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Abstract To model correlated bivariate count data with extra zero observations, this paper proposes two new bivariate
zero-inflated generalized Poisson (ZIGP) distributions by incorporating a multiplicative factor (or dependency parameter)
λ, named as Type I and Type II bivariate ZIGPλ distributions, respectively. The proposed distributions possess a flexible
correlation structure and can be used to fit either positively or negatively correlated and either over- or under-dispersed
count data, comparing to the existing models that can only fit positively correlated count data with over-dispersion. The
two marginal distributions of Type I bivariate ZIGPλ share a common parameter of zero inflation while the two marginal
distributions of Type II bivariate ZIGPλ have their own parameters of zero inflation, resulting in a much wider range of
applications. The important distributional properties are explored and some useful statistical inference methods including
maximum likelihood estimations of parameters, standard errors estimation, bootstrap confidence intervals and related testing
hypotheses are developed for the two distributions. A real data are thoroughly analyzed by using the proposed distributions
and statistical methods. Several simulation studies are conducted to evaluate the performance of the proposed methods.
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1. Introduction

As the simplest distribution for modeling count data, the Poisson distribution possesses an exceptional property of
equi-dispersion, i.e., its mean and variance are identical. When the observed variance is larger than the theoretical
variance, over-dispersion has occurred and it is a very common feature in applications because in practice
populations are frequently heterogeneous. In such situation, a useful alternative such as the negative-binomial
model with an additional free parameter may provide a better fit. Conversely, under-dispersion means that there is
less variation in the data than predicted. To model count data with both over-dispersion and/or under-dispersion,
the generalized Poisson (GP) distribution can be used and its probability mass function (pmf) with two parameters
is defined by ([7], p.5)

GP(x|θ, α) = θx(1 + αx)x−1

x!
exp[−θ(1 + αx)], x = 0, 1, 2, . . . ,
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in which θ > 0 and the domain of α is max(−θ−1,−m−1) 6 α < θ−1, where m (> 4) is the largest positive integer
for which 1 + αm > 0 when α < 0. And Pr(X = x) = 0 for x > m when α < 0. It is denoted by X ∼ GP(θ, α).
Its mean and variance are given by

E(X) =
θ

1− αθ
and Var(X) =

θ

(1− αθ)3
.

Especially, when α = 0, GP(θ, α) reduces to the Poisson distribution with mean θ.
To model two-dimensional correlated count data, the bivariate Poisson, bivariate negative-binomial and bivariate

generalized Poisson models have been developed. By using the method of trivariate reduction, Holgate [15] first
proposed the bivariate Poisson distribution and Famoye & Consul [9] then extended it to the more general bivariate
generalized Poisson distribution. A major disadvantage for the method of trivariate reduction is that so-generated
bivariate distributions can be used to model count data with positive correlation only.

However, two-dimensional count data with negative correlation are often encountered in practice. For example,
Table 1 below gives a paired count data of twelve patients who experienced frequent premature ventricular
contractions (PVCs) and were administered a drug with antiarrhythmic properties. One-minute EKG recordings
were taken before and after the drug administration as shown in the second and third rows of Table 1. To describe
the data, we calculated the sample means and variances as x̄ = 13.4167, s2x = 166.9924, ȳ = 1.9167, s2y = 14.4470
and the sample correlation coefficient as r = −0.2305847. Both X and Y are obviously over-dispersed and they
are negatively correlated. Thus, the aforementioned distributions are not appropriate to fit this data set.

Table 1
The PVC counts for twelve patients one minute after administering a drug with antiarrhythmic properties (Berry,
[4])

Patient number 1 2 3 4 5 6 7 8 9 10 11 12
Predrug(X) 6 9 17 22 7 5 5 14 9 7 9 51
Postdrug(Y ) 5 2 0 0 2 1 0 0 0 0 13 0

Lakshminarayana et al. [20] first proposed a new type of bivariate Poisson distribution, whose joint pmf was
expressed as a product of two Poisson margins with a multiplicative factor. Subsequently, a new bivariate negative-
binomial regression model and a new bivariate GP distribution are extended in a similar way by Famoye [12, 13].
This kind of expression not only ensures the marginal distribution as the traditional distribution (e.g., Poisson,
generalized Poisson, negative-binomial) but also admits positive or negative correlation. The general form of the
joint bivariate pmf of (X,Y ) is

p(x, y) = p1(x)p2(y)
(
1 + λ

{
g1(x)− E[g1(X)]

}{
g2(y)− E[g2(Y )]

})
,

where g1(x) and g2(y) are two bounded functions, and λ is called the multiplicative factor or dependency parameter.
It is easy to verify that p1(x) and p2(y) are two marginal pmfs.

When there is a larger frequency of (0,0) observations in the bivariate count data, the zero-inflation phenomenon
arises. For example, there are seven zero values of Y out of a total of 12 observations in Table 1. The multivariate
zero-inflated Poisson models were developed by using the mixture technique [21] and by using the stochastic
representation technique [22]. Their models can only fit over-dispersed data with positive correlation. Krishna
& Tukaram [19] provided a bivariate power series distribution that utilized the multiplicative factor form and
incorporated inflation at zero. Bivariate zero-inflated Poisson distribution were then discussed as a special case
of power series distributions and the associated properties were explored. The univariate marginally follows zero-
inflated Poisson distribution which is still over-dispersed, and the correlation can have either sign. All these zero-
inflated models cannot comprehensively address the correlation and dispersion issues.

The aim of this paper is to develop two new bivariate zero-inflated generalized Poisson (ZIGP) distributions
by incorporating a multiplicative factor (or dependency parameter) λ, named as Type I and Type II bivariate
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ZIGPλ distributions, respectively. The two distributions have the following features: (i) Each marginal follows
a univariate ZIGP distribution, which is a mixture of the degenerate distribution with all mass at (0, 0) point and
a GP distribution. A ZIGP distribution can model zero-inflated count data with both over-dispersion and/or under-
dispersion. (ii) They possess a flexible correlation structure and can be used to fit either positively or negatively
correlated zero-inflated count data, comparing to the existing models that can only fit positively correlated zero-
inflated count data. (iii) The two marginal distributions of Type I bivariate ZIGPλ share a common parameter of
zero inflation while the two marginal distributions of Type II bivariate ZIGPλ have their own parameters of zero
inflation, resulting in a much wider range of applications.

The rest of the paper is organized as follows. In Section 2, we propose a new bivariate ZIGP distribution indexed
by a multiplicative factor via a mixture of a Bernoulli variable with the bivariate GP distribution of Famoye [13],
provide some important distributional properties, maximum likelihood estimations of parameters, standard errors
estimation, bootstrap confidence intervals and related testing hypotheses. In Section 3, the Type II bivariate zero-
inflated generalized Poisson distribution with a multiplicative factor is also developed. The proposed distributions
and statistical methods are applied to analyze the Australian health care utilization data in Section 4. In Section 5,
several simulation studies are conducted to evaluate the performance of the proposed methods. Section 6 presents
a discussion. Some technical details are put in the Appendix.

2. Type I bivariate zero-inflated generalized Poisson distribution with a multiplicative factor

Famoye [13] introduced a new bivariate GP distribution indexed by an unknown real number λ called the
multiplicative factor. Its joint pmf Pr(X1 = x1, X2 = x2) is defined by{

2∏
i=1

θxi

i (1 + αixi)
xi−1

xi!
exp [−θi(1 + αixi)]

}[
1 + λ(e−x1 − c1)(e−x2 − c2)

]
, (1)

for x1, x2 = 0, 1, 2, . . . , where ci = E(e−Xi) = exp[θi(si − 1)] and si is a function of (θi, αi) satisfying

log(si)− θiαi(si − 1) + 1 = 0, i = 1, 2.

We denote this new bivariate GP distribution by (X1, X2)
⊤∼ BGPλ(θ1, θ2, α1, α2), where λ satisfies |λ| 6

1/[(1− c1)(1− c2)]. It is easy to verify that Xi ∼ GP (θi, αi) for i = 1, 2, which are irrelevant to the multiplicative
factor λ. When α1 = α2 = 0, this bivariate GP distribution reduces to the bivariate Poisson distribution with the
multiplicative factor λ ∈ R developed by Lakshminarayana et al. [20].

When there is a larger frequency of (0,0) observations in the bivariate count data, the issue of the over-dispersion
may arise. To model such extra zero points in the data, we propose a new bivariate ZIGP distribution indexed by a
multiplicative factor λ ∈ R via a mixture of a Bernoulli variable with the bivariate GP distribution (1).

Let Z ∼ Bernoulli (1− ϕ), (X1, X2)
⊤∼ BGPλ(θ1, θ2, α1, α2) and Z ⊥⊥ (X1, X2)

⊤. A discrete random vector
(Y1, Y2)

⊤ defined by
(Y1, Y2)

⊤= Z(X1, X2)
⊤, (2)

is said to follow the Type I bivariate ZIGP distribution indexed by a multiplicative factor λ, denoted by (Y1, Y2)
⊤∼

ZIGP(I)
λ (ϕ; θ1, θ2, α1, α2), where ϕ ∈ [0, 1) and ci (i = 1, 2) are defined in (1), the range of λ is to be discussed in

Section 2.1. It is easy to derive the joint pmf Pr(Y1 = y1, Y2 = y2), which is given by
ϕ+ (1− ϕ)e−(θ1+θ2)[1 + λ(1− c1)(1− c2)], if y1 = y2 = 0,

(1− ϕ)

[
2∏

i=1

GP (yi|θi, αi)

] [
1 + λ(e−y1 − c1)(e−y2 − c2)

]
, otherwise.

Let (Y1, Y2)
⊤∼ ZIGP(I)

λ (ϕ; θ1, θ2, α1, α2), we discuss the following three special cases:

Stat., Optim. Inf. Comput. Vol. 3, June 2015



108 BIVARIATE ZIGP DISTRIBUTION WITH A FLEXIBLE CORRELATION STRUCTURE

(a) When ϕ = 0, we have (Y1, Y2)
⊤ d
= (X1, X2)

⊤∼ BGPλ(θ1, θ2, α1, α2) defined by (1);

(b) When α1 = α2 = 0, it reduces to the Type I bivariate ZIP distribution indexed by the multiplicative factor
λ, denoted by (Y1, Y2)

⊤∼ ZIP(I)
λ (ϕ; θ1, θ2). In the circumstances, si = e−1 and ci = exp[θi(e−1 − 1)] for

i = 1, 2.

(c) When α1 = α2 = λ = 0, it reduces to the Type I bivariate ZIP distribution, denoted by (Y1, Y2)
⊤∼

ZIP(I) (ϕ; θ1, θ2), which is a special case of the Type I multivariate ZIP distribution recently developed
by Liu & Tian [22].

