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Abstract Bird Mating Optimizer (BMO) is a novel meta-heuristic optimization algorithm inspired by intelligent mating
behavior of birds. However, it is still insufficient in convergence of speed and quality of solution. To overcome these
drawbacks, this paper proposes a hybrid algorithm (TLBMO), which is established by combining the advantages of Teaching-
learning-based optimization (TLBO) and Bird Mating Optimizer (BMO). The performance of TLBMO is evaluated on 23
benchmark functions, and compared with seven state-of-the-art approaches, namely BMO, TLBO, Artificial Bee Bolony
(ABC), Particle Swarm Optimization (PSO), Fast Evolution Programming (FEP), Differential Evolution (DE), Group Search
Optimization (GSO). Experimental results indicate that the proposed method performs better than other existing algorithms
for global numerical optimization.
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1. Introduction

As an open and demanding problem, global numerical optimization is of a great importance in various real-
word areas. Since a great number of science, engineering and geography problems could be formulated as
optimization problems, the efficient and optimization algorithms are always needed to tackle increasingly complex
actual problems. Generally speaking, these algorithms can mainly be classified into two categories: traditional
techniques and modern heuristic methods. Traditional approaches have been used to solve many practical
problems successfully. However, the real-world problems are becoming more and more complex. The large scale
optimization issues are associated with multimodality, differentiability and dimensionality. It is too difficult to
search the exact optimal value by using traditional algorithms. Thus, modern heuristic techniques with simple and
powerful search capabilities aroused the attention of scholars, such as ant colony optimization [1], differential
evolution [2], particle swarm optimization [3], simulated annealing [4], artificial bee colony [5] and group search
optimizer [6] etc. It has been proved that they are more efficient than traditional techniques in various application
fields.

Recently, A. Askarzadeh have been proposed a bird mating optimizer (BMO) algorithm based on bird mating
phenomenon [7]. Bird mating process is similar to an optimization process in which each bird attempts to breed a
quality brood as much as possible. Using distinct patterns to move though the search space is the main difference
between BMO and other intelligence algorithms. This feature helps to avoid premature convergence and maintain
population diversity. Thus, BMO with simple concept and easy implementation has been successfully applied to
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solve different complicated problems. The problem of artificial neural network (ANN) training is solved by BMO,
and this method yields better results than the other classifiers [8]. BMO method is proved to be an efficient candidate
for estimating the unknown parameters of fuel cell polarization curve [9]. An efficient parameter estimation process
is provided by BMO, and the better performance results in gaining the coordinates of the maximum power point
(MPP) more accurately [10]. Parameter identification of FC models is solved based on BMO algorithm. Simulation
results demonstrate the superior performance of it [11].

BMO algorithm shows promising performance in solving optimization problems. However, it is not efficient
in identifying the high performance regions of a solution space. For some complicated problems, BMO shows
premature convergence or poor efficiency. Teaching-Learning-Based optimization (TLBO) with fast speed has
been widely used to solve kinds of optimization problems successfully [12, 13, 14, 15, 16]. Hence, an effective
hybrid algorithm with the advantages of TLBO and BMO, named TLBMO, is proposed to improve solution quality
and accelerate the convergence speed. In TLBMO, the two operators of BMO and TLBO are chosen as candidates.
Each individual in the current population selects one of them based on probability proportional and generates new
potential solutions. In addition, a calculation formula of probability is developed empirically. Five performance
criteria are adopted to compare our technique with other existing approaches.

The rest of this paper is organized as follows. Bird mating optimizer algorithm is indicated in Section 2. Section
3 shortly summarizes the original TLBO. Our proposed approach is described in detail in Section 4. Numerical
simulation results are given in Section 5. Finally, conclusion is presented in Section 6.

2. Bird Mating Optimizer Algorithm

BMO is a population-based and evolutionary-based algorithm. The population is called society. Each society
member represents a feasible solution, is called bird. Males and females are the main components of the society.
The females with the most promising genes, contains parthenogenetic and polyandrous. The males are categorized
into three unequal components, namely, monogamous, polygynous and promiscuous. In total, BMO possesses five
updating patterns, they are explained below in detail.

