust filtering problem for stochastic sequence with stationary increments, Theory

Probab. Math. Stat., vol. 89, pp. 127–142, 2014.

Stat., Optim. Inf. Comput. Vol. 3, March 2015



M. LUZ AND M. MOKLYACHUK 41

16. M. Luz and M. Moklyachuk, Robust extrapolation problem for stochastic processes with stationary increments, Mathematics and
Statistics, vol. 2, no. 2, pp. 78–88, 2014.

17. M. Luz and M. Moklyachuk, Minimax-robust filtering problem for stochastic sequences with stationary increments and cointegrated
sequences, Statistics, Optimization & Information Computing, vol. 2, no. 3, pp. 176–199, 2014.

18. M. Moklyachuk and M. Luz, Robust extrapolation problem for stochastic sequences with stationary increments, Contemporary
Mathematics and Statistics, vol. 1, no. 3, pp. 123–150, 2013.

19. M. P. Moklyachuk, Minimax extrapolation and autoregressive-moving average processes, Theory Probab. Math. Stat., vol. 41, pp.
77–84, 1990.

20. M. P. Moklyachuk, Robust procedures in time series analysis, Theory of Stochastic Processes, vol. 6, no. 3-4, pp. 127-147, 2000.
21. M. P. Moklyachuk, Game theory and convex optimization methods in robust estimation problems, Theory of Stochastic Processes,

vol. 7, no. 1-2, pp. 253–264, 2001.
22. M. P. Moklyachuk, Robust estimations of functionals of stochastic processes, Kyiv University, Kyiv, 2008.
23. M. Moklyachuk and A. Masyutka, Extrapolation of multidimensional stationary processes, Random Operators and Stochastic

Equations, vol. 14, no. 3, pp.233–244, 2006.
24. M. Moklyachuk and A. Masyutka, Robust estimation problems for stochastic processes, Theory of Stochastic Processes, vol. 12,

no. 3-4, pp. 88–113, 2006.
25. M. Moklyachuk and A. Masyutka, Robust filtering of stochastic processes, Theory of Stochastic Processes, vol. 13, no. 1-2, pp.

166–181, 2007.
26. M. Moklyachuk and A. Masyutka, Minimax prediction problem for multidimensional stationary stochastic sequences, Theory of

Stochastic Processes, vol. 14, no. 3-4, pp. 89–103, 2008.
27. M. Moklyachuk and A. Masyutka, Minimax prediction problem for multidimensional stationary stochastic processes,

Communications in Statistics – Theory and Methods., vol. 40, no. 19-20, pp. 3700–3710, 2001.
28. M. Moklyachuk and O. Masyutka, Minimax-robust estimation technique for stationary stochastic processes, LAP LAMBERT

Academic Publishing, 2012.
29. M. P. Moklyachuk, Nonsmooth analysis and optimization, Kyiv University, Kyiv, 2008.
30. M. S. Pinsker and A. M. Yaglom, On linear extrapolation of random processes with nth stationary increments, Doklady Akademii

Nauk SSSR, vol. 94, pp. 385–388, 1954.
31. M. S. Pinsker, The theory of curves with nth stationary increments in Hilber spaces, Izvestiya Akademii Nauk SSSR. Ser. Mat.,

vol. 19, no. 5, pp. 319–344, 1955.
32. B. N. Pshenichnyi, Necessary conditions of an extremum, “Nauka”, Moskva, 1982.
33. Yu. A. Rozanov, Stationary stochastic processes. 2nd rev. ed., “Nauka”, Moskva, 1990.
34. K. S. Vastola and H. V. Poor, An analysis of the effects of spectral uncertainty on Wiener filtering, Automatica, vol. 28, pp. 289–293,

1983.
35. N. Wiener, Extrapolation, interpolation and smoothing of stationary time series. With engineering applications, The M. I. T. Press,

Massachusetts Institute of Technology, Cambridge, Mass., 1966.
36. A. M. Yaglom, Correlation theory of stationary and related random functions. Vol. 1: Basic results, Springer Series in Statistics,

Springer-Verlag, New York etc., 1987.
37. A. M. Yaglom, Correlation theory of stationary and related random functions. Vol. 2: Supplementary notes and references, Springer

Series in Statistics, Springer-Verlag, New York etc., 1987.
38. A. M. Yaglom, Correlation theory of stationary and related random processes with stationary nth increments, Mat. Sbornik, vol.

37, no. 1, pp. 141–196, 1955.
39. A. M. Yaglom, Some classes of random fields in n-dimensional space related with random stationary processes, Teor. Veroyatn.

Primen., vol. 11, no. 3, pp. 292–337, 1957.

Stat., Optim. Inf. Comput. Vol. 3, March 2015