2.1. Marginal distributions, moments and correlation

Let (Y1, Y2)
⊤∼ ZIGP(I)

λ (ϕ; θ1, θ2, α1, α2). From (2), we have Yi = ZXi following an univariate zero-inflated
generalized Poisson distribution, denoted by

Yi ∼ ZIGP (ϕ; θi, αi), i = 1, 2. (3)

The pmf, expectation and variance of Yi are given by

Pr(Yi = yi) =

 ϕ+ (1− ϕ)e−θi , if yi = 0,

(1− ϕ)GP (yi|θi, αi), if yi > 0,

E(Yi) = (1− ϕ)
θi

1− αiθi
=̂ (1− ϕ)µi,

Var(Yi) = (1− ϕ)

[
θi

(1− αiθi)3
+ ϕµ2

i

]
,

respectively. It is shown that Y1 and Y2 can be either over- or under-dispersed.
The covariance between Y1 and Y2 is

Cov(Y1, Y2) = (1− ϕ)[ϕµ1µ2 + λ(c11 − c1µ1)(c22 − c2µ2)],

where cii = E(Yie−Yi) = θi(1− αiθisi)
−1 exp[θi(1 + αi)(si − 1)− 1] for i = 1, 2. From (2), we can see that the

dependency structure between Y1 and Y2 hinges on the common Bernoulli variable Z and the correlation between
X1 and X2. In fact, the correlation coefficient of Y1 and Y2 is

ρ1 = Corr(Y1, Y2) =
ϕµ1µ2 + λ(c11 − c1µ1)(c22 − c2µ2)√

[θ1/(1− α1θ1)3 + ϕµ2
1] [θ2/(1− α2θ2)3 + ϕµ2

2]
, (4)

which could be positive, zero or negative depending on the values of parameters ϕ and λ. If ϕµ1µ2 + λ(c11 −
c1µ1)(c22 − c2µ2) > (=, <) 0, the correlation is positive (zero, negative). The joint pmf (1) should be nonnegative
and the correlation coefficient (4) should satisfy |ρ1| 6 1, thus the lower bound λL,1 and upper bound λU,1 of the
parameter λ are given by

λL,1 = max

(
− 1

(1− c1)(1− c2)
, min(A1, B1)

)
and λU,1 = max(A1, B1),

respectively, where

A1 =

√
[θ1/(1− α1θ1)3 + ϕµ2

1] [θ2/(1− α2θ2)3 + ϕµ2
2]− ϕµ1µ2

(c11 − c1µ1)(c22 − c2µ2)
and

B1 =
−
√

[θ1/(1− α1θ1)3 + ϕµ2
1] [θ2/(1− α2θ2)3 + ϕµ2

2]− ϕµ1µ2

(c11 − c1µ1)(c22 − c2µ2)
.
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Figure 1 plots the possible range of the correlation coefficient ρ1 against the range of λ
(
λ ∈

[
λL,1 , λU,1

])
for

various combinations of (ϕ, θ1, θ2, α1, α2).
Especially, when α1 = α2 = 0, (4) becomes

Corr(Y1, Y2) =
ϕθ1θ2 + λθ1θ2e(θ1+θ2)(e−1−1)(e−1 − 1)2√

(θ1 + ϕθ21)(θ2 + ϕθ22)
. (5)
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Figure 1. Range of correlation coefficient ρ1 against the range of λ for various combinations of (ϕ, θ1, θ2, α1, α2) in Type I
bivariate ZIGPλ distribution. (i) λ ∈ (−15.33, 13.77), ρ1 ∈ (−1.00, 0.99); (ii) λ ∈ (−11.63, 17.47), ρ1 ∈ (−0.60, 1.00); (iii)
λ ∈ (−14.34, 13.56), ρ1 ∈ (−1.00, 0.98); (iv) λ ∈ (−11.63, 17.17), ρ1 ∈ (−0.64, 0.99).

2.2. Generation of i.i.d. random vectors

The stochastic representation (SR) specified by (2) can be used to generate i.i.d. samples of (Y1, Y2)
⊤ from

ZIGP(I)
λ (ϕ; θ1, θ2, α1, α2). Since Z ∼ Bernoulli (1− ϕ), the key step is how to generate i.i.d. samples of (X1, X2)

⊤

from BGPλ(θ1, θ2, α1, α2). Note that X1 ∼ GP (θ1, α1) and the conditional pmf Pr(X2 = x2|X1 = x1) of X2|X1

is
GP (x2|θ2, α2)

[
1 + λ(e−x1 − c1)(e−x2 − c2)

]
, x2 = 0, 1, 2, . . . . (6)

Thus, we suggest adopting the conditional sampling method by first generating X1 = x1 from GP (θ1, α1), and
then generating X2 = x2 from (6). The built-in R function
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sample(x, size, replace = FALSE, prob = NULL)
can facilitate the simulation.

2.3. Maximum likelihood estimations of parameters

Let (Y1j , Y2j)
⊤ iid∼ ZIGP(I)

λ (ϕ; θ1, θ2, α1, α2) for j = 1, . . . , n, and Yobs = {(y1j , y2j)⊤: j = 1, . . . , n} denote the
observation data. Let J = {j: (y1j , y2j)⊤= 00, j = 1, . . . , n} and m0 denote the number of elements in J. Let
θ = (θ1, θ2, α1, α2, λ)

⊤, then the observed-data likelihood function is

L(ϕ,θ|Yobs) =
{
ϕ+ (1− ϕ)e−(θ1+θ2)[1 + λ(1− c1)(1− c2)]

}m0

×
∏
j /∈J

{
(1− ϕ)

[∏2
i=1 GP(yij |θi, αi)

]
[1 + λ(e−y1j − c1)(e−y2j − c2)]

}
,

To obtain the MLEs of the parameters, we employ the EM algorithm. A latent variable Z is introduced to split m0

into Z and m0 − Z, so that the conditional predictive distribution of Z given Yobs and (ϕ,θ) is

Z|(Yobs, ϕ,θ) ∼ Binomial
(
m0,

ϕ

ϕ+ (1− ϕ)e−(θ1+θ2)[1 + λ(1− c1)(1− c2)]

)
. (7)

On the other hand, the complete-data likelihood function is proportional to

L(ϕ,θ|Ycom) ∝ ϕz(1− ϕ)m0−ze−(m0−z)(θ1+θ2)[1 + λ(1− c1)(1− c2)]
m0−z(1− ϕ)n−m0

×
∏
j /∈J

{[∏2
i=1 GP(yij |θi, αi)

]
[1 + λ(e−y1j − c1)(e−y2j − c2)]

}
= L1(ϕ|Ycom) · L2(θ|Ycom), (8)

where L1(ϕ|Ycom) = ϕz(1− ϕ)n−z only involves ϕ and

L2(θ|Ycom) = e−(m0−z)(θ1+θ2)[1 + λ(1− c1)(1− c2)]
m0−z

×
∏
j /∈J

{[∏2
i=1 GP(yij |θi, αi)

]
[1 + λ(e−y1j − c1)(e−y2j − c2)]

}
= e(θ1+θ2)z[1 + λ(1− c1)(1− c2)]

−z

×
n∏

j=1

{[∏2
i=1 GP(yij |θi, αi)

]
[1 + λ(e−y1j − c1)(e−y2j − c2)]

}
only involves θ. Obviously, the complete-data MLE of ϕ is ϕ̂ = z/n. The logarithm of L2(θ|Ycom) is given by

ℓ2(θ|Ycom) = z(θ1 + θ2) +N1 log θ1 +N2 log θ2 +

n∑
j=1

(y1j − 1) log(1 + α1y1j)

+

n∑
j=1

(y2j − 1) log(1 + α2y2j)−
n∑

j=1

θ1(1 + α1y1j)−
n∑

j=1

θ2(1 + α2y2j)

− z log[1 + λ(1− c1)(1− c2)] +

n∑
j=1

log[1 + λ(e−y1j − c1)(e−y2j − c2)], (9)
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where Ni =
∑n

j=1 yij for i = 1, 2. Since the complete-data MLEs of θ are not available in closed form, we adopt
the Newton–Raphson algorithm to calculate the complete-data MLEs of θ. The score vector and the Hessian matrix

∇ℓ2(θ|Ycom) =
∂ℓ2(θ|Ycom)

∂θ
and ∇2ℓ2(θ|Ycom) =

∂2ℓ2(θ|Ycom)

∂θ∂θ⊤
(10)

are derived in Appendix A. Thus, the M-step is to calculate

ϕ(t+1) =
z(t)

n
and θ(t+1) = θ(t) + [−∇2ℓ2(θ

(t)|Ycom)]
−1∇ℓ2(θ

(t)|Ycom), (11)

The E-step is to replace z(t) in (11) by the conditional expectation

E(Z|Yobs, ϕ
(t),θ(t)) =

m0ϕ
(t)

ϕ(t) + (1− ϕ(t))e−(θ
(t)
1 +θ

(t)
2 )[1 + λ(t)(1− c

(t)
1 )(1− c

(t)
2 )]

, (12)

where c
(t)
i = exp[θ

(t)
i (s

(t)
i − 1)] and s

(t)
i satisfies log[s(t)i ]− θ

(t)
i α

(t)
i (s

(t)
i − 1) + 1 = 0 for i = 1, 2.

2.4. Estimation of standard errors

In this subsection, we are interested in deriving the standard deviations of the MLEs ϕ̂ and θ̂ of the parameters. Let
ℓ(ϕ,θ|Ycom) = logL(ϕ,θ|Ycom) denote the logarithm of the complete-data likelihood function (8). Then, its first
and second derivatives are given by

∇ℓ(ϕ,θ|Ycom) =
(
∇ℓ1(ϕ|Ycom),∇⊤ℓ2(θ|Ycom)

)⊤
,

∇2ℓ(ϕ,θ|Ycom) =

 ∇2ℓ1(ϕ|Ycom) 00⊤5

005 ∇2ℓ2(θ|Ycom)

 ,

where
∇ℓ1(ϕ|Ycom) =

z − nϕ

ϕ(1− ϕ)
, ∇2ℓ1(ϕ|Ycom) = − z

ϕ2
− n− z

(1− ϕ)2
,

∇ℓ2(θ|Ycom) and ∇2ℓ2(θ|Ycom) are given by (10).
According to Louis [23], the observed information I(ϕ̂, θ̂|Yobs) can be expressed as{

E{−∇2ℓ(ϕ,θ|Ycom)|Yobs, ϕ,θ} − E{[∇ℓ(ϕ,θ|Ycom)]
⊗

2|Yobs, ϕ,θ}
}∣∣∣

(ϕ,θ)=(ϕ̂,θ̂)
, (13)

where x
⊗

2 = xx⊤. The computation of the conditional expectations in (13) involves the conditional predictive
distribution (7). We have

E(Z|Yobs, ϕ,θ) = m0p and E(Z2|Yobs, ϕ,θ) = m0p(1− p) +m2
0p

2,

where
p =̂

ϕ

ϕ+ (1− ϕ)e−(θ1+θ2)[1 + λ(1− c1)(1− c2)]
.

The estimated standard errors are the square roots of the diagonal elements of the inverse observed information
matrix I−1(ϕ̂, θ̂|Yobs). Finally, we can use these estimated standard errors to construct the (1− α)100% asymptotic
Wald confidence interval (CIs) for the parameters (ϕ,θ).

Alternatively, when the observed information matrix is too complicated, we may use the square roots of the
diagonal elements of the inverse complete information matrix to approximate the estimated standard errors. The
complete information matrix is defined by

I(ϕ̂, θ̂|Ycom) = E
{
−∇2ℓ(ϕ,θ|Ycom)|Yobs, ϕ,θ

} ∣∣
(ϕ,θ)=(ϕ̂,θ̂)

. (14)
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2.5. Bootstrap confidence intervals

The Wald CIs are reliable only for large sample sizes and the lower/upper bound may exceed the natural bound of
parameters. For example, the Wald CI of ϕ may fall outside the unit interval (0, 1].

The bootstrap method is useful in calculating the bootstrap CIs, which are reliable for small to moderate
sample sizes. For an arbitrary function of (ϕ,θ), say ϑ = h(ϕ,θ), the bootstrap method can be used to obtain
the bootstrap CI of ϑ. Let (ϕ̂, θ̂) denote the MLEs of (ϕ,θ) obtained by the EM algorithm embedded with the
Newton–Raphson algorithm specified by (11)–(12), then ϑ̂ = h(ϕ̂, θ̂) is the MLE of ϑ. Based on the obtained
MLEs (ϕ̂, θ̂) = (ϕ̂, θ̂1, θ̂2, α̂1, α̂2, λ̂), we can generate

(Y ∗
1j , Y

∗
2j)

⊤ iid∼ ZIGP(I)

λ̂
(ϕ̂; θ̂1, θ̂2, α̂1, α̂2)

for j = 1, . . . , n using the conditional sampling technique presented in Section 2.2. Based on the bootstrap
sample Y ∗

obs =
{
(y∗1j , y

∗
2j)

⊤}n
j=1

, we first compute the MLEs (ϕ̂∗, θ̂∗) and then obtain a bootstrap replication

ϑ̂∗ = h(ϕ̂∗, θ̂∗). Independently repeating the above process G times, we obtain G bootstrap samples {Y ∗
obs(g)}Gg=1

and G bootstrap replications {ϑ̂∗
g}Gg=1. The standard error of ϑ̂, se(ϑ̂), can be estimated by the sample standard

deviation of the G replications, i.e.,

ŝe(ϑ̂) =

{
1

G− 1

G∑
g=1

[ϑ̂∗
g − (ϑ̂∗

1 + · · ·+ ϑ̂∗
G)/G]2

}1/2

. (15)

If {ϑ̂∗
g}Gg=1 is approximately normally distributed, the (1− α)100% simple bootstrap CI for ϑ is[

ϑ̂− zα/2 · ŝe(ϑ̂), ϑ̂+ zα/2 · ŝe(ϑ̂)
]
. (16)

Alternatively, if {ϑ̂∗
g}Gg=1 is non-normally distributed, the (1− α)100% bootstrap percentile CI of ϑ is given by[

ϑ̂L , ϑ̂U

]
, (17)

where ϑ̂L and ϑ̂U are the 100(α/2) and 100(1− α/2) percentiles of {ϑ̂∗
g}Gg=1, respectively.