Monogamy is a mating system that a male bird only mates with a female one. Each monogamous bird selects its
interesting female from parthenogenetic and polyandrous by a probabilistic approach and mates with her. The new
brood is calculated as follows:

xbrood = x+ ω ×−→r . × (xi − x)

if r1 > mcf

xbrood(m) = lb(m)− r2 × (lb(m)− ub(m)),

end

(1)

where a 1×D interesting female individual (xi) can influence a 1×D offspring brood (xbrood) to some extent
depending on the time-varying weight (ω),D is the dimension of problem,−→r denotes a 1×D vector which each
element is a random number with uniform distribution between 0 and 1, mcf is the mutation control factor,
distributed between 0 and 1, m is a random number varying 1 and D, ri’s are random numbers in the range [0, 1],
and lb and ub are 1×D vector which each member denotes the lower and upper bounds of the each dimension of
problem, respectively.

Polygamy implies a mating system that each polygynous bird chooses several female individuals as partners and
mates with them. The offspring brood is calculated from the following equation:

xbrood = x+ ω × (

K∑
j=1

−→rj . × (xi
j − x))

if r1 > mcf

xbrood(m) = lb(m)− r2 × (lb(m)− ub(m)),

end

(2)
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where K is the number of female birds, xi
j is the jth female bird.

Polyandry is also a mating system that several monogamous males are selected for each polyandrous bird
probabilistically. The way by which a polygynous bird breeds is same as (2).

Promiscuity denotes another mating system in which one male and multiple females have unstable relationships.
These birds are generated using a chaotic sequence. The way by which a promiscuous bird breeds is same as (1).

Parthenogenesis is the last mating system, means each female can raise brood without the help of males. Each
female’s genes are passed to her brood by making a small change in her genes probabilistically. The resultant brood
is presented as follows:

for i = 1 : D

if r1 > mcfp

xbrood(i) = x(i) +mu× (r2 − r3)× x(i),

end

end

(3)

where mcfp denotes the mutation control factor,mu is the step size.
The steps of BMO are provided as follow:

Initialize the population 

and parameters

Calculate the fitness of 

each individual

Sort individuals

Specify each species

Remove the worst members and 

generate new ones using chaotic 

squence

Specify elite female for each 

monogamous individual and produce 

offspring using Eq. (1)

Specify elite female for each 

polygynous individual and produce 

offspring using Eq. (2)

Specify elite female for each 

polyandrous individual and produce 

offspring using Eq. (2)

Specify elite female for each 

promiscuous individual and produce 

offspring using Eq. (1)

Produce the offspring of each 

parthenogenetic bird using Eq.(3)

Perform replacement 

stage

YES

NO

Start

End

Is  the maximum number of fitness 

evaluations  met ?
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3. Teaching-learning-based optimization

TLBO is a new swarm intelligent optimization algorithm, the algorithm mimics teaching-learning phenomenon in
classroom. The process of the algorithm mainly includes two parts, Teacher Phase and Learner Phase.

Teacher Phase

This phase of TLBO mimics the learning of the students through the teacher.During this phase, the teacher spares
no effort to move on the average results of the entire classroom up to his or her level in terms of knowledge.xnew

and xi denotes 1×D vectors, D is the dimension of problem, the former are generated by the latter using the
following update formula:

xnew = xi + r × (xteacher − Tf × xmean)

Tf = round(1 + rand),
(4)

where r is a random number in the range [0, 1], Tf is a teaching factor that can be either 1 or 2. xteacher and xmean

are 1×D vectors which indicates the best individual and the mean of entire population, respectively.

Learner Phase

This phase means a student increases his or her knowledge with the help of group discussions. Each student
(xi)randomly chooses a classmate (xj , j ̸= i)for enhancing his or her knowledge level if the classmate own more
knowledge than his or her. {

xnew = xi + r × (xj − xi), if f(xj) < f(xi)

xnew = xi + r × (xi − xj), otherwise
(5)

4. TLBMO

4.1. Search strategy

As mentioned before, the core idea of TLBMO is that two evolution strategies, BMO operators and TLBO
mechanisms, are employed to produce new individuals. That is to say, two kinds of strategies can be used for
updating current population. We suppose that Pc is the probability of employing BMO strategy, the other strategy
is employed with the probability of 1− Pc. randi(0, 1) is a random number.If randi(0, 1) is bigger than or equal
to Pc, BMO operator performs. Otherwise, the TLBO strategy will be employed to generate new individual. In this
sense, the abilities of exploration and exploitation are improved effectively.

