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Abstract We prove that under certain conditions the excursion sets volumes of stationary positively associated random
fields converge after rescaling to the normal distribution as the excursion level and the size of the observation window grow.
In addition, we provide a number of examples.
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1. Introduction

The study of excursion set properties plays an increasingly important role within modern theory of random fields.
Such objects arise in connection to a wide range of stochastic models (see, e.g., [1, 2]). Recently a number of
works appeared ([3, 4, 5]) focused on asymptotic properties of the excursion sets volumes corresponding to fixed
excursion levels and sequences of growing (in a certain sense) observation windows. Spodarev gives in [6] an
overview of the recent asymptotic results concerning the geometry of excursion sets of stationary associated random
fields.

In this paper, we show that under certain conditions the excursion sets volumes of stationary positively associated
random fields converge after rescaling to the normal distribution as both the excursion level and the size of the
observation window grow. Note that a similar model was studied in the monograph of Ivanov and Leonenko [7] for
the case of a Gaussian random field. For associated random fields on lattices the asymptotic behaviour of excursion
sets cardinalities corresponding to a growing excursion level was examined in [8].

The present paper is organized as follows. In section 2 we provide the necessary definitions. Section 3 contains
the main theorem. In section 4 we show how its conditions can be verified for Gaussian random fields, fields with
regularly varying tails and shot-noise random fields.

2. Preliminaries

We assume that all random objects are defined on a complete probability space (Ω,F ,P).
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Consider a family of random variables X = {Xt, t ∈ T}. For I ⊂ T set XI = {Xt, t ∈ I}. Let M(d) denote
the class of real-valued bounded coordinate-wise nondecreasing Borel functions on Rd, d ∈ N. According to [9], X
is called positively associated (X ∈ PA) or weakly associated, if for arbitrary disjoint finite sets I, J ⊂ T and any
functions f ∈ M(card(I)), g ∈ M(card(J)) one has

Cov(f(XI), g(XJ)) > 0.

Here card(I) denotes the cardinality of I . It is known that quite a wide range of random fields possesses the
property of positive association (see [10]). For example, any Gaussian random field with nonnegative covariance
function is positively associated.

Let Au(X, T ) = {t ∈ T : Xt > u} be the excursion set of the random field X = {Xt, t ∈ Rd} at the level u ∈ R
corresponding to the observation window T ⊂ Rd and let vd(B) be the volume of measurable B ⊂ Rd. By 1I(C)
we denote the indicator function of the set C. Obviously,

Vu(X, T ) = vd(Au(X, T )) =

∫
T

1I(Xt > u) dt.

Let ∥ · ∥ and ∥ · ∥∞ be, respectively, the Euclidean norm and the maximum norm in Rd and O(·) — the Landau
notation.

3. Central Limit Theorem

Let X be a measurable strictly stationary positively associated random field on Rd. We also assume that X is
square integrable and its covariance function r(t) = Cov(X0, Xt), t ∈ Rd, is continuous. Note that due to the latter
condition X is also associated (see [10] for the definition of association and related dependence types).

For any u ∈ R and bounded measurable B,C ⊂ Rd Fubini’s theorem implies

EVu(X, B) = vd(B)P(X0 > u),

Cov(Vu(X, B)), Vu(X, C))) =

∫
B

∫
C

Cov(1I(Xs > u), 1I(Xt > u)) ds dt > 0. (1)

Consider an increasing sequence of excursion levels {un}n∈N, 0 < un → ∞, n→ ∞. Define Sn = Vun(X, [0, n)
d),

n ∈ N, and let σ2
n = Var Sn.

Suppose that the random variable X0 has a bounded density f(·) and set γ(x) = supt>x f(t), x ∈ R.

Theorem 1
Assume that the random field X satisfies the following conditions:
(A1) r(t) = O(∥t∥−µ) for some µ > 3d;
(A2) σn → ∞, n→ ∞;
(A3) δn = nd γ2/3(un) σ

−(1+µ/3d)
n → 0, n→ ∞.