Note that the CI in (16) is based on the normality assumption, while (17) provide accurate confidence intervals
without making the normality assumption. However, (17) does not adjust the confidence interval to account for
skewness in the underlying population or other errors that can result in where ϑ̂ is not the sample mean. Thus, we
consider the bootstrap percentile-t CI, which can adjust such errors. Based on the generated G bootstrap samples
{Y ∗

obs(g)}Gg=1, we compute t∗g = (ϑ̂∗
g − ϑ̂)/ŝe∗g for g = 1, . . . , G, where ŝe∗g is the estimated standard error of the ϑ̂∗

g

in the g-th bootstrap sample Y ∗
obs(g). The (1− α)100% bootstrap percentile-t CI for ϑ is given by [8][

ϑ̂− t̂1−α/2 · ŝe(ϑ̂), ϑ̂− t̂α/2 · ŝe(ϑ̂)
]
, (18)

where t̂α/2 and t̂1−α/2 are the 100(α/2) and 100(1− α/2) percentiles of {t∗g}Gg=1, respectively.

2.6. Testing hypotheses

2.6.1. Likelihood ratio test for zero inflation. Suppose we want to test the null hypothesis

H0: ϕ = 0 against H1: ϕ > 0. (19)

Under H0, the likelihood ratio test (LRT) statistic

T1 = −2{ℓ(0, θ̂H0 |Yobs)− ℓ(ϕ̂, θ̂|Yobs)}, (20)
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where (0, θ̂H0) denote the constrained MLEs of (ϕ,θ) under H0 and (ϕ̂, θ̂) denote the unconstrained MLEs of
(ϕ,θ), which are obtained by the algorithm specified in (11)–(12). Since the null hypothesis in (19) corresponds to
ϕ being on the boundary of the parameter space and the appropriate null distribution is a 50:50 mixture of χ2(0)
(i.e., the degenerate distribution with all mass at zero) and χ2(1), see Self & Liang [25] and Feng & McCulloch
[14]. Hence, the p-value ([16], p.78; [17], p.225) is

pv1 = Pr(T1 > t1|H0) =
1

2
Pr(χ2(1) > t1). (21)

2.6.2. LRT for independency parameter. If λ = 0, the Type I bivariate ZIGP random vector reduces to the
bivariate random vector that is the product of a common zero-inflated Bernoulli variable Z and a random vector
with two independent GP random components. Correlation between Y1 and Y2 in (4) becomes

Corr(Y1, Y2) =
ϕµ1µ2√[

θ1
(1−α1θ1)3

+ ϕµ2
1

] [
θ2

(1−α2θ2)3
+ ϕµ2

2

] ,
which must be non-negative. Therefore, we would like to test

H0: λ = 0 against H1: λ ̸= 0. (22)

The corresponding LRT statistic is given by

T2 = −2{ℓ(ϕ̂H0 , θ̂1,H0 , θ̂2,H0 , α̂1,H0 , α̂2,H0 , 0|Yobs)− ℓ(ϕ̂, θ̂|Yobs)}. (23)

Under H0, T2 approximately follows the χ2(1) distribution. The corresponding p-value is

pv2 = Pr(T2 > t2|H0) = Pr(χ2(1) > t2). (24)

2.6.3. LRT of Type I bivariate ZIGPλ against Type I bivariate ZIPλ. We have mentioned that when the
parameters α1 = α2 = 0, the Type I bivariate ZIGP distribution indexed by the multiplicative factor λ reduces
to the Type I bivariate ZIP distribution indexed by the multiplicative factor λ. We test the following null hypothesis

H0: α1 = α2 = 0 against H1: H0 is not true. (25)

To assess the adequacy of the Type I bivariate ZIGP over the Type I bivariate ZIP. The LRT statistic is

T3 = −2{ℓ(ϕ̂H0 , θ̂1,H0 , θ̂2,H0 , 0, 0, λ̂H0 |Yobs)− ℓ(ϕ̂, θ̂|Yobs)}. (26)

Note that under H0, the MLEs of parameters in ZIP(I)
λ (ϕ; θ1, θ2) can be obtained through an EM algorithm

embedded with a Newton–Raphson algorithm in a similar way as that for the Type I bivariate ZIGP distribution.
Under H0, the test statistic T3 follows χ2(2), thus the corresponding p-value is

pv3 = Pr(T3 > t3|H0) = Pr(χ2(2) > t3). (27)

3. Type II bivariate zero-inflated generalized Poisson distribution with a multiplicative factor

According to (3), two marginal distributions of the Type I bivariate ZIGP distribution with a multiplicative factor
are zero-inflated GP and are forced into sharing a common parameter of zero inflation. This limitation evokes us to
extend the Type I bivariate ZIGP to a Type II bivariate ZIGP distribution with a multiplicative factor in which two
different parameters of zero inflation are allowed.

Let {Zi}2i=1
ind∼ Bernoulli (1− ϕi), (X1, X2)

⊤∼ BGPλ(θ1, θ2, α1, α2), and (Z1, Z2, (X1, X2)
⊤) are mutually

independent. A discrete random vector (Y1, Y2)
⊤ defined by

(Y1, Y2)
⊤= (Z1X1, Z2X2)

⊤ (28)
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is said to follow the Type II bivariate ZIGP distribution indexed by a multiplicative factor λ, denoted by (Y1, Y2)
⊤∼

ZIGP(II)
λ (ϕ1, ϕ2; θ1, θ2, α1, α2). In Appendix C, the joint pmf Pr(Y1 = y1, Y2 = y2) will be derived as



ϕ1ϕ2 + ϕ1(1− ϕ2)e−θ2 + (1− ϕ1)ϕ2e−θ1

+ (1− ϕ1)(1− ϕ2)e−(θ1+θ2)[1 + λ(1− c1)(1− c2)], if y1 = 0, y2 = 0,

(1− ϕ2)GP (y2|θ2, α2) ·
{
ϕ1 + (1− ϕ1)e−θ1 [1 + λ(1− c1)(e−y2 − c2)]

}
, if y1 = 0, y2 > 0,

(1− ϕ1)GP (y1|θ1, α1) ·
{
ϕ2 + (1− ϕ2)e−θ2 [1 + λ(e−y1 − c1)(1− c2)]

}
, if y1 > 0, y2 = 0,

(1− ϕ1)(1− ϕ2)GP (y1|θ1, α1)GP (y2|θ2, α2) · [1 + λ(e−y1 − c1)(e−y2 − c2)] , if y1 > 0, y2 > 0.

(29)

In particular, ϕ1 = 0 indicates that only the Y2 marginally follows a zero-inflated GP distribution. Similarly, ϕ2 = 0
indicates that only the Y1 marginally follows a zero-inflated GP distribution. Similar to Section 2.2, we can generate
i.i.d. random vectors from (28) by using the conditional sampling technique.

3.1. Marginal distributions, moments and correlation

From (28), we have Yi = ZiXi, so that Yi ∼ ZIGP (ϕi; θi, αi) for i = 1, 2. Thus, Y1 and Y2 have different zero
inflation parameters ϕ1 and ϕ2. The moments Yi (i = 1, 2) are given by

E(Yi) = (1− ϕi)
θi

1− αiθi
=̂ (1− ϕi)µi,

Var(Yi) = (1− ϕi)

[
θi

(1− αiθi)3
+ ϕiµ

2
i

]
,

Cov(Y1, Y2) = (1− ϕ1)(1− ϕ2)λ(c11 − c1µ1)(c22 − c2µ2),

where cii = E(Yie−Yi) = θi(1− αiθisi)
−1 exp[θi(1 + αi)(si − 1)− 1] for i = 1, 2. Thus, the correlation

coefficient between Y1 and Y2 is

ρ2 = Corr(Y1, Y2) =

√
(1− ϕ1)(1− ϕ2)λ(c11 − c1µ1)(c22 − c2µ2)√

[θ1/(1− α1θ1)3 + ϕ1µ2
1] [θ2/(1− α2θ2)3 + ϕ2µ2

2]
. (30)

Similarly, the range of the parameter λ,
[
λL,2 , λU,2

]
, is given by

λL,2 = max

(
− 1

(1− c1)(1− c2)
, min(A2, B2)

)
and λU,2 = max(A2, B2),

respectively, where

A2 =

√
[θ1/(1− α1θ1)3 + ϕµ2

1] [θ2/(1− α2θ2)3 + ϕµ2
2]√

(1− ϕ1)(1− ϕ2)(c11 − c1µ1)(c22 − c2µ2)
and

B2 =
−
√

[θ1/(1− α1θ1)3 + ϕµ2
1] [θ2/(1− α2θ2)3 + ϕµ2

2]√
(1− ϕ1)(1− ϕ2)(c11 − c1µ1)(c22 − c2µ2)

.
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When ϕ1 = 0 or ϕ2 = 0, the corresponding correlation coefficient becomes

Corr(Y1, Y2) =

√
1− ϕ2λ(c11 − c1µ1)(c22 − c2µ2)√

[θ1/(1− α1θ1)3] [θ2/(1− α2θ2)3 + ϕ2µ2
2]

or

s

Corr(Y1, Y2) =

√
1− ϕ1λ(c11 − c1µ1)(c22 − c2µ2)√

[θ1/(1− α1θ1)3 + ϕ1µ2
1] [θ2/(1− α2θ2)3]

.

(31)

From both (30) and (31), it can be seen that the correlation coefficient between Y1 and Y2 could be either positive
or negative.

Figure 2 plots the possible range of the correlation coefficient ρ2 against the range of λ for four various
combinations of (ϕ1, ϕ2) with (θ1, θ2, α1, α2) = (0, 6, 0.2, 1, 2).
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Figure 2. Range of correlation coefficient ρ2 against the range of λ for four various combinations of (ϕ1, ϕ2) with
(θ1, θ2, α1, α2) = (0, 6, 0.2, 1, 2) in Type II bivariate ZIGPλ distribution. (i) λ ∈ (−18.39, 18.39), ρ2 ∈ (−1.00, 0.99); (ii)
λ ∈ (−20.07, 22.53), ρ2 ∈ (−0.88, 0.99); (iii) λ ∈ (−16.81, 16.79), ρ2 ∈ (−1.00, 1.00); (iv) λ ∈ (−20.07, 24.03), ρ2 ∈
(−0.83, 0.99).
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3.2. MLEs of parameters

Let (Y1j , Y2j)
⊤ iid∼ ZIGP(II)

λ (ϕ1, ϕ2; θ1, θ2, α1, α2) for j = 1, . . . , n and Yobs = {(y1j , y2j)⊤: j = 1, . . . , n}. Define

J0 = {j: y1j = 0, y2j = 0, j = 1, . . . , n}, m0 = #{J0},

J1 = {j: y1j = 0, y2j > 0, j = 1, . . . , n}, m1 = #{J1},

J2 = {j: y1j > 0, y2j = 0, j = 1, . . . , n}, m2 = #{J2},

J3 = {j: y1j > 0, y2j > 0, j = 1, . . . , n}, m3 = #{J3} = n−m0 −m1 −m2.

Let θ = (θ1, θ2, α1, α2, λ)
⊤, the observed-data likelihood function is

L(ϕ1, ϕ2,θ|Yobs) =
{
ϕ1ϕ2 + ϕ1(1− ϕ2)e−θ2 + (1− ϕ1)ϕ2e−θ1

+ (1− ϕ1)(1− ϕ2)e−(θ1+θ2)[1 + λ(1− c1)(1− c2)]
}m0

×
∏
j∈J1

(1− ϕ2)GP(y2j |θ2, α2)
{
ϕ1 + (1− ϕ1)e−θ1 [1 + λ(1− c1)(e−y2j − c2)]

}
×
∏
j∈J2

(1− ϕ1)GP(y1j |θ1, α1)
{
ϕ2 + (1− ϕ2)e−θ2 [1 + λ(e−y1j − c1)(1− c2)]

}
×
∏
j∈J3

(1− ϕ1)(1− ϕ2)GP(y1j |θ1, α1)GP(y2j |θ2, α2)[1 + λ(e−y1j − c1)(e−y2j − c2)].