4.2. Selection probability

The ultimate success of an optimization algorithm depends mostly on its ability to keep a good balance between
exploitation and exploration. This ability helps algorithm to accelerate the convergence speed and improve the
quality of solution. Exploitation means the concentration of the algorithm’s search at the vicinity of current
solutions and exploration refers to generates new solutions in as yet untested regions of search space. If a method
is unable to keep balance between global and local search, it will be stagnation or get trapped in a local optima.

As far as we know that different operator produces different influence on the performance of algorithm. If one
operator is emphasized in same phase, some primary information about solution space may be ignored. In the
beginning, TLBO operator with powerful exploration ability is employed to expand the solution space. Thus, a
larger Pc value is employed, because the higher Pc values, the higher probability of employing TLBO operator.
Thereafter, BMO operator is used to search locally to get the best solution. In order to strengthen the exploitation
ability, the Pc value is decreasing in the evolution process. In general, each individual has different levels of
exploration and exploitation ability in solving various problems.
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Table 1 The pseudo-code of TLBMO method is presented as follows:
Algorithm: TLBMO
Begin

Initialize parameters and halting criterion
Generate and evaluate the initial population x
While(the halting criterion not satisfied)

Sort birds
The promiscuous birds are removed and generated by chaotic sequence
Calculate the probability Pc

For each bird xi of the society
If randi(0, 1) > Pc

BMO strategy is used to the current population
Else

TLBO strategy is applied to the current population
End If

End For
Evaluate and update the offspring

End while
End
Output the obtained global best solution

The selection probability expression is empirically proposed below:

Pc(t) = sin(exp(−3t/T )), (6)

where, t and T denotes the current and the maximum number of iteration, respectively. Figure 1 introduces an
example of Pc assigned for an iteration of 100.
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Figure.1 Probability graph of Pc assigned for an iteration of 100.
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5. Experimental studies

23 benchmark functions are selected to evaluate the performance of TLBMO. A detailed description of these
functions is presented in Table 2. These functions are divided into three classes [17]:
1) Unimodal functions f1 − f7,
2) Basic multimodal functions with several local minima f8 − f13, and
3) Low-dimensional functions with a few local minima f14 − f23.

5.1. Experimental setup

In all experiments, In order to maintain a comparison as fair as possible, the maximum number of fitness
evaluations(MaxFES) is set to D*10000 for each algorithm [22]. Moreover, all experiments are run 50 times
independently. The following parameters are used in this paper:

• The control parameters of the ABC algorithm are provided as follows [5]: population size N=20, number of
onlookers=number of employed bees=0.5*population size, limit=number of onlookers*D.

• The parameter setting of the FEP algorithm is summarized as follows [17]: population size N=100,
tournament size q=10, initial η =3.

• The parameters of GSO follow the suggestions from [6]: population size N=48, initial head angle φ0 = π
4

, the constant α = round(
√
D + 1) , maximum pursuit angle θmax = π

α2 , maximum turning angle αmax =

θmax

2 , the maximum pursuit distance lmax = ∥U −L∥ =

√
n∑

i=1

(Ui −Li)2 , where Ui and Li are the upper

and lower bounds for the ith dimension.
• The parameter of TLBO only requires the population size=50 [15].
• For DE, the following parameters are employed [21]: the mutation strategies: “DE/rand/1”, population

size N=100, differential amplification factor F = 0.5, crossover probability constant CR = 0.9.
• According to [19], the parameters of PSO are set as follows: population size N = 40, positive constant
c1 = c2 = 1.49445, inertia weight wmax = 0.9, wmin = 0.4.

• The same parameters are adopted by BMO [7] and TLBMO: population size N = 200, monogamous=100,
polygynous=60, promiscuous=20, polyandrous=10, parthenogenetic=10, interesting individual=3, the
number of monogamous for polygynous=10, mcf= 0.9, mu= 0.001, wmax= 2.5, wmin= 0.25, mcfpmin=
0.1, mcfpmax= 0.9.