Then
Sn − ESn√

Var Sn

d−→ N (0, 1),

where d−→ denotes convergence in distribution.

The following lemma can be proved in the same way as Lemma 7.3.4 from [10].

Lemma 1
Under the conditions of Theorem 1

Cov(1I(Xs > u), 1I(Xt > u)) 6 3 · 22/3 γ2/3(u) r1/3(s− t), u ∈ R, s, t ∈ Rd. (2)
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140 A CLT FOR THE VOLUMES OF HIGH EXCURSIONS OF RANDOM FIELDS

Proof of Theorem 1. One can find a sequence mn → ∞, n→ ∞, such that md
n/σn → 0 and

nd

σ2
n

γ2/3(un) m
d−µ/3
n −→ 0, n→ ∞. (3)

To see this, consider mn = max
{
σ
1/(2d)
n , δ

1/(µ−3d)
n σ

1/d
n

}
.

Set qn = σ
1/(2d)
n m

1/2
n and rn =

⌊
n
qn

⌋
. Note that

mn

qn
−→ 0,

qdn
σn

−→ 0, n→ ∞. (4)

Using (1), (A1) and (2), we also get σ2
n = O(nd), n→ ∞. Hence, rn → ∞ as n→ ∞. Clearly, there existsN0 ∈ N

such that 0 < md
n 6 qdn 6 σn for all n > N0.

Define
S̃n = Vun

(
X, [0, rnqn)

d
)
=

∑
k∈Zd∩[0,rn)d

ζn,k, Zn =
∑

k∈Zd∩[0,rn)d

ξn,k,

where ζn,k = Vun(X, [0, qn)
d ⊕ kqn), k ∈ Zd ∩ [0, rn)

d, and {ξn,k, k ∈ Zd ∩ [0, rn)
d} are independent random

variables distributed in the same way as Vun(X, [0, qn)
d), n > N0. Approximating integrals with finite sums in

L1 (see [4]) it is not difficult to show that, since the random field X is positively associated and its covariance
function is continuous, {ζn,k, k ∈ Zd ∩ [0, rn)

d} ∈ PA.
Before we continue with the proof of the theorem, we establish the following lemma.

Lemma 2
Under the conditions of Theorem 1 it holds that

Var Zn

Var Sn
−→ 1, n→ ∞.

Proof. Due to (1), the variance of Zn is not greater than the variance of Sn. Thus, it suffices to prove that

lim sup
n→∞

Var Sn

Var Zn
6 1. (5)

Observe that for n > N0

Var Sn = Var Zn +
∑

k∈Zd∩[0,rn)d

Cov
(
Vun(X, [0, qn)

d ⊕ kqn), Vun(X, [0, n)
d\([0, qn)d ⊕ kqn))

)
+ Cov

(
Vun(X, [0, n)

d\[0, rnqn)d), Vun(X, [0, n)
d)
)
= Var Zn +Σ1 +Σ2.

Below we show that Σ1 and Σ2 admit the following estimates

Σ1 6 C1 n
d γ2/3(un) m

d−µ/3
n + C2

mn

qn
Var Zn, (6)

Σ2 6 C3 r
−1
n Var Sn, n > N0. (7)

Here, and in the following, C1, C2, C3, . . . are some positive real numbers which may only depend on d, r and µ.
Applying (6) and (7), we have

Var Sn

Var Zn

(
1− C3 r

−1
n − C1

nd

σ2
n

γ2/3(un) m
d−µ/3
n

)
6 1 + C2

mn

qn
, n > N0.

Due to (3) and (4), the latter inequality implies (5).
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Now let us obtain (6). It can be easily seen that (1) yields

Cov(Vun(X, [0, qn)
d ⊕ kqn), Vun(X, [0, n)

d\([0, qn)d ⊕ kqn)))

6 Cov(Vun(X, [0, qn)
d), Vun(X, [−n, 2n)d\[0, qn)d)), k ∈ Zd ∩ [0, rn)

d.