We adopt the EM algorithm to obtain the MLEs of parameters. First we augment Yobs with latent variables
u = (U0, U1, U2, U3)

⊤ that split m0 into U0 + U1 + U2 + U3 with U3 = m0 − U0 − U1 − U2, Wj that splits 1 into
Wj plus 1−Wj for j ∈ J1, Zj that splits 1 into Zj plus 1− Zj for j ∈ J2. The conditional predictive distributions
of these latent variables are given by

u|(Yobs, ϕ1, ϕ2,θ) ∼ Multinomial
(
m0;

f0
f
,
f1
f
,
f2
f
,
f3
f

)
,

Wj |(Yobs, ϕ1, ϕ2,θ)
iid∼ Bernoulli

(
ϕ1

ϕ1 + (1− ϕ1)e−θ1 [1 + λ(1− c1)(e−y2j − c2)]

)
, j ∈ J1,

Zj |(Yobs, ϕ1, ϕ2,θ)
iid∼ Bernoulli

(
ϕ2

ϕ2 + (1− ϕ2)e−θ2 [1 + λ(e−y1j − c1)(1− c2)]

)
, j ∈ J2,

where

f0 = ϕ1ϕ2, f1 = ϕ1(1− ϕ2)e−θ2 , f2 = (1− ϕ1)ϕ2e−θ1 ,

f3 = (1− ϕ1)(1− ϕ2)e−(θ1+θ2)[1 + λ(1− c1)(1− c2)],

f = f0 + f1 + f2 + f3.
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The complete data are denoted by Ycom = {Yobs, u0, u1, u2, u3, {wj}j∈J1 , {zj}j∈J2}. Thus, the complete-data
likelihood function is proportional to

L(ϕ1, ϕ2,θ|Ycom) ∝ (ϕ1ϕ2)
u0
[
ϕ1(1− ϕ2)e−θ2

]u1
[
(1− ϕ1)ϕ2e−θ1

]u2

×
{
(1− ϕ1)(1− ϕ2)e−(θ1+θ2)[1 + λ(1− c1)(1− c2)]

}u3

×
∏
j∈J1

(1− ϕ2)GP(y2j |θ2, α2)ϕ
wj

1

{
(1− ϕ1)e−θ1 [1 + λ(1− c1)(e−y2j − c2)]

}1−wj

×
∏
j∈J2

(1− ϕ1)GP(y1j |θ1, α1)ϕ
zj
2

{
(1− ϕ2)e−θ2 [1 + λ(e−y1j − c1)(1− c2)]

}1−zj

×
∏
j∈J3

(1− ϕ1)(1− ϕ2)GP(y1j |θ1, α1)GP(y2j |θ2, α2)[1 + λ(e−y1j − c1)(e−y2j − c2)]

= L1(ϕ1, ϕ2|Ycom)× L∗
2(θ|Ycom),

where

L1(ϕ1, ϕ2|Ycom) = (ϕ1ϕ2)
u0 [ϕ1(1− ϕ2)]

u1 [(1− ϕ1)ϕ2]
u2 [(1− ϕ1)(1− ϕ2)]

u3

× (1− ϕ2)
m1ϕNw

1 (1− ϕ1)
m1−Nw(1− ϕ1)

m2ϕNz
2 (1− ϕ2)

m2−Nz

× [(1− ϕ1)(1− ϕ2)]
n−m0−m1−m2

only containing (ϕ1, ϕ2), Nw =
∑

j∈J1 wj , Nz =
∑

j∈J2 zj , and

L∗
2(θ|Ycom) = e−θ2u1−θ1u2−(θ1+θ2)u3 [1 + λ(1− c1)(1− c2)]

u3

×
∏
j∈J1

GP(y2j |θ2, α2)
{

e−θ1 [1 + λ(1− c1)(e−y2j − c2)]
}1−wj

×
∏
j∈J2

GP(y1j |θ1, α1)
{

e−θ2 [1 + λ(e−y1j − c1)(1− c2)]
}1−zj

×
∏
j∈J3

GP(y1j |θ1, α1)GP(y2j |θ2, α2)[1 + λ(e−y1j − c1)(e−y2j − c2)]

only involving θ. Since

ℓ1(ϕ1, ϕ2|Ycom) = logL1(ϕ1, ϕ2|Ycom)

= (u0 + u1 +Nw) log ϕ1 + (u2 + u3 + n−m0 −Nw) log(1− ϕ1)

+ (u0 + u2 +Nz) log ϕ2 + (u1 + u3 + n−m0 −Nz) log(1− ϕ2),

the complete-data MLEs of ϕ1 and ϕ2 are given by

ϕ̂1 =
u0 + u1 +Nw

n+ u+ −m0
and ϕ̂2 =

u0 + u2 +Nz

n+ u+ −m0
,
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where u+ =
∑3

i=0 ui. On the other hand,

ℓ∗2(θ|Ycom) = logL∗
2(θ|Ycom)

= −(n− u0 − u1 −Nw)θ1 − (n− u0 − u2 −Nz)θ2 +N1 log θ1 +N2 log θ2

− N1θ1α1 −N2θ2α2 +

n∑
j=1

(y1j − 1) log(1 + α1y1j) +

n∑
j=1

(y2j − 1) log(1 + α2y2j)

+

n∑
j=1

log
[
1 + λ(e−y1j − c1)(e−y2j − c2)

]
− (u0 + u1 + u2) log[1 + λ(1− c1)(1− c2)]

−
∑
j∈J1

wj log
[
1 + λ(1− c1)(e−y2j − c2)

]
−
∑
j∈J2

zj log
[
1 + λ(e−y1j − c1)(1− c2)

]
, (32)

where N1 =
∑n

j=1 y1j and N2 =
∑n

j=1 y2j . Since the complete-data MLEs of θ are not available in closed form,
we adopt the Newton–Raphson algorithm to calculate the complete-data MLEs of θ. The score vector and the
Hessian matrix

∇ℓ∗2(θ|Ycom) =
∂ℓ∗2(θ|Ycom)

∂θ
and ∇2ℓ∗2(θ|Ycom) =

∂2ℓ∗2(θ|Ycom)

∂θ∂θ⊤
(33)

are derived in Appendix B. The M-step is to update

ϕ
(t+1)
1 =

u
(t)
0 + u

(t)
1 +N

(t)
w

n+ u
(t)
+ −m0

, ϕ
(t+1)
2 =

u
(t)
0 + u

(t)
2 +N

(t)
z

n+ u
(t)
+ −m0

,

θ(t+1) = θ(t) + [−∇2ℓ∗2(θ
(t)|Ycom)]

−1∇ℓ∗2(θ
(t)|Ycom),

(34)

where N
(t)
w =

∑
j∈J1 w

(t)
j , N

(t)
z =

∑
j∈J2 z

(t)
j and u

(t)
+ =

∑3
i=0 u

(t)
i . The E-step is to replace (u0, u1, u2, u3),

{wj}j∈J1 and {zj}j∈J2 in (34) by their conditional expectations

E(Ui|Yobs, ϕ1, ϕ2,θ) =
m0fi
f

, i = 0, 1, 2, 3,

E(Wj |Yobs, ϕ1, ϕ2,θ) =
ϕ1

ϕ1 + (1− ϕ1)e−θ1 [1 + λ(1− c1)(e−y2j − c2)]
,

E(Zj |Yobs, ϕ1, ϕ2,θ) =
ϕ2

ϕ2 + (1− ϕ2)e−θ2 [1 + λ(e−y1j − c1)(1− c2)]
.

(35)

Note that if the initial value of ϕ1 is set to be ϕ
(0)
1 = 0, the above algorithm yields the estimates of parameters,

where that only Y2 is marginally inflated; if the initial value of ϕ2 is set to be ϕ
(0)
2 = 0, it yields the estimates of

parameters, where only Y1 is marginally inflated.
The estimation of standard errors can be obtained via Louis’s method, which is very similar to that stated in

Section 2.4. The bootstrap method presented in Section 2.5 can be used to construct bootstrap CIs of parameters
for the current situation.

3.3. Testing hypotheses

3.3.1. LRT for zero inflation. First, we want to test whether there exists zero inflation in both marginal
distributions. Thus, we consider the following null and alternative hypotheses:

H0: (ϕ1, ϕ2) = (0, 0) against H1: (ϕ1, ϕ2) ̸= (0, 0). (36)
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Under H0, the LRT statistic is given by

T4 = −2{ℓ(0, 0, θ̂H0 |Yobs)− ℓ(ϕ̂1, ϕ̂2, θ̂|Yobs)}. (37)

The test statistic T4 does not follow the chi-squared distribution with two degrees of freedom because when H0

is true, the parameter values are located at the vertex boundary of the bounded parameter space. The reference
distribution for T4 is a mixture of (1/4)χ2(0) (i.e., a constant at zero), (1/2)χ2(1) and (1/4)χ2(2), see Chernoff
[6] and Self & Liang [25].

Subsequently, if the null hypothesis in (36) is rejected, we consider the marginal zero inflation. We test ϕi = 0
for i = 1, 2, respectively. The hypotheses are

H0: ϕ1 = 0 against H1: ϕ1 > 0; and (38)

H0: ϕ2 = 0 against H1: ϕ2 > 0, (39)

respectively. Under H0, the LRT statistics are given by

T5 = −2{ℓ(0, ϕ̂2,H0 , θ̂H0 |Yobs)− ℓ(ϕ̂1, ϕ̂2, θ̂|Yobs)}; and (40)

T6 = −2{ℓ(ϕ̂1,H0 , 0, θ̂H0 |Yobs)− ℓ(ϕ̂1, ϕ̂2, θ̂|Yobs)}, (41)

respectively. The null distributions of test statistics T5 and T6 are both the equal mixture of χ2(0) and χ2(1).

3.3.2. LRT for independency parameter. From (30), we know that if λ = 0, then Corr(Y1, Y2) = 0. Thus, we
consider to test

H0: λ = 0 against H1: λ ̸= 0. (42)

Under H0, the LRT statistic

T7 = −2{ℓ(ϕ̂1,H0 , ϕ̂2,H0 , θ̂1,H0 , θ̂2,H0 , α̂1,H0 , α̂2,H0 , 0|Yobs)− ℓ(ϕ̂1, ϕ̂2, θ̂|Yobs)} (43)

approximately follows χ2(1) distribution. The corresponding p-value is

pv7 = Pr(T7 > t7|H0) = Pr(χ2(1) > t7). (44)

4. Applications in Australian health care utilization data

Cameron & Trivedi [5] reported data concerning the demand for health care in Australia which refers to the
Australian Health Survey for 1977–1978. Let Y1 denote the number of consultations with a doctor or a specialist
and Y2 denote the total number of prescribed medications used in past two days. The data are given in Table 2.

Before the data analysis, we first examine the descriptive statistics for the data: ȳ1 = 0.3017341, ȳ2 = 0.8626204;
s21 = 0.6370176, s22 = 2.0032855; the sample correlation coefficient r = 0.3077787. We have observed that both
marginal count data exhibit over-dispersion and very high frequencies of zero observations since most of the
observed frequencies fall in the (0,0) category. The positive sample correlation coefficient r indicates that there
is a positive correlation between Y1 and Y2. Based on these observations, we first try to fit the bivariate count data
by the Type I bivariate ZIGP model with a multiplicative factor in Section 2.

4.1. Statistical inferences based on Type I bivariate ZIGPλ

Suppose (Y1j , Y2j)
⊤ iid∼ ZIGP(I)

λ (ϕ; θ1, θ2, α1, α2) for j = 1, . . . , n (n = 5190). To find the MLEs of
(ϕ, θ1, θ2, α1, α2, λ), we choose (ϕ(0), θ

(0)
1 , θ

(0)
2 , α

(0)
1 , α

(0)
2 , λ(0)) = (0.2, 0.3, 0.8, 1, 0.5, 2) as their initial values.