All simulations are implemented on the same platform with Intel Core i5-3210M CPU 2.50GHz, 4G of RAM,
and windows7 with MATLAB R2010a.

5.2. Performance criteria

This paper employs five performance criteria to evaluate the performance of TLBMO. These criteria are introduced
as follows.

• Accuracy [22]: The mathematical expression is

Accuracy = |F (x̂)− F (x∗)| (7)

where x̂ is the best solution found by the algorithm in a run,x∗ is the global optimal solution. The minimum
accuracy is recorded when reaching the maximum number of function evaluation(MaxFES). The average
and standard deviation of the accuracy values are also calculated.

• TestFES [18]: The criteria records the number of fitness evaluations when the value-to-reach (VTR) is
achieved.
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Table 2 the twenty-three benchmark functions used in our study.
Test function D S Minimum

f1(x) =
D∑
i=1

x2
i 30 [−100, 100]D 0

f2(x) =
D∑
i=1

|xi|+
D∏
i=1

|xi| 30 [−10, 10]D 0

f3(x) =
D∑
i=1

(
i∑

j=1

xj)
2 30 [−100, 100]D 0

f4(x) = max
1≤i≤D

{|xi|} 30 [−100, 100]D 0

f5(x) =
D−1∑
i=1

[100(xi+1 − x2
i )

2 + (xi − 1)2] 30 [−30, 30]D 0

f6(x) =
D∑
i=1

(⌊xi + 0.5⌋)2 30 [−100, 100]D 0

f7(x) =
D∑
i=1

ix4
i + random[0, 1) 30 [−1.28, 1.28]D 0

f8(x) =
D∑
i=1

−xi sin(
√

|xi|) 30 [−500, 500]D -12569.5

f9(x) =
D∑
i=1

[x2
i − 10 cos(2πxi) + 10] 30 [−5.12, 5.12]D 0

f10(x) = −20 exp(−0.2

√
1
D

D∑
i=1

x2
i )− exp( 1

D

D∑
i=1

cos 2πxi) + 20 + e 30 [−32, 32]D 0

f11(x) =
1

4000

D∑
i=1

x2
i −

D∏
i=1

cos( xi√
i
) + 1 30 [−600, 600]D 0

f12(x) =
π
D
{10 sin2(πyi) +

D−1∑
i=1

(yi − 1)2[1 + 10 sin2(πyi+1)] + (yi − 1)2} 30 [−50, 50]D 0

+
D∑
i=1

µ(xi, 10, 100, 4)

f13(x) = 0.1{sin2(3πx1) +
D−1∑
i=1

(xi − 1)2[1 + sin2(3πxi+1)] 30 [−50, 50]D 0

+(xn − 1)[1 + sin2(2πxn)]}+
D∑
i=1

µ(xi, 5, 100, 4)

f14(x) = [ 1
500

+
∑25

j=1
1

j+
2∑

i=1
(xi−aij)6

]−1 2 [−65.536, 65.536]D 1

f15(x) =
11∑
i=1

[ai −
x1(b

2
i+bix2)

b2i+bix3+x4
]2 4 [−5, 5]D 0.0003075

f16(x) = 4x2
1 − 2.1x4

1 + 1
3
x6
1 + x1x2 − 4x2

2 + 4x4
2 2 [−5, 5]D -1.0316285

f17(x) = (x2 − 5.1
4π2 x

2
1 + 5

π
− 6)2 + 10(1− 1

8π
cosxi + 10) 2 [−5, 10]× [0, 15] 0.398

f18(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]× 2 [−2, 2]D 3
[30 + (2x1 − 3x2)2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)]

f19(x) = −
4∑

i=1

ci exp[−
4∑

j=1

aij(xj − pij)
2] 3 [0, 1]D -3.86

f20(x) = −
6∑

i=1

ci exp[−
6∑

j=1

aij(xj − pij)
2] 6 [0, 1]D -3.32

f21(x) = −
5∑

i=1

[(x− ai)(x− ai)
T + ci]

−1 4 [0, 10]D -10

f22(x) = −
7∑

i=1

[(x− ai)(x− ai)
T + ci]

−1 4 [0, 10]D -10

f23(x) = −
10∑
i=1

[(x− ai)(x− ai)
T + ci]

−1 4 [0, 10]D -10

• Acceleration rate(AR) [18]: This criterion is applied to evaluate a methods convergence speed
quantitatively.