Thus, Σ1 6 R1 +R2, where

R1 = rdn Cov(Vun(X, [0, qn)
d), Vun(X, [−n, 2n)d\[−mn, qn +mn)

d)),

R2 = rdn Cov(Vun(X, [0, qn)
d), Vun(X, [−mn, qn +mn)

d\[0, qn)d)).

Using (2) and (A1), we get

R1 6 C4 γ
2/3(un) r

d
n q

d
n

∫
∥x∥∞>mn

r1/3(x) dx

6 C5 γ
2/3(un) n

d

∫
∥x∥∞>mn

∥x∥−µ/3 dx 6 C1 n
d γ2/3(un) m

d−µ/3
n .

Now we show that R2 6 C2 (mn/qn)Var Zn. Set τ =
⌊
2qn
mn

⌋
. Clearly,

mn

qn
VarZn =

mn

qn
rdn VarVun(X, [0, qn)

d) > C6
mn

qn
rdn VarVun(X, [−2qn, 3qn)

d)

> C6
mn

qn
rdn Cov

(
Vun(X, [−2qn, 3qn)

d), Vun(X, [−2qn, 3qn)
d\[0, qn)d)

)
> C6

mn

qn
rdn Cov

(
Vun(X, [−2qn, 3qn)

d),

τ∑
i=1

Vun(X, [−imn, qn + imn)
d\[−(i− 1)mn, qn + (i− 1)mn)

d)
)

> C6
mn

qn
rdn

τ∑
i=1

Cov
(
Vun(X, [−(i− 1)mn, qn + (i− 1)mn)

d),

Vun(X, [−imn, qn + imn)
d\[−(i− 1)mn, qn + (i− 1)mn)

d)
)

> C6 r
d
n Cov

(
Vun(X, [0, qn)

d), Vun(X, [−mn, qn +mn)
d\[0, qn)d)

)
.

Hence, the desired inequality holds for C2 = 1/C6. To conclude the proof of the lemma, it remains to note that
the method we used to estimate R2 also yields (7). Lemma 2 is proved. �

Due to (7) and Lemma 2 the terms Sn−ESn√
Var Sn

and S̃n−E S̃n√
Var Zn

have the same limiting distribution as n→ ∞. Thus,

it suffices to show that S̃n−E S̃n√
Var Zn

has the same limiting distribution as Zn−EZn√
Var Zn

and that Zn−EZn√
Var Zn

converges in
distribution to the standard Gaussian law as n→ ∞.

Applying Newman’s inequality (cf. [10, Corollary 1.5.5]), we get∣∣∣∣∣E exp

(
it
S̃n − E S̃n√

Var Zn

)
− E exp

(
it
Zn − EZn√

Var Zn

)∣∣∣∣∣
6

∑
k,l∈Zd∩[0,rn)

d

k ̸=l

2t2

Var Zn
Cov

(
Vun(X, [0, qn)

d ⊕ kqn), Vun(X, [0, qn)
d ⊕ lqn)

)

6 2t2

Var Zn
Σ1, (8)
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142 A CLT FOR THE VOLUMES OF HIGH EXCURSIONS OF RANDOM FIELDS

where Σ1 appears in the proof of Lemma 2. Now it is implied by (A2), (6), (3), Lemma 2 and (4) that the right-hand
side of (8) tends to zero as n→ ∞.