The MLEs of (ϕ, θ1, θ2, α1, α2, λ) converged to (ϕ̂, θ̂1, θ̂2, α̂1, α̂2, λ̂) as shown in the second column of Table 3 in
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750 iterations for the algorithm specified in (11)–(12). From (4), the estimated correlation coefficient is

Ĉorr(Y1, Y2) = 0.2370878,

which is slightly different from the sample correlation coefficient r = 0.3077787. The estimated standard errors of
the MLEs (ϕ̂, θ̂1, θ̂2, α̂1, α̂2, λ̂) based on the observed information matrix [23] are given in the third column and
95% asymptotic Wald CIs are listed in the last column of Table 3.

Besides, we adopt the bootstrap method to compute the bootstrap CIs for these parameters. Using the obtained
MLEs, we generate G = 6,000 bootstrap samples and the three types of bootstrap CIs (16)–(18) are summarized
in Table 4.

Table 2
Cross tabulation of the health care utilization data in the Australian Health Survey for 1977–1978 (Cameron and

Trivedi, [5])
Y1\Y2 0 1 2 3 4 5 6 7 8 Total
0 2789 726 307 171 76 32 16 15 9 4141
1 224 212 149 85 50 35 13 5 9 782
2 49 34 38 11 23 7 5 3 4 174
3 8 10 6 2 1 1 2 0 0 30
4 8 8 2 2 3 1 0 0 0 24
5 3 3 2 0 1 0 0 0 0 9
6 2 0 1 3 1 2 2 0 1 12
7 1 0 3 2 1 2 1 0 2 12
8 1 1 1 0 1 0 1 0 0 5
9 0 0 0 0 0 0 0 0 1 1
Total 3085 994 509 276 157 80 40 23 26 5190

Table 3
MLEs and CIs of parameters for the Australian Health Survey data (Type I)

Parameter MLE std 95% Wald CI
ϕ 0.229847 0.036141 [0.159013, 0.300682]
θ1 0.297364 0.017737 [0.262599, 0.332128]
θ2 0.756942 0.051924 [0.655172, 0.858712]
α1 0.826190 0.081361 [0.666725, 0.985654]
α2 0.427029 0.048782 [0.331419, 0.522640]
λ 1.900207 0.200254 [1.507718, 2.292697]

std: Calculated as the square roots of the diagonal elements of I−1(ϕ̂, θ̂|Yobs), cf. (13).

Suppose that we want to test the null hypothesis H0: ϕ = 0 against the alternative hypothesis H1: ϕ > 0.
According to (20), we calculate the value of the LRT statistic which is given by t1 = 20.2776, then from (21),
we have the corresponding pv1 = 3.3491× 10−6 < α = 0.05. Thus, the null hypothesis should be rejected at 5%
significance level.

If we want to test the null hypothesis H0: λ = 0 against the alternative hypothesis H1: λ ̸= 0. According to (23),
the value of the LRT statistic is t2 = 88.9215 and from (24) the p-value is pv2 < 0.0001. Thus, we should reject the
null hypothesis at the significance level of 5%.

If we want to test the null hypothesis H0: α1 = α2 = 0. According to (26), the value of the LRT statistic is
t3 = 1615.4960 and from (27), we have pv3 ≪ 0.0001. Thus, the null hypothesis is rejected at the significance
level of 5%.
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Table 4
Three 95% boostrap CIs for the Australian Health Survey data (Type I)

Simple Bootstrap Bootstrap
Parameter Mean stdB bootstrap CI percentile CI percentile-t CI
ϕ 0.22852 0.03689 [0.15621, 0.30082] [0.15040, 0.29502] [0.14502, 0.29188]
θ1 0.29760 0.01837 [0.26159, 0.33361] [0.26185, 0.33388] [0.26117, 0.33428]
θ2 0.75837 0.05130 [0.65783, 0.85891] [0.65576, 0.85822] [0.65773, 0.86019]
α1 0.82894 0.08753 [0.65738, 1.00050] [0.66688, 1.01528] [0.67324, 1.02453]
α2 0.42857 0.04831 [0.33388, 0.52325] [0.34173, 0.53167] [0.34626, 0.53721]
λ 1.90180 0.20800 [1.49412, 2.30948] 1.49575, 2.31837] [1.50518, 2.31860]

stdB: The sample standard deviation based on the bootstrap samples, cf. (15).

4.2. Marginal analysis

The sample correlation coefficient r = 0.3077787, indicating that there is a positive correlation between Y1 and
Y2. Thus, any two independent univariate distributions cannot be used to model the health care utilization data.
Besides, since both marginal count data are over-dispersed according to their marginal sample means and variances,
the bivariate Poisson distribution constructed by the trivariate reduction method is also not appropriate due to the
property of equi-dispersion.

Note that the over-dispersion may result from the excess (0,0) points in the observations, the Type I multivariate
ZIP distribution proposed by Liu & Tian [22] could be considered. If we fit the data by the Type I bivariate
ZIP distribution, denoted by (Y1, Y2)

⊤∼ ZIP(I)(ϕ; θ1, θ2), the MLEs of three parameters are ϕ̂ = 0.483007, θ̂1 =
0.583633, θ̂2 = 1.668533. The estimated correlation coefficient is

Ĉorr(Y1, Y2) =

√
θ̂1θ̂2

(θ̂1 + 1/ϕ̂)(θ̂2 + 1/ϕ̂)
= 0.3132676,

which is very close to the sample correlation coefficient r = 0.3077787. From the definition of (Y1, Y2)
⊤∼

ZIP(I)(ϕ; θ1, θ2), we have Yi ∼ ZIP (ϕ; θi) for i = 1, 2, indicating that the marginal distributions must share a
common zero inflation parameter ϕ. On the other hand, based on the marginal counts, the univariate ZIP distribution
of Y1 and Y2 are estimated to be ZIP (ϕ̂M

1 = 0.650393; θ̂M1 = 0.863068) and ZIP (ϕ̂M
2 = 0.510188; θ̂M2 = 1.761464),

respectively. It is clear that the difference between ϕ̂M
1 and ϕ̂M

2 is slight.
An alternative to the above ZIP(I)(ϕ; θ1, θ2) is the Type I bivariate ZIP distribution indexed by the multiplicative

factor λ, i.e., ZIP(I)
λ (ϕ; θ1, θ2), which is reduced from the proposed Type I bivariate ZIGP distribution with the

same multiplicative factor λ by setting α1 = α2 = 0. The corresponding MLEs of the four parameters are given
by ϕ̂ = 0.489964, θ̂1 = 0.588041, θ̂2 = 1.685382, λ̂ = −0.477044. From (5), the estimated correlation coefficient
is Ĉorr(Y1, Y2) = 0.2886614, which is close to the sample correlation coefficient r = 0.3077787. Note that the
distribution ZIP(I)

λ (ϕ; θ1, θ2) has the same marginal distributions ZIP (ϕ; θi) for i = 1, 2 as ZIP(I)(ϕ; θ1, θ2).
For the proposed Type I bivariate ZIGP distribution with the multiplicative factor λ, according to (3), we have

Yi ∼ ZIGP (ϕ; θi, αi) for i = 1, 2. That is, the two marginal distributions should share a common zero inflation
parameter ϕ. However, based on the marginal counts, the univariate ZIGP distribution of Y1 and Y2 are estimated
to be

Y1 ∼ ZIGP (ϕM
1 = 0; θM1 = 0.221530, αM

1 = 1.199886) = GP (θM1 = 0.221530, αM
1 = 1.199886), (45)

and
Y2 ∼ ZIGP (ϕM

2 = 0.311382; θM2 = 0.889408, αM
2 = 0.326211). (46)

Since there is a larger difference between ϕM
1 and ϕM

2 , from the viewpoint of marginal analysis, Type I bivariate
ZIGP distribution with the multiplicative factor λ is not appropriate to fit the data.
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4.3. Statistical inferences based on Type II bivariate ZIGPλ

Since the marginal analysis indicates that only Y2 follows a ZIGP distribution, we suppose (Y1j , Y2j)
⊤ iid∼

ZIGP(II)
λ (0, ϕ2; θ1, θ2, α1, α2) for j = 1, . . . , n (n = 5190). To find the MLEs of (ϕ1, ϕ2, θ1, θ2, α1, α2, λ), we

choose (ϕ
(0)
1 , ϕ

(0)
2 , θ

(0)
1 , θ

(0)
2 , α

(0)
1 , α

(0)
2 , λ(0)) = (0, 0.3, 0.2, 0.9, 1.2, 0.3, 4) as their initial values. The MLEs of

(ϕ2, θ1, θ2, α1, α2, λ) converged to (ϕ̂2, θ̂1, θ̂2, α̂1, α̂2, λ̂) as shown in the second column of Table 5 in 8317
iterations for the algorithm specified in (34)–(35). From the first formula of (31), the estimated correlation
coefficient is

Ĉorr(Y1, Y2) = 0.2678956,

which has an improvement compared with that in Type I bivariate ZIGPλ distribution. The estimated standard
errors of the MLEs (ϕ̂2, θ̂1, θ̂2, α̂1, α̂2, λ̂) based on the complete information matrix are given in the third column
and 95% Wald CIs are listed in the last column of Table 5. The two 95% bootstrap CIs of (ϕ2, θ1, θ2, α1, α2, λ)
produced by G = 1,000 bootstrap replications are presented in the last two columns of Table 6.

Table 5
MLEs and CIs of parameters for the Australian Health Survey data (Type II)

Parameter MLE std 95% Wald CI
ϕ2 0.335757 0.006555 [0.322909, 0.348605]
θ1 0.222826 0.006838 [0.209424, 0.236228]
θ2 0.933804 0.019452 [0.895678, 0.971930]
α1 1.193268 0.079058 [1.038318, 1.348218]
α2 0.298603 0.016168 [0.266915, 0.330291]
λ 4.266230 0.056552 [4.155389, 4.377070]

std: Calculated as the square roots of the diagonal elements of I−1(ϕ̂2, θ̂|Ycom), cf. (14).

Table 6
Two 95% bootstrap CIs for the Australian Health Survey data (Type II)

Parameter Mean stdB Simple bootstrap CI Bootstrap percentile CI
ϕ2 0.360594 0.028119 [0.305381, 0.415606] [0.281119, 0.399288]
θ1 0.238961 0.007039 [0.225165, 0.252757] [0.226017, 0.252277]
θ2 0.966234 0.061423 [0.845844, 1.086623] [0.812727, 1.062516]
α1 1.233189 0.071703 [1.092652, 1.373726] [1.114951, 1.389566]
α2 0.282438 0.038001 [0.207957, 0.356920] [0.222765, 0.376424]
λ 3.684713 0.605455 [2.498021, 4.871404] [3.045801, 4.095513]

stdB: The sample standard deviation based on the bootstrap samples, cf. (15).

Suppose that we want to test the null hypothesis H0: ϕ2 = 0 against the alternative hypothesis H1: ϕ2 > 0.
According to (41), we calculate the value of the LRT statistic which is given by t6 = 50.9026, the corresponding
p-value is 4.8533× 10−13 ≪ α = 0.05. Thus, the null hypothesis should be rejected at 5% level of significance.

If we want to test the null hypothesis H0: λ = 0 against the alternative hypothesis H1: λ ̸= 0. According to (43),
the value of the LRT statistic is t7 = 585.2057 and from (44) we have the corresponding p-value is less than 0.0001.
Thus, we should reject the null hypothesis.

The marginal analysis based on the Type II bivariate ZIGPλ is the same as that based on the Type I bivariate
ZIGPλ, which is still given by (45) and (46).
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4.4. Model comparison

We adopt the Akaike information criterion (AIC; [2]) and Bayesian information criterion (BIC; [24]) to compare
six different models:

(a) Karlis & Ntzoufras [18] considered two regression models to fit the data; i.e., bivariate Poisson (BP)
constructed by the method of trivariate reduction based on three independent Poisson(θi) variables for
i = 0, 1, 2, and

(b) diagonal inflated bivariate Poisson (DIBP), which led to a model with only (0, 0) inflation but without (1,1)
inflation in the current case. For the purpose of comparison, we concentrate our attention upon the situation
of without covariates.

(c) Liu & Tian [22] recently proposed the Type I multivariate ZIP distribution to fit the data in which Y1 and Y2

are correlated just through a common zero inflation factor.