AR =
TestFEScompetitor

TestFESMethod
, (8)
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where AR < 1 denotes the method is slower than its competitor.
• Convergence Graphs [20]: The convergence graphs demonstrate that the mean accuracy performance of

total runs, respectively. It is used to measure the convergence speed qualitatively.
• Success rate(SR) [20]: The SR is calculated as the number of successful runs to the total number of trials.

SR =
# of successful runs

total runs
. (9)

5.3. Performance of TLBMO

In order to present superiority of the new hybrid algorithm, TLBMO is compared with seven existing algorithms.
The mean, standard deviation values and t-test for all benchmark functions are counted and listed in Table 3. The
values of AR and SR are provided in Table 4. In addition, some representative convergence graphs are presented in
Figure 2. The performance of TLBMO is analyzed from the following four aspects.
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Figure.2 Convergence graph of overall algorithms on the selected functions, (a) f1, (b) f5, (c) f7, (d) f9, (e) f10,
(f) f11.

From Table 3-4 and Figure 2, the following results and analysis can be obtained.

• Accuracy analysis: For unimodal functions, from Table 3, it is obvious that TLBMO is able to perform
consistently better results than BMO on f1, f2, f3, f4, f7, but there are weaker than TLBO. For f5, there is
no significant difference between TLBMO and TLBO, but it is superior to BMO. TLBMO, TLBO and BMO
have the same final results on f6.
For multimodal functions with many local minima, from table 3 and figure 2, it is clear that TLBMO is
significantly better than BMO and TLBO on function f9, f12. For f8, f13, TLBMO’s final results are as good
as BMO’s and TLBO’s. TLBMO and TLBO can find the global optima on f11.
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Table 3 Comparison of TLBMO with different algorithms.
Function Index TLBMO BMO PSO GSO ABC TLBO DE FEP

f1 mean 1.00e− 052 1.11e− 031 5.10e− 186 2.13e− 010 1.2e− 121 0 2.29e− 036 5.30e− 008
std 2.02e− 052 7.73e− 031 0 5.82e− 010 3.08e− 121 0 3.31e− 036 3.75e− 007
h 1 1 1 1 1 1 1

f2 mean 8.25e− 026 2.00e− 017 1.54e+ 002 5.30e− 005 6.41e− 061 4.12e− 278 5.98e− 014 1.24e− 004
std 8.51e− 026 9.31e− 017 1.31e+ 002 1.50e− 004 8.88e− 061 0 3.27e− 013 8.74e− 004
h 1 1 1 1 1 1 1

f3 mean 9.86e− 021 2.28e+ 001 1.70e+ 003 2.97e+ 000 2.61e+ 003 3.80e− 091 1.52e− 005 8.40e− 001
std 1.82e− 020 1.81e+ 001 3.49e+ 003 1.90e+ 000 5.63e+ 002 2.66e− 090 1.42e− 005 5.94e+ 000
h 1 1 1 1 1 1 1

f4 mean 6.39e− 019 3.96e− 001 1.04e− 007 1.21e− 002 9.81e− 002 2.32e− 222 3.03e− 001 3.36e− 002
std 1.05e− 054 3.29e− 001 1.61e− 007 4.15e− 003 3.40e− 002 0 6.25e− 001 2.38e− 001
h 1 1 1 1 1 1 1

f5 mean 2.13e+ 001 5.24e+ 001 1.21e+ 005 4.42e+ 001 2.14e+ 000 1.02e+ 001 4.85e− 002 9.21e− 001
std 1.02e+ 000 4.14e+ 001 3.28e+ 005 3.68e+ 001 3.34e+ 000 1.95e+ 000 7.11e− 002 6.51e+ 000
h 1 1 1 1 1 1 1

f6 mean 0 0 2.00e+ 002 0 0 0 0 0
std 0 0 1.41e+ 003 0 0 0 0 0
h 0 0 0 0 0 0 0

f7 mean 7.14e− 004 3.26e− 003 2.81e− 003 3.80e− 002 1.65e− 002 2.02e− 004 4.47e− 003 2.80e− 004
std 3.02e− 004 1.57e− 003 1.27e− 003 3.04e− 002 3.99e− 003 6.92e− 005 1.16e− 003 1.98e− 003
h 1 1 1 1 1 1 1