As for the convergence of Zn−EZn√
Var Zn

to N (0, 1), it follows from the central limit theorem in the form of Lindeberg.
Indeed, the Lindeberg function

Ln(ε) =
1

Var Zn

∑
k∈Zd∩[0,rn)d

E(ξn,k − E ξn,k)21I
(
|ξn,k − E ξn,k| > ε

√
Var Zn

)
is equal to zero for any ε > 0 and n > n0(ε), since for all k

|ξn,k − E ξn,k|√
Var Zn

6 qdn√
Var Zn

−→ 0, n→ ∞. (9)

In order to obtain (9), we employed (4) and Lemma 2. The other conditions of the Lindeberg theorem are also
easily checked. Theorem 1 is proved. �

4.1. Gaussian Random Fields

Let X = {Xt, t ∈ Rd} be a measurable stationary positively associated Gaussian random field with EX0 = 0 and
VarX0 = 1. Suppose that the covariance function r(·) is continuous and fulfills (A1). Consider

un 6
√
c logn, c =

d(µ− 3d)

(1 + ν)(µ+ d)
, n ∈ N,

where ν is some positive number. For any s, t ∈ Rd it holds (see [4]) that

Cov(1I(Xs > un), 1I(Xt > un)) =
1

2π

∫ r(t−s)

0

1√
1− x2

exp

(
− u2n
1 + x

)
dx, n ∈ N.

Consequently,

VarSn > 1

2π
exp

(
−u2n

) ∫
[0,n)d

∫
[0,n)d

r(t− s) dt ds.

Since r(·) is continuous and r(0) = 1, we have

lim inf
n→∞

VarSn

nd exp(−u2n)
> 0. (10)

It is easy to show that (10) implies (A2). Applying (10) and the fact that

γ(un) =
1√
2π

exp
(
−u2n/2

)
,

we also obtain

δn = O
(
n−(µ−3d)/6 exp

(
1

6
(1 + µ/d) u2n

))
, n→ ∞.

It is easily seen that for our choice of c

nc(1+µ/d)

nµ−3d
−→ 0 as n→ ∞.

Therefore, δn → 0 as n→ ∞.
The case of a Gaussian random field with non-integrable covariance function was considered by Ivanov and

Leonenko in [7]. It is interesting to note that the central limit theorem they obtained features the sequence
{un, n ∈ N} growing rapidly enough for Var Sn to converge to 0 as n→ ∞.
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4.2. Random Fields with Regularly Varying Tails

Let X = {Xt, t ∈ Rd} be a measurable stationary square integrable positively associated random field. Assume
that its covariance function r(·) belongs to the C2(Rd) class and fulfills (A1). We also assume that X0 has a
bounded density. Let F be the distribution function of X0. Suppose that it admits, for some α > 0, the following
representation

1− F (x) = x−αL(x), x > 0,

where L(·) is a slowly varying function on (0,∞), i.e. 1− F (·) is regularly varying in the sense of Karamata (see
[11]). We will assume α > 2. Note that for every ε > 0

xεL(x) −→ ∞,
L(x)

xε
−→ 0, x→ ∞. (11)

Since r(·) attains its maximum at zero, ∇r(0) = 0. Therefore, using Taylor’s expansion, one can find b > 0 and
δ ∈ (0, 1/2) such that

r(0)− r(t) 6 b∥t∥2 for all t ∈ [0, δ)d. (12)

We show that under certain restrictions on the growth rate of un, n→ ∞, X satisfies the conditions of Theorem 1.
We need to estimate the following covariance from below

Cov(1I(X0 > un), 1I(Xt > un)), t ∈ [0, δ)d, n ∈ N.

Clearly,

Cov(1I(X0 > un), 1I(Xt > un)) = P(X0 > un, Xt > un)− P2(X0 > un)

> P(X0 > 2 un, X0 −Xt 6 un)− P2(X0 > un)

> P(X0 > 2 un)− P(X0 −Xt > un)− P2(X0 > un), n ∈ N.

Using Markov’s inequality, (12) and the fact that 2(r(0)− r(t)) = E(X0 −Xt)
2, we obtain

P(X0 > 2 un)− P(X0 −Xt > un)− P2(X0 > un)

> 2−α u−α
n L(2un)− 2 b ∥t∥2 u−2

n − u−2α
n L2(un)

= ∆1(n)−∆2(n)−∆3(n), t ∈ [0, δ)d, n ∈ N.

Applying (11), it is easy to show that for arbitrary ε > 0

2 b u−α−2ε
n +∆3(n)

∆1(n)
−→ 0, n→ ∞.