(d) Type I bivariate ZIPλ; i.e., ZIP(I)
λ (ϕ; θ1, θ2), see the third paragraph of Section 4.2.

(e) Type I bivariate ZIGPλ, see Section 4.1.

(f) Type II bivariate ZIGPλ, see Section 4.3.

The estimates of parameters for first four models are reported in the second column of Table 7. The values of
AIC and BIC based on the Total Likelihood Function are summarized in the last two columns of Table 7. From
Table 7, we can see that the Type II bivariate ZIGPλ is the best model in terms of the log-likelihood, AIC and BIC.
It also coincides with the result from the marginal analysis.

Table 7
Comparison of six different models via AIC and BIC

Parameter Log- Criterion

Model estimation likelihood AIC BIC

(a) BP
θ̂0 = 0.125601, θ̂1 = 0.176134,

−11268.36 22542.71 22562.38
θ̂2 = 0.737020

(b) DIBP
ϕ̂ = 0.4763110, θ̂0 = 0.074470,

−10260.96 20529.92 20556.14
θ̂1 = 0.501701, θ̂2 = 1.572730

(c) Type I bivaraite ZIP
ϕ̂ = 0.483007, θ̂1 = 0.583633,

−10279.91 20565.82 20585.48
θ̂2 = 1.668533

(d) Type I bivaraite ZIPλ

ϕ̂ = 0.489964, θ̂1 = 0.588041,
−10707.34 21422.69 21448.90

θ̂2 = 1.685382, λ̂ = −0.477044

(e) Type I bivariate ZIGPλ −9899.595 19811.19 19850.52

(f) Type II bivariate ZIGPλ −9884.282 19780.56 19819.89

BP and DIBP: See Karlis & Ntzoufras [18].
Type I bivariate ZIP: See Liu & Tian [22].
Type I bivariate ZIPλ: = ZIP(I)

λ (ϕ; θ1, θ2), see the third paragraph of Section 4.2.

On the other hand, we can compare the performances of these models via the estimated mean, variance and
correlation coefficient which are reported in Table 8.

From Table 8, we can see that both the Type I and Type II bivariate ZIGPλ distributions perform better at adjusting
the over-dispersion of the data, while the Type I bivariate ZIP and Type I bivariate ZIPλ have better estimates on
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the correlation coefficient. The key point lies on that the GP distribution in the ZIGPλ has one more parameter
than the Poisson distribution, thus it can better accommodate the degree of over-dispersion and zero-inflation in
the data. Moreover, the GP distribution can also model under-dispersed data depending on the values of the two
parameters. Besides, the addition of the multiplicative factor λ in the pmf (1) can further improve the model fitting
so that it can fit either positively or negatively correlated count data.

Table 8
Comparison of estimated mean, variance and correlation coefficient for four different models

Y1 Y2 Correlation
Model Mean Variance Mean Variance coefficient
Sample 0.3017341 0.6370176 0.8626204 2.0032855 0.3077787
Type I bivariate ZIP 0.3017342 0.3867927 0.8626199 1.5578166 0.3132676
Type I bivaraite ZIPλ 0.2999224 0.3863357 0.8596060 1.5694480 0.2886614
Type I bivariate ZIGPλ 0.3036044 0.5610839 0.8613954 2.1021857 0.2370878
Type II bivariate ZIGPλ 0.3035323 0.5632274 0.8601007 2.0277335 0.2678956

5. Simulation studies

To evaluate the performance of the proposed methods for the two types of bivariate ZIGPλ distributions, we first
investigate the accuracy of point estimators and interval estimators. Next, we focus on the type I error rates and
powers of the LRT in the Type I and Type II bivariate ZIGPλ distributions, respectively.

5.1. Accuracy of point estimators and interval estimators

In this subsection, we assess the accuracy of the point estimators and interval estimators in the two types of bivariate
ZIGPλ distributions. We consider one case for each type. For the Type I bivariate ZIGPλ distribution, the true
values of the parameters (ϕ; θ1, θ2, α1, α2, λ) are set to be (0.4; 0.5, 0.3, 0.6, 0.2, 2). Based on (4), the estimated
correlation coefficient between the two random variables Y1 and Y2 is 0.276215; i.e., they are positively correlated.
For the Type II bivariate ZIGPλ distribution, we consider the situation with zero inflation only in one margin, and
the true values of the parameters (ϕ1, ϕ2; θ1, θ2, α1, α2, λ) are set to be (0, 0.4; 1, 0.6, 0.3, 0.4,−2). Based on the
first formula of (31), the estimated correlation coefficient between Y1 and Y2 is −0.1513673, indicating negative
correlation.

Sample size is set to be n = 1, 000. In the first case, we generate (Y1j , Y2j)
⊤ iid∼ ZIGP(I)

λ (ϕ; θ1, θ2, α1, α2) for
j = 1, . . . , n, then calculate the MLEs via the EM algorithm embedded with the Newton–Raphson algorithm
specified by (11)–(12) and 95% bootstrap CIs with G = 5, 000 bootstrap replications. In the second case, we
generate (Y1j , Y2j)

⊤ iid∼ ZIGP(II)
λ (ϕ1, ϕ2; θ1, θ2, α1, α2) for j = 1, . . . , n based on the given parameter configuration

and calculate the MLEs via the EM algorithm embedded with the Newton–Raphson algorithm specified by (34)–
(35) and 95% bootstrap CIs with G = 5, 000 bootstrap replications. Next, we independently repeat each process for
1000 times, the resultant mean of the MLEs (denoted by MLE), the mean squared errors of the estimates (denoted
by MSE), the average width of confidence intervals for parameters (denoted by Width) and the average coverage
proportion of bootstrap CIs (denoted by CP) are reported in Table 9, respectively.

5.2. Performance of the LRT in Type I bivariate ZIGPλ

In this subsection, we investigate the performance of the LRT for testing hypotheses (19) and (22) for the Type
I bivariate ZIGPλ distribution. We conduct extensive simulations to observe the changes of type I error rates and
powers against the sample sizes which are set to be n = 500(50)950.
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5.2.1. LRT for testing H0: ϕ = 0. To estimate the type I error rates (with H0: ϕ = 0) and powers (with
H1: ϕ > 0) for various sample sizes, where the values of ϕ in H1 are chosen to be 0.01 and 0.05. Given a
combination of parameters (n, ϕ, θ1 = 1, θ2 = 0.6, α1 = 0.3, α2 = 0.4, λ = 2), we generate

(Y
(l)
11 , Y

(l)
21 )⊤, . . . , (Y

(l)
1n , Y

(l)
2n )⊤

iid∼ ZIGP(I)
λ (ϕ; θ1, θ2, α1, α2)

for l = 1, . . . , L (L = 5, 000). For each group of samples {Y (l)
1j , Y

(l)
2j )⊤}nj=1, we conduct the testing hypothesis. Let

r1 denote the number of rejecting the null hypothesis H0: ϕ = 0 by the test statistic T1 given by (20). Then the
actual significance level can be estimated by r1/L with ϕ = 0 and the power of the test statistic T1 can be estimated
by r1/L with ϕ > 0.

The empirical levels/powers of the LRT statistic T1 are summarized in Table 10. Figure 3 plots the type I error
rates and powers of the LRT in testing H0: ϕ = 0 against H1 : ϕ > 0 with two different values of ϕ > 0 for various
sample sizes.

Table 9
MLEs and bootstrap confidence intervals of parameters

Parameter ϕ θ1 θ2 α1 α2 λ

Type I
bivariate
ZIGPλ

True value 0.4 0.5 0.3 0.6 0.2 2.0
MLE 0.382 0.517 0.308 0.630 0.217 2.028
MSE −0.018210 0.016535 0.007816 0.030112 0.017301 0.027906
Width 0.538 0.519 0.296 1.049 0.795 3.854
CP 0.937 0.963 0.962 0.943 0.947 0.943

Parameter ϕ2 θ1 θ2 α1 α2 λ

Type II
bivariate
ZIGPλ

True value 0.4 1.0 0.6 0.3 0.4 −2.0

MLE 0.381 1.001 0.615 0.299 0.425 −2.046

MSE −0.019835 0.001094 0.014582 −0.000573 0.025374 −0.046284
Width 0.501 0.152 0.588 0.111 0.794 1.600
CP 0.941 0.949 0.959 0.950 0.945 0.952

NOTE: MLE is the mean of the 1000 point estimates via the EM algorithm embedded with the Newton–Raphson algorithm
(11)–(12) and (34)–(35), respectively; MSE is equal to the sum of the variance and the squared bias of the estimator; Width
and CP are the average width and coverage proportion of 1000 bootstrap confidence intervals.

Table 10
Empirical levels/powers of the LRT statistic T1 based on L = 5,000 replications

Sample Empirical Empirical power ϕ Sample Empirical Empirical power ϕ
size (n) level 0.01 0.05 size (n) level 0.01 0.05
500 0.048 0.064 0.194 750 0.046 0.078 0.236
550 0.058 0.068 0.186 800 0.046 0.076 0.232
600 0.046 0.068 0.196 850 0.062 0.084 0.246
650 0.060 0.066 0.210 900 0.042 0.084 0.238
700 0.056 0.076 0.212 950 0.056 0.088 0.250

5.2.2. LRT for testing H0: λ = 0. To estimate the type I error rates (with H0: λ = 0) and powers (with
H1: λ ̸= 0) for various sample sizes, where the values of λ in H1 are chosen to be −1, 1, 2. Given a combination
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of parameters (n, ϕ = 0.2, θ1 = 1, θ2 = 0.6, α1 = 0.3, α2 = 0.4, λ), we generate

(Y
(l)
11 , Y

(l)
21 )⊤, . . . , (Y

(l)
1n , Y

(l)
2n )⊤

iid∼ ZIGP(I)
λ (ϕ; θ1, θ2, α1, α2)

for l = 1, . . . , L (L = 5, 000). For each group of samples {Y (l)
1j , Y

(l)
2j )⊤}nj=1, we conduct the testing hypothesis. Let

r2 denote the number of rejecting the null hypothesis H0: λ = 0 by the test statistic T2 given by (23). Then the
actual significance level can be estimated by r2/L with λ = 0 and the power of the test statistic T2 can be estimated
by r2/L with λ ̸= 0.

The empirical levels/powers of the LRT statistic T2 are summarized in Table 11 and Figure 4 shows the changes
of the type I error rates and powers of the LRT in testing H0: λ = 0 against H1 : λ ̸= 0 with three different values
of λ ̸= 0 for various sample sizes.
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Figure 3. (i) The type I error rates for testing H0: ϕ = 0 against H1: ϕ > 0 in the Type I bivariate ZIGPλ distribution and the
dashed line is set as the predetermined significance level of α = 0.05; (ii) the powers when ϕ = 0.01 in H1; (iii) the powers
when ϕ = 0.05 in H1.

5.3. Performance of the LRT in Type II bivariate ZIGPλ

In this subsection, we investigate the performance of the LRT for the testing hypotheses (36) and (39) for the Type
II bivariate ZIGPλ distribution. We conduct extensive simulations to observe the changes of type I error rates and
powers of the LRT. The sample sizes are set to be n = 500(50)950.
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Table 11
Empirical levels/powers of the LRT statistic T2 based on L = 5,000 replications

Sample Empirical Empirical power λ Sample Empirical Empirical power λ
size (n) level −1 1 2 size (n) level −1 1 2
500 0.062 0.352 0.346 0.932 750 0.044 0.546 0.526 0.994
550 0.046 0.390 0.404 0.946 800 0.064 0.552 0.572 0.998
600 0.050 0.462 0.466 0.972 850 0.040 0.556 0.606 0.998
650 0.042 0.494 0.472 0.992 900 0.046 0.594 0.612 0.998
700 0.058 0.502 0.498 0.990 950 0.050 0.604 0.654 1
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Figure 4. (i) The type I error rates for testing H0: λ = 0 against H1: λ ̸= 0 in the Type I bivariate ZIGPλ distribution and the
dashed line is set as the predetermined significance level of α = 0.05; (ii) the powers when λ = −1 in H1; (iii) the powers
when λ = 1 in H1; (iv) the powers when λ = 2 in H1.