b/s/w 6/1/0 6/0/1 6/1/0 3/1/3 0/1/6 5/1/1 4/1/2

f8 mean 3.51e+ 003 2.19e+ 003 2.85e+ 003 1.35e− 002 1.34e− 002 2.93e+ 003 3.98e+ 003 1.24e+ 004
std 7.51e+ 002 3.97e+ 002 6.90e+ 002 5.34e− 004 7.35e− 012 6.48e+ 002 9.51e+ 002 1.57e+ 003
h 1 1 1 1 1 1 1

f9 mean 5.68e− 016 4.82e+ 000 5.40e+ 001 1.07e+ 000 0 6.45e+ 000 1.38e+ 002 5.97e− 002
std 4.02e− 015 2.68e+ 000 2.16e+ 001 8.96e− 001 0 5.50e+ 000 2.52e− 001 4.22e− 001
h 1 1 1 0 1 1 0

f10 mean 3.55e− 015 1.78e− 001 3.08e− 001 2.10e− 006 3.42e− 014 3.55e− 015 3.91e− 015 2.27e− 005
std 0 4.29e+ 000 1.99e+ 000 1.92e− 006 4.29e− 015 0 1.08e− 015 1.61e− 004
h 1 1 1 1 0 1 1

f11 mean 0 1.53e− 003 1.59e− 002 1.83e− 002 1.48e− 003 0 3.45e− 004 1.56e− 003
std 0 3.91e− 003 2.22e− 002 1.65e− 002 4.51e− 003 0 2.44e− 003 1.10e− 002
h 1 1 1 1 0 0 0

f12 mean 7.39e− 019 3.82e− 014 4.15e− 003 1.26e− 013 1.57e− 032 2.07e− 003 1.57e− 032 4.65e− 010
std 5.21e− 018 2.70e− 013 2.05e− 002 2.02e− 013 5.53e− 048 1.47e− 002 5.53e− 048 3.29e− 009
h 1 1 1 1 1 1 1

f13 mean 2.20e− 003 1.76e− 003 1.32e− 003 8.51e− 012 1.35e− 032 2.96e− 002 1.35e− 032 6.78e− 009
std 4.44e− 003 4.06e− 003 3.61e− 003 4.13e− 011 1.11e− 047 4.22e− 002 1.11e− 047 4.79e− 008
h 1 1 1 1 1 1 1

b/s/w 4/0/2 4/0/2 5/0/1 2/0/4 3/2/1 5/0/1 5/0/1
f14 mean 3.84e− 006 3.84e− 006 3.84e− 006 3.84e− 006 3.84e− 006 3.84e− 006 3.84e− 006 7.68e− 008

std 7.26e− 012 0 1.19e− 016 2.08e− 016 8.62e− 017 1.03e− 013 1 5.43e− 007
h 1 1 1 1 1 1 1

f15 mean 1.24e− 003 1.56e− 003 1.63e− 003 1.50e− 003 1.13e− 003 9.67e− 004 1.13e− 003 3.78e− 005
std 6.59e− 004 6.07e− 004 2.26e− 003 2.26e− 003 3.48e− 004 6.55e− 004 6.25e− 004 2.67e− 004
h 0 0 0 0 1 1 1

f16 mean 4.65e− 008 4.65e− 008 4.65e− 008 4.65e− 008 4.65e− 008 4.65e− 008 4.65e− 008 4.83e− 005
std 1.23e− 014 0 5.33e− 017 6.73e− 017 8.22e− 017 1.36e− 016 4.40e− 017 3.41e− 004
h 1 1 1 1 1 1 1

f17 mean 3.58e− 007 3.58e− 007 3.58e− 007 3.58e− 007 3.58e− 007 3.58e− 007 3.58e− 007 8.46e− 005
std 3.16e− 012 0 0 7.41e− 013 0 9.16e− 015 0 5.99e− 004
h 1 1 1 1 1 1 1