Hence, for sufficiently large n and ∥t∥ 6 u
1−α/2−ε
n we have

∆1(n)−∆2(n)−∆3(n) >
1

2
∆1(n) > A u−α−ν

n

for any ν > 0 and some A = A(L,α, ν) > 0.
Therefore, for any ε, ν > 0 and large enough n, it holds that∫

[0,δ)d
Cov(1I(X0 > un), 1I(Xt > un)) dt >

∫
[0,u

1−α/2−ε
n )d

Cov (1I(X0 > un), 1I(Xt > un)) dt > A ud−(d+2)α/2−εd−ν
n .

Consequently,

σ2
n > (n/2)d

∫
[0,δ)d

Cov (1I(X0 > un), 1I(Xt > un)) dt > A 2−d nd ud−(d+2)α/2−εd−ν
n .
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144 A CLT FOR THE VOLUMES OF HIGH EXCURSIONS OF RANDOM FIELDS

Thus, σn → ∞ if un = O(na), n→ ∞, where a < d/((d+ 2)α/2− d).
Since the density of X0 is bounded, we can always find c > 0 such that

γ(x) = O(x−c), x→ ∞.

We have

δn = nd γ2/3(un) σ
−(1+µ/(3d))
n

6 A2 u
−2c/3
n nd/2−µ/6 u(1+µ/(3d))((d+2)α/2−d+εd+ν)/2

n

6 A2 n
−1/6 (µ−3d) nmax{0,−2ac/3+a (µ+3d)((d+2)α/2−d+εd+ν)/(6d)},

where A2 > 0 does not depend on n. It is not difficult to show that δn → 0, n→ ∞, if

a <
2d(µ− 3d)

max{0, (µ+ 3d)((d+ 2)α− 2d)− 8cd}
,

where s/0 = ∞, s ∈ R. Note that if
f(x) = x−α−1L1(x), x > 0,

where f is the density ofX0 andL1 is a slowly varying function on (0,∞), then c can be taken to be any nonnegative
number less than α+ 1. Consequently, δn → 0, n→ ∞, provided

a <
2d(µ− 3d)

max{0, (µ+ 3d)((d+ 2)α− 2d)− 8d(α+ 1)}
.

4.3. Shot-Noise Random Fields

In this section, the requirements of Theorem 1 are checked for certain shot-noise random fields and for the excursion
level un = O((log n)1−β), n→ ∞, where β ∈ (0, 1). The following definition is taken from [12].

Let ϕ be a stationary Poisson counting measure with intensity λ > 0. Also, let g : R → R be a deterministic
function with

∫
R g(x)dx <∞ and

∫
R g

2(x)dx <∞. The random field X = {Xt, t ∈ R} defined by

Xt =

∫
R
g(t− x) ϕ(dx), t ∈ R, (13)

is called a shot-noise random field. The function g is called a response function.
Here we consider shot-noise random fields with the intensity λ > 1/2 and the response function

g(t) = exp(−|t|), t ∈ R.

In this case, X is square integrable and for any µ > 3 (A1) is fulfilled.
The characteristic function φX0(·) of X0 is (see [10, Lemma 1.3.7]) given by

φX0(s) = exp

(
λ

∫
R

(
eise

−|t|
− 1
)
dt

)
, s ∈ R.

It is not difficult to show that for λ > 1/2 φX0(·) is integrable and, consequently, X0 has a bounded density.
In addition, one can show that the distribution of X0 is infinitely divisible (see, e.g., [13]) with Lévy measure

ψ(dx) = 2 λ/x 1I(x ∈ (0, 1)) dx.