5.3.1. LRT for testing H0: ϕ1 = ϕ2 = 0. For simplicity, we only estimate the type I error rates (with H0: ϕ1 =
ϕ2 = 0) of the LRT for various sample sizes. Given a combination of parameters (n, ϕ1 = 0, ϕ2 = 0, θ1 = 1, θ2 =
0.6, α1 = 0.3, α2 = 0.4, λ = −2), we generate

(Y
(l)
11 , Y

(l)
21 )⊤, . . . , (Y

(l)
1n , Y

(l)
2n )⊤

iid∼ ZIGP(II)
λ (0, 0; θ1, θ2, α1, α2)
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for l = 1, . . . , L (L = 1, 000). For each group of samples {Y (l)
1j , Y

(l)
2j )⊤}nj=1, we conduct the testing hypothesis. Let

r4 denote the number of rejecting the null hypothesis H0: (ϕ1, ϕ2) = (0, 0) by the test statistic T4 given by (37).
Then the actual significance level can be estimated by r4/L with (ϕ1, ϕ2) = (0, 0).

The empirical levels of the LRT statistic T4 are summarized in Table 12 and Figure 5 plots the type I error rates
of the LRT in testing H0: (ϕ1, ϕ2) = (0, 0) against H1 : (ϕ1, ϕ2) ̸= (0, 0) for different sample sizes.

Table 12
Empirical levels of the LRT statistic T4 based on L = 1,000 replications

Sample size (n) 500 500 600 650 700 750 800 850 900 950
Empirical level 0.050 0.048 0.056 0.046 0.050 0.054 0.052 0.044 0.048 0.062

500 600 700 800 900

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

 φ1 = φ2 = 0

Sample size n

Si
m

ul
at

ed
 s

ig
ni

fic
an

t l
ev

el

Figure 5. The type I error rates for testing H0: (ϕ1, ϕ2) = (0, 0) against H1: (ϕ1, ϕ2) ̸= (0, 0) in the Type II bivariate ZIGPλ
distribution and the dashed line is set as the predetermined significance level of α = 0.05.

5.3.2. LRT for testing H0: ϕ2 = 0. We consider the case with zero inflation only in Y2 margin and the true
values of the parameters (ϕ1, ϕ2; θ1, θ2, α1, α2, λ) are set to be (0, ϕ2; 1, 0.6, 0.3, 0.4,−2). To estimate the type I
error rates (with H0: ϕ2 = 0) and powers (with H1: ϕ2 > 0) for various sample sizes, where the values of ϕ2 in H1

are chosen to be 0.01, 0.05, 0.10. Based on the given parameters (n, ϕ1 = 0, ϕ2, θ1 = 1, θ2 = 0.6, α1 = 0.3, α2 =
0.4, λ = −2), we generate

(Y
(l)
11 , Y

(l)
21 )⊤, . . . , (Y

(l)
1n , Y

(l)
2n )⊤

iid∼ ZIGP(II)
λ (0, ϕ2; θ1, θ2, α1, α2)

for l = 1, . . . , L (L = 1, 000). For each group of samples {Y (l)
1j , Y

(l)
2j )⊤}nj=1, we conduct the testing hypothesis.

Let r6 denote the number of rejecting the null hypothesis H0: ϕ2 = 0 by the test statistic T6 given by (41). Then
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the actual significance level can be estimated by r6/L with ϕ2 = 0 and the power of the test statistic T6 can be
estimated by r6/L with ϕ2 > 0.

The empirical levels/powers of the LRT statistic T6 are summarized in Table 13 and Figure 6 portrays the trend
of the type I error rates and powers of the LRT in testing H0: ϕ2 = 0 against H1 : ϕ2 > 0 with three different values
of ϕ2 > 0 for various sample sizes.

From Figures 3–6, we can see that the lines for empirical levels of these tests all fluctuate near the line of
α = 0.05, indicating that they perform well in controlling the type I error rates around the pre-chosen nominal
level. The curves for empirical powers under different situations are non-decreasing in general although including
some downs, which still shows that the tests tend to be more powerful as the sample size n becomes larger.

Table 13
Empirical levels/powers of the LRT statistic T6 based on L = 1,000 replications

Sample Empirical Empirical power ϕ2 Sample Empirical Empirical power ϕ2

size (n) level 0.01 0.05 0.10 size (n) level 0.01 0.05 0.10
500 0.052 0.046 0.092 0.134 750 0.046 0.066 0.110 0.154
550 0.046 0.054 0.092 0.138 800 0.052 0.070 0.112 0.158
600 0.056 0.058 0.096 0.140 850 0.050 0.070 0.114 0.168
650 0.050 0.056 0.106 0.140 900 0.042 0.074 0.116 0.188
700 0.048 0.060 0.106 0.146 950 0.048 0.076 0.120 0.200

6. Discussion

This paper extended the new bivariate generalized Poisson distribution [13] to zero-inflated situation that can
model bivariate count data with zero-inflated marginal distributions. An important characteristic is that it can model
negatively correlated data while most existing models cannot. It retains the flexibility of GP distribution in allowing
either over- or under-dispersion and accepts either positive or negative correlation from data. A common parameter
or two different parameters on zero inflation of the margins are both considered, including only one marginal zero
inflation in the model as a special case. However, due to the limitation that it can only apply to the bivariate case,
zero-inflated multivariate GP model are desired on the basis of the new multivariate GP distribution [1] in which
the correlation can also be positive, zero or negative.

Another problem on the function in the multiplicative factor are all chosen to be g(y) = e−y when setting
distribution, see [20, 12, 13, 1]. While no evidence is provided to show it outperformed others. Actually, the
constructed structure in the expression of probability mass function represents a group of distributions. In the
future, we may extend the proposed distribution to parametric model by considering covariates and semi-parametric
random effects model ([3]).
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Figure 6. (i) The type I error rates for testing H0: ϕ2 = 0 against H1: ϕ2 > 0 in the Type II bivariate ZIGPλ distribution and
the dashed line is set as the predetermined significance level of α = 0.05; (ii) the powers when ϕ2 = 0.01 in H1; (iii) the
powers when ϕ2 = 0.05 in H1; (iv) the powers when ϕ2 = 0.10 in H1.
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Appendix A: Derivation of (10)

Since ci = exp[θi(si − 1)] and log si − αiθi(si − 1) + 1 = 0 for i = 1, 2, the related partial derivatives are given
by

∂ci
∂θi

= (si − 1)(1− αiθisi)
−1ci,

∂ci
∂αi

= θ2i si(si − 1)(1− αiθisi)
−1ci,

∂2ci
∂θ2i

=
{
(si − 1)2(1− αiθisi)

−2 + αisi(si − 1)(1− αiθisi)
−2[2 + αiθi(si − 1)(1− αiθisi)

−1]
}
ci,

∂2ci
∂α2

i

=
{
[si(si − 1)θ2i (1− αiθisi)

−1]2 + θ3i si(si − 1)(1− αiθisi)
−2[2si + (si − 1)(1− αiθisi)

−1]
}
ci,

∂2ci
∂θi∂αi

=
{
si[(si − 1)θi(1− αiθisi)

−1]2 + θisi(si − 1)(1− αiθisi)
−2[2 + αiθi(si − 1)(1− αiθisi)

−1]
}
ci.

First we set

A1 =
λ(1− c2)

1 + λ(1− c1)(1− c2)
, A2j =

λ(e−y2j − c2)

1 + λ(e−y1j − c1)(e−y2j − c2)
,

B1 =
λ(1− c1)

1 + λ(1− c1)(1− c2)
, B2j =

λ(e−y1j − c1)

1 + λ(e−y1j − c1)(e−y2j − c2)
,

C1 =
(1− c1)(1− c2)

1 + λ(1− c1)(1− c2)
, C2j =

(e−y1j − c1)(e−y2j − c2)

1 + λ(e−y1j − c1)(e−y2j − c2)
,

D1 =
λ

[1 + λ(1− c1)(1− c2)]2
, D2j =

λ

[1 + λ(e−y1j − c1)(e−y2j − c2)]2
,

E1 =
1− c2

[1 + λ(1− c1)(1− c2)]2
, E2j =

(e−y2j − c2)

[1 + λ(e−y1j − c1)(e−y2j − c2)]2
,

F1 =
1− c1

[1 + λ(1− c1)(1− c2)]2
, F2j =

(e−y1j − c1)

[1 + λ(e−y1j − c1)(e−y2j − c2)]2
.

The first and second partial derivatives in (10) are given by the following expressions:

∂ℓ2
∂θ1

= z +
N1

θ1
− n−N1α1 +

(
zA1 −

n∑
j=1

A2j

)
∂c1
∂θ1

,

∂ℓ2
∂θ2

= z +
N2

θ2
− n−N2α2 +

(
zB1 −

n∑
j=1

B2j

)
∂c2
∂θ2

,

∂ℓ2
∂α1

=

n∑
j=1

y1j(y1j − 1)

1 + α1y1j
−N1θ1 +

(
zA1 −

n∑
j=1

A2j

)
∂c1
∂α1

,

∂ℓ2
∂α2

=

n∑
j=1

y2j(y2j − 1)

1 + α2y2j
−N2θ2 +

(
zB1 −

n∑
j=1

B2j

)
∂c2
∂α2

,
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∂ℓ2
∂λ

= −zC1 +

n∑
j=1

C2j ,

and

∂2ℓ2
∂θ21

= −N1

θ21
+

(
zA2

1 −
n∑

j=1

A2
2j

)(
∂c1
∂θ1

)2

+

(
zA1 −

n∑
j=1

A2j

)
∂2c1
∂θ21

,

∂2ℓ2
∂θ22

= −N2

θ22
+

(
zB2

1 −
n∑

j=1

B2
2j

)(
∂c2
∂θ2

)2

+

(
zB1 −

n∑
j=1

B2j

)
∂2c2
∂θ22

,

∂2ℓ2
∂α2

1

= −
n∑

j=1

y21j(y1j − 1)

(1 + α1y1j)2
+

(
zA2

1 −
n∑

j=1

A2
2j

)(
∂c1
∂α1

)2

+

(
zA1 −

n∑
j=1

A2j

)
∂2c1
∂α2

1

,

∂2ℓ2
∂α2

2

= −
n∑

j=1

y22j(y2j − 1)

(1 + α2y2j)2
+

(
zB2

1 −
n∑

j=1

B2
2j

)(
∂c2
∂α2

)2

+

(
zB1 −

n∑
j=1

B2j

)
∂2c2
∂α2

2

,

∂2ℓ2
∂λ2

= zC2
1 −

n∑
j=1

C2
2j ,

∂2ℓ2
∂θ1∂θ2

= −

(
zD1 −

n∑
j=1

D2j

)
∂c1
∂θ1

∂c2
∂θ2

,

∂2ℓ2
∂θ1∂α1

= −N1 +

(
zA2

1 −
n∑

j=1

A2
2j

)
∂c1
∂θ1

∂c1
∂α1

+

(
zA1 −

n∑
j=1

A2j

)
∂2c1

∂θ1∂α1
,

∂2ℓ2
∂θ1∂α2

= −

(
zD1 −

n∑
j=1

D2j

)
∂c1
∂θ1

∂c2
∂α2

,

∂2ℓ2
∂θ1∂λ

=

(
zE1 −

n∑
j=1

E2j

)
∂c1
∂θ1

,

∂2ℓ2
∂θ2∂α1

= −

(
zD1 −

n∑
j=1

D2j

)
∂c1
∂α1

∂c2
∂θ2

,

∂2ℓ2
∂θ2∂α2

= −N2 +

(
zB2

1 −
n∑

j=1

B2
2j

)(
∂c2
∂θ2

)2

+

(
zB1 −

n∑
j=1

B2j

)
∂2c2
∂θ22

,

∂2ℓ2
∂θ2∂λ

=

(
zF1 −

n∑
j=1

F2j

)
∂c2
∂θ2

,

∂2ℓ2
∂α1∂α2

= −

(
zD1 −

n∑
j=1

D2j

)
∂c1
∂α1

∂c2
∂α2

,

Stat., Optim. Inf. Comput. Vol. 3, June 2015



C. ZHANG, G. TIAN AND X. HUANG 133

∂2ℓ2
∂α1∂λ

=

(
zE1 −

n∑
j=1

E2j

)
∂c1
∂α1

,

∂2ℓ2
∂α2∂λ

=

(
zF1 −

n∑
j=1

F2j

)
∂c2
∂α2

,

where ℓ2 =̂ ℓ2(θ|Ycom) which is given in (9).