f18 mean −6.90e− 014 −7.78e− 014 −7.75e− 014 −7.37e− 014 6.40e− 006 −7.77e− 014 −7.89e− 014 8.96e− 012
std 6.27e− 015 7.86e− 016 1.23e− 015 3.56e− 015 3.94e− 005 6.96e− 016 9.26e− 016 6.34e− 011
h 1 1 1 0 1 1 1

f19 mean −1.48e− 007 −1.48e− 007 −1.48e− 007 −1.48e− 007 −1.42e− 007 −1.48e− 007 −1.48e− 007 1.09e− 002
std 2.24e− 016 0 8.79e− 017 2.89e− 016 2.76e− 008 0 0 7.73e− 002
h 1 1 1 0 1 1 0

f20 mean 8.17e− 002 9.78e− 002 4.23e− 002 4.29e− 002 1.99e− 006 1.08e− 002 1.03e− 001 1.69e− 002
std 5.55e− 002 4.63e− 002 6.40e− 002 5.78e− 002 1.72e− 016 3.27e− 002 4.18e− 002 1.20e− 001
h 0 1 0 1 1 0 1

f21 mean 2.04e− 001 1.21e+ 000 4.69e+ 000 2.02e+ 000 1.10e− 005 9.39e− 002 3.21e− 007 1.02e− 001
std 1.01e+ 000 2.32e+ 000 2.09e+ 000 2.92e+ 000 4.59e− 005 6.55e− 001 0 7.21e− 001
h 1 1 1 1 0 1 1

f22 mean −4.06e− 005 3.60e− 001 3.20e+ 000 2.94e+ 000 3.63e− 004 1.72e− 001 −4.06e− 005 1.06e− 001
std 1.50e− 013 1.48e+ 000 3.09e+ 000 3.41e+ 000 1.74e− 003 8.11e− 001 8.61e− 016 7.52e− 001
h 1 0 1 1 1 1 1

f23 mean 1.34e− 001 1.53e− 001 2.43e+ 000 2.38e+ 000 5.98e− 005 1.10e− 001 −9.82e− 006 1.08e− 001
std 9.48e− 001 1.08e+ 000 3.22e+ 000 3.26e+ 000 3.55e− 004 7.77e− 001 2.51e− 016 7.65e− 001
h 1 1 1 1 1 1 1

b/s/w 5/4/1 4/4/2 4/4/2 3/3/4 2/4/4 0/5/5 5/0/5∑
b/s/w 15/5/3 14/4/5 15/5/3 8/4/11 5/7/11 10/6/7 14/1/8

a b/s/w indicates that TLBMO wins in b functions, tie in s functions and loses in w functions, compared with its competitors.
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For multimodal functions with a few local minima, as indicated in table 3, there are no obvious difference
between TLBMO and its competitors.

• Significance analysis: In order to explain the statistical significance of TLBMO, the Wilcoxon signed-
rank test is employed. The numerical values “1” means that TLBMO is statistically inferior to other
algorithms,“0” represents that TLBMO is equal to its competitor. The total number of TLBMO performs
better, similar or worse than other algorithms are summarized in the last row of Table 3. The results
demonstrate that there is significantly difference between TLBMO and BMO on the majority of test
functions. The mean values of the final solutions reconfirm that the difference between them is not obvious.

Table 4 Comparison of TLBMO and its competitor.
Function Index TLBMO BMO PSO GSO ABC TLBO DE FEP