In order to find an approximation for the distribution of X0, we consider upper records. Let {Zn : n ∈ N} be a
sequence of independent and identically distributed observations. The observation Zj , j ∈ N, is called an upper
record, if its value exceeds all previous observations, that is Zj > max{Z1, Z2, . . . , Zj−1}. Since the distribution
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of X0 is infinitely divisible and the Lévy measure ψ has a density l on [0,∞) with
∫∞
0
l(y) dy = ∞, it follows

from [14, Theorem 2] that
(n+ 1)− Tn −→ X0 a.s.,

where Tn, n ∈ N, is the sum of the first (n+ 1) upper records from a certain distribution H . Moreover, the density
of H is known and, in our case, is given by

h(x) = 2λ (1− x)2λ−1 1I(x ∈ (0, 1)), x ∈ R.

Thus, H is the distribution function of a Beta-distributed random variable with parameters 2λ and 1. Such Beta
records are considered in [15]. There it is shown that

lim
n→∞

(n+ 1)− Tn
d
=

∞∑
i=0

i∏
j=0

U
1
2λ

j , (14)

where Uj , j ∈ Z+, are independent random variables distributed uniformly on (0, 1).
Vervaat showed in [16, Theorem 4.7.7 and Lemma 4.7.9] that the density f(x) of the random variable in the

right-hand side of (14) (which is also the density of X0) is nonincreasing, for sufficiently large x, and that

f(x) = exp(−(1 + o(1)) x log x), x→ ∞. (15)

To check the requirements of Theorem 1, the following result from [17] is used.
Let N = N(R) be the space of integer-valued σ-finite measures κ on R and let N be the smallest σ-algebra

making the mappings κ→ κ(B), κ ∈ N, measurable for all B ∈ B(R), where B(Rd) is the Borel σ-algebra of Rd,
d ∈ N. For a measurable ψ : N → R define

Dyψ(κ) = ψ(κ+ δy)− ψ(κ), κ ∈ N,

where δy is the Dirac measure at y ∈ R. For k ∈ N and (y1, . . . , yk) ∈ Rk set

Dk
y1,...,yk

ψ = D1
y1
(Dk−1

y2,...,yk
ψ),

where D1 = D and D0ψ = ψ. Define

Rkψ(y1, . . . , yk) = EDk
y1,...,yk

ψ(ϕ),

if this expectation exists, where ϕ appears in (13). In [17, Theorem 1.1] it is shown that for any ψ, η ∈ L2(N,Pϕ),
where Pϕ is the distribution of ϕ in (N,N ), the following relation holds

Eψ(ϕ)η(ϕ) = Eψ(ϕ)E η(ϕ) +
∞∑
k=1

1

k!
⟨Rkψ,Rkη⟩L2(Rk,λkvk).

Here, vk is the Lebesgue measure on (Rk,B(Rk)), k ∈ N.
Define ψn(ϕ) =

∫
[0,n)

1I(Xt > un) dt. In order to establish (A2), it is sufficient to show that

⟨R1ψn, R1ψn⟩L2(R,λv1) = λ

∫
R

(∫ n

0

P(un − e−|t−x| 6 Xt < un) dt

)2

dx→ ∞, n→ ∞. (16)

Applying Vervaat’s result, it holds that, for sufficiently large n,∫
R

(∫ n

0

P
(
un − e−|t−x| 6 Xt < un

)
dt

)2

dx > f2(un)

∫
R

(∫ n

0

e−|t−x| dt

)2

dx.
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146 A CLT FOR THE VOLUMES OF HIGH EXCURSIONS OF RANDOM FIELDS

Therefore,

⟨R1ψn, R1ψn⟩L2(R,λv1) > λ f2(un) (n− 2) . (17)

Since un = O((log n)1−β), n→ ∞, β ∈ (0, 1), (15) and (17) imply (16).
It remains to show that δn → 0, n→ ∞. For n large enough, the inequality (17) yields

δn = n γ
2
3 (un) σ

−(1+µ/3)
n 6 A

n (f(un))
2
3

(f2(un) n)
1
6 (µ+3)

= A n− 1
6 (µ−3) (f(un))

− 1
3 (µ+1), (18)

where A = A(λ) > 0. It is easy to see that the right-hand side of (18) converges to zero as n→ ∞.
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