Appendix B: Derivation of (33)

First we set

G1j =
λ(e−y2j − c2)

1 + λ(e−y1j − c1)(e−y2j − c2)
, G2 =

λ(1− c2)

1 + λ(1− c1)(1− c2)
,

G3j =
λ(e−y2j − c2)

1 + λ(1− c1)(e−y2j − c2)
, G4j =

λ(1− c2)

1 + λ(e−y1j − c1)(1− c2)
,

H1j =
λ(e−y1j − c1)

1 + λ(e−y1j − c1)(e−y2j − c2)
, H2 =

λ(1− c1)

1 + λ(1− c1)(1− c2)
,

H3j =
λ(1− c1)

1 + λ(1− c1)(e−y2j − c2)
, H4j =

λ(e−y1j − c1)

1 + λ(e−y1j − c1)(1− c2)
,

I1j =
(e−y1j − c1)(e−y2j − c2)

1 + λ(e−y1j − c1)(e−y2j − c2)
, I2 =

(1− c1)(1− c2)

1 + λ(1− c1)(1− c2)
,

I3j =
(1− c1)(e−y2j − c2)

1 + λ(1− c1)(e−y2j − c2)
, I4j =

(e−y1j − c1)(1− c2)

1 + λ(e−y1j − c1)(1− c2)
,

J1j =
λ

[1 + λ(e−y1j − c1)(e−y2j − c2)]2
, J2 =

λ

[1 + λ(1− c1)(1− c2)]2
,

J3j =
λ

[1 + λ(1− c1)(e−y2j − c2)]2
, J4j =

λ

[1 + λ(e−y1j − c1)(1− c2)]2
,

K1j =
(e−y2j − c2)

[1 + λ(e−y1j − c1)(e−y2j − c2)]2
, K2 =

(1− c2)

[1 + λ(1− c1)(1− c2)]2
,

K3j =
(e−y2j − c2)

[1 + λ(1− c1)(e−y2j − c2)]2
, K4j =

(1− c2)

[1 + λ(e−y1j − c1)(1− c2)]2
,

L1j =
(e−y1j − c1)

[1 + λ(e−y1j − c1)(e−y2j − c2)]2
, L2 =

(1− c1)

[1 + λ(1− c1)(1− c2)]2
,

L3j =
(1− c1)

[1 + λ(1− c1)(e−y2j − c2)]2
, L4j =

(e−y1j − c1)

[1 + λ(e−y1j − c1)(1− c2)]2
.

The first derivatives in (33) are given by

∂ℓ∗2
∂θ1

= −(n− u0 − u1 −Nw) +
N1

θ1
−N1α1

−

 n∑
j=1

G1j − (u0 + u1 + u2)G2 −
∑
j∈J1

wjG3j −
∑
j∈J2

zjG4j

 ∂c1
∂θ1

,
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∂ℓ∗2
∂θ2

= −(n− u0 − u2 −Nz) +
N2

θ2
−N2α2

−

 n∑
j=1

H1j − (u0 + u1 + u2)H2 −
∑
j∈J1

wjH3j −
∑
j∈J2

zjH4j

 ∂c2
∂θ2

,

∂ℓ∗2
∂α1

= −N1θ1 +

n∑
j=1

y1j(y1j − 1)

1 + α1y1j
−

 n∑
j=1

G1j − (u0 + u1 + u2)G2 −
∑
j∈J1

wjG3j −
∑
j∈J2

zjG4j

 ∂c1
∂α1

,

∂ℓ∗2
∂α2

= −N2θ2 +

n∑
j=1

y2j(y2j − 1)

1 + α2y2j
−

 n∑
j=1

H1j − (u0 + u1 + u2)H2 −
∑
j∈J1

wjH3j −
∑
j∈J2

zjH4j

 ∂c2
∂α2

,

∂ℓ∗2
∂λ

=

n∑
j=1

I1j − (u0 + u1 + u2)I2 −
∑
j∈J1

wjI3j −
∑
j∈J2

zjI4j .

The second derivatives in (33) are given by

∂2ℓ∗2
∂θ21

= −N1

θ21
−

 n∑
j=1

G2
1j − (u0 + u1 + u2)G

2
2 −

∑
j∈J1

wjG
2
3j −

∑
j∈J2

zjG
2
4j

(∂c1
∂θ1

)2

−

 n∑
j=1

G1j − (u0 + u1 + u2)G2 −
∑
j∈J1

wjG3j −
∑
j∈J2

zjG4j

 ∂2c1
∂θ21

,

∂2ℓ∗2
∂θ22

= −N2

θ22
−

 n∑
j=1

H2
1j − (u0 + u1 + u2)H

2
2 −

∑
j∈J1

wjH
2
3j −

∑
j∈J2

zjH
2
4j

(∂c2
∂θ2

)2

−

 n∑
j=1

H1j − (u0 + u1 + u2)H2 −
∑
j∈J1

wjH3j −
∑
j∈J2

zjH4j

 ∂2c2
∂θ22

,

∂2ℓ∗2
∂α2

1

= −
n∑

j=1

y21j(y1j − 1)

(1 + α1y1j)2
−

 n∑
j=1

G2
1j − (u0 + u1 + u2)G

2
2 −

∑
j∈J1

wjG
2
3j −

∑
j∈J2

zjG
2
4j

( ∂c1
∂α1

)2

−

 n∑
j=1

G1j − (u0 + u1 + u2)G2 −
∑
j∈J1

wjG3j −
∑
j∈J2

zjG4j

 ∂2c1
∂α2

1

,

∂2ℓ∗2
∂α2

2

= −
n∑

j=1

y22j(y2j − 1)

(1 + α2y2j)2
−

 n∑
j=1

H2
1j − (u0 + u1 + u2)H

2
2 −

∑
j∈J1

wjH
2
3j −

∑
j∈J2

zjH
2
4j

( ∂c2
∂α2

)2

−

 n∑
j=1

H1j − (u0 + u1 + u2)H2 −
∑
j∈J1

wjH3j −
∑
j∈J2

zjH4j

 ∂2c2
∂α2

2

,
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∂2ℓ∗2
∂λ2

= −
n∑

j=1

I21j + (u0 + u1 + u2)I
2
2 +

∑
j∈J1

wjI
2
3j +

∑
j∈J2

zjI
2
4j ,

∂2ℓ∗2
∂θ1∂θ2

=

 n∑
j=1

J1j − (u0 + u1 + u2)J2 −
∑
j∈J1

wjJ3j −
∑
j∈J2

zjJ4j

 ∂c1
∂θ1

∂c2
∂θ2

,

∂2ℓ∗2
∂θ1∂α1

= −N1 −

 n∑
j=1

G2
1j − (u0 + u1 + u2)G

2
2 −

∑
j∈J1

wjG
2
3j −

∑
j∈J2

zjG
2
4j

 ∂c1
∂θ1

∂c1
∂α1

−

 n∑
j=1

G1j − (u0 + u1 + u2)G2 −
∑
j∈J1

wjG3j −
∑
j∈J2

zjG4j

 ∂2c1
∂θ1∂α1

,

∂2ℓ∗2
∂θ1∂α2

=

 n∑
j=1

J1j − (u0 + u1 + u2)J2 −
∑
j∈J1

wjJ3j −
∑
j∈J2

zjJ4j

 ∂c1
∂θ1

∂c2
∂α2

,

∂2ℓ∗2
∂θ1∂λ

= −

 n∑
j=1

K1j − (u0 + u1 + u2)K2 −
∑
j∈J1

wjK3j −
∑
j∈J2

zjK4j

 ∂c1
∂θ1

,

∂2ℓ∗2
∂θ2∂α1

=

 n∑
j=1

J1j − (u0 + u1 + u2)J2 −
∑
j∈J1

wjJ3j −
∑
j∈J2

zjJ4j

 ∂c2
∂θ2

∂c1
∂α1

,

∂2ℓ∗2
∂θ2∂α2

= −N2 −

 n∑
j=1

H2
1j − (u0 + u1 + u2)H

2
2 −

∑
j∈J1

wjH
2
3j −

∑
j∈J2

zjH
2
4j

 ∂c2
∂θ2

∂c2
∂α2

−

 n∑
j=1

H1j − (u0 + u1 + u2)H2 −
∑
j∈J1

wjH3j −
∑
j∈J2

zjH4j

 ∂2c2
∂θ2∂α2

,

∂2ℓ∗2
∂θ2∂λ

= −

 n∑
j=1

L1j − (u0 + u1 + u2)L2 −
∑
j∈J1

wjL3j −
∑
j∈J2

zjL4j

 ∂c2
∂θ2

,

∂2ℓ∗2
∂α1∂α2

=

 n∑
j=1

J1j − (u0 + u1 + u2)J2 −
∑
j∈J1

wjJ3j −
∑
j∈J2

zjJ4j

 ∂c1
∂α1

∂c2
∂α2

,

∂2ℓ∗2
∂α1∂λ

= −

 n∑
j=1

K1j − (u0 + u1 + u2)K2 −
∑
j∈J1

wjK3j −
∑
j∈J2

zjK4j

 ∂c1
∂α1

,

∂2ℓ∗2
∂α2∂λ

= −

 n∑
j=1

L1j − (u0 + u1 + u2)L2 −
∑
j∈J1

wjL3j −
∑
j∈J2

zjL4j

 ∂c2
∂α2

,

where ℓ∗2 =̂ ℓ∗2(θ|Ycom) which is given in (32).
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Appendix C: The joint pmf of the Type II bivariate ZIGPλ distribution

Let (Y1, Y2)
⊤∼ ZIGP(II)

λ (ϕ1, ϕ2; θ1, θ2, α1, α2). The joint pmf of (Y1, Y2)
⊤ is given by

Pr(Y1 = y1, Y2 = y2) = Pr(Z1X1 = y1, Z2X2 = y2).

We consider the following four cases. (i) If y1 = 0 and y2 = 0, we have

Pr(Y1 = 0, Y2 = 0)

= Pr(Z1 = 0, Z2 = 0) + Pr(Z1 = 0, Z2 = 1, X2 = 0)

+ Pr(Z1 = 1, X1 = 1, Z2 = 0) + Pr(Z1 = 1, X1 = 0, Z2 = 1, X2 = 0)

= ϕ1ϕ2 + ϕ1(1− ϕ2)e−θ2 + (1− ϕ1)ϕ2e−θ1 + (1− ϕ1)(1− ϕ2)e−(θ1+θ2)[1 + λ(1− c1)(1− c2)],

where c1 and c2 defined in (1). (ii) If y1 = 0 and y2 > 0, we have

Pr(Y1 = 0, Y2 = y2)

= Pr(Z1 = 0, Z2 = 1, X2 = y2) + Pr(Z1 = 1, X1 = 0, Z2 = 1, X2 = y2)

= (1− ϕ2)
θy2

2 (1 + α2y2)
y2−1

y2!
exp[−θ2(1 + α2y2)]

{
ϕ1 + (1− ϕ1)e−θ1 [1 + λ(1− c1)(e−y2 − c2)]

}
.

(iii) If y1 > 0 and y2 = 0, we have

Pr(Y1 = y1, Y2 = 0)

= Pr(Z1 = 1, X1 = y1, Z2 = 0) + Pr(Z1 = 1, X1 = y1, Z2 = 1, X2 = 0)

= (1− ϕ1)
θy1

1 (1 + α1y1)
y1−1

y1!
exp[−θ1(1 + α1y1)]

{
ϕ2 + (1− ϕ2)e−θ2 [1 + λ(e−y1 − c1)(1− c2)]

}
.

(iv) If y1 > 0 and y2 > 0, we have

Pr(Y1 = y1, Y2 = y2)

= Pr(Z1 = 1, X1 = y1, Z2 = 1, X2 = y2)

= (1− ϕ1)(1− ϕ2)

2∏
i=1

[
θi(1 + αiyi)

yi−1

yi!
exp[−θi(1 + αiyi)]

]
[1 + λ(e−y1 − c1)(e−y2 − c2)].

Stat., Optim. Inf. Comput. Vol. 3, June 2015



C. ZHANG, G. TIAN AND X. HUANG 137

By combining above four cases, we obtain the joint pmf of (Y1, Y2)
⊤ given by (29).
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