f1 AR 1.29 1.02 1.59 0.39 0.08 1.14 0
SR 1 1 1 1 1 1 1 0.98

f2 AR 1.03 0.19 0 0.44 0.10 1.56 0
SR 1 1 0.22 0 1 1 1 0.98

f3 AR 0 0.90 0 0 0.23 0 0
SR 1 0 0.76 0 0 1 0 0.98

f4 AR 0 0.44 0 0 0.09 0 0
SR 1 0 0.24 0 0 1 0 0.98

f5 AR NaN NaN NaN NaN NaN NaN NaN
SR 0 0 0 0 0 0 0 0.98

f6 AR 2.16 1.51 0.80 0.37 0.06 0.87 0.06
SR 1 1 0.98 1 1 1 1 1

f7 AR 0 0.03 0 0 0.28 0 0
SR 0.86 0 0.02 0 0 1 0.02 0.98

f8 AR 1 0.21 0.25 0.11 0.26 0.51 0.01
SR 1 1 1 1 1 1 1 1

f9 AR 0.03 0 0.20 0.35 0.14 0 0
SR 1 0.02 0 0.14 1 0.24 0 0.98

f10 AR 0.03 0.82 0 0.47 0.09 1.25 0
SR 1 0.02 0.96 0 1 1 1 0.98

f11 AR 1.05 0.33 0.32 0.46 0.09 1.09 0
SR 1 0.84 0.34 0.02 0.88 1 0.98 0.98

f12 AR 1.00 0.74 0.63 0.28 0.37 0.82 0
SR 1 1 0.96 1 1 0.98 1 0.98

f13 AR 1.05 0.81 1.05 0.35 0.17 1.01 0
SR 0.72 0.84 0.88 1 1 0.28 1 0.98

f14 AR 0.97 0.83 0.50 0.48 1.42 1.27 0.04
SR 1 1 1 1 1 1 1 1

f15 AR 0.48 0.40 0.64 0.88 0.56 0.24 0
SR 0.40 0.24 0.38 0.62 0.44 0.56 0.24 0.98

f16 AR 0.96 0.89 0.21 0.35 0.63 0.86 0
SR 1 1 1 1 1 1 1 0.98

f17 AR 0.82 0.75 0.32 0.45 0.70 0.97 0
SR 1 1 1 1 1 1 1 0.98

f18 AR 0.73 0.95 0.28 1.25 0.60 0.58 0.05
SR 1 1 1 1 0.92 1 1 1

f19 AR 0.92 0.82 0.40 0.72 0.70 0.82 0
SR 1 1 1 1 1 1 1 0.98

f20 AR 0.25 0.58 0.22 0.43 1.11 0.18 0
SR 0.30 0.18 0.68 0.64 1 0.84 0.14 0.98

f21 AR 0.62 0.11 0.40 0.46 1.09 0.51 0
SR 0.96 0.76 0.14 0.66 1 0.96 1 0.98

f22 AR 0.74 0.41 0.23 0.58 1.13 0.63 0
SR 1 0.94 0.46 0.56 0.94 0.94 1 0.98

f23 AR 0.81 0.61 0.61 0.71 1.07 0.68 0
SR 0.98 0.98 0.62 0.64 0.96 0.98 1 0.98∑
SR 20.20 14.80 13.70 13.50 18.10 19.80 16.40 22.60

• Convergence speed: Table 4 show that TLBMO converges faster than BMO, especially for function f6. For
example, compared with BMO, the AR value is 1.05, which means that TLBMO is on average 5% faster
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than BMO for f11 function. Additionally, Figure 2 shows that TLBMO is able to converge to better solutions
quickly and it has higher accuracy than BMO on the most of functions. From figure 2. it is clear that TLBO is
significantly superior to all the other methods including TLBMO in the process of evolution, while TLBMO
performs the second best on this benchmark function. Looking carefully at Figure 2 (c), PSO shows a faster
convergence rate initially than TLBMO, however, it is outperformed by TLBMO after 25000 FES. we can
observe from Figure 2 (d) that all the other algorithms show the almost same startpoint, and ABC has a faster
convergence speed than other methods. Although slower, TLBMO eventually finds the global solution close
to ABC. Totally, the convergence speed of BMO is improved in a certain extent.

• Success ratio: Table 4 reveals that the TLBMO has more superior searching ability than its competitors, and
provides the much higher successful rate

∑
SR = 20.20 than other existing algorithms. To be specific, our

algorithm can effectively solve (SR = 1) seventeen out of twenty-three test functions. It is worth mentioning
that TLBMO can yield the smallest mean value with SR = 1 on function f11 and f22. In general, the hybrid
method is able to form stable search mechanism.

6. Conclusion

In order to accelerate the convergence speed and improve solution quality of BMO, a hybrid algorithm, named
TLBMO, is proposed. This method can provide a better balance between exploration and exploitation in the
evolving process. The performance of TLBMO algorithm is verified on a comprehensive set of well-known 23
benchmark functions. Experimental results demonstrate the good performance of TLBMO.
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