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Abstract The problem of optimal estimation of the linear functionals Aξ =
∑∞

k=0 a(k)ξ(k) and AN ξ =
∑N

k=0 a(k)ξ(k)
which depend on the unknown values of a stochastic sequence ξ(m) with stationary nth increments is considered. Estimates
are obtained which are based on observations of the sequence ξ(m) + η(m) at points of time m = −1,−2, . . ., where the
sequence η(m) is stationary and uncorrelated with the sequence ξ(m). Formulas for calculating the mean-square errors and
the spectral characteristics of the optimal estimates of the functionals are derived in the case of spectral certainty, where
spectral densities of the sequences ξ(m) and η(m) are exactly known. These results are applied for solving extrapolation
problem for cointegrated sequences. In the case where spectral densities of the sequences are not known exactly, but sets
of admissible spectral densities are given, the minimax-robust method of estimation is applied. Formulas that determine the
least favorable spectral densities and minimax spectral characteristics are proposed for some special classes of admissible
densities.

Keywords Stochastic sequence with stationary increments, cointegrated sequences, minimax-robust
estimate, mean square error, least favorable spectral density, minimax-robust spectral
characteristic

AMS 2010 subject classifications. Primary: 60G10, 60G25, 60G35, Secondary: 62M20, 62P20, 93E10, 93E11

DOI: 10.19139/soic.v3i2.132

1. Introduction

The theory of estimation of the unknown values of stationary processes based on a set of observations plays an
important role in many practical applications. The development of the theory started from the classical works
of Kolmogorov [18] and Wiener [42], in which they presented methods of solution of the extrapolation and
interpolation problems for stationary processes. The interpolation problem considered by Kolmogorov means
estimation of the missed values of a stochastic sequence. The prediction problem consists in estimation the future
values of the process based on observations of the process in the past. The third classical problem is filtering of
random processes which consists in estimation the original values of the signal process from observations of the
process with noise. All these problems for stationary sequences and processes are clearly described in the book by
Rozanov [41]. Most of results which have appeared since that time were based on the assumption that the spectral
structure of the stationary process is known. After the main points of the new theory were established, scientists
tried to generalize the concept of stationarity. One of the natural generalization was proposed by Yaglom [45],
Pinsker [38], Yaglom and Pinsker [37]. They proposed a class of processes with stationary increments of nth order.

∗Correspondence to: Mikhail Moklyachuk (Email: Moklyachuk@gmail.com). Department of Probability Theory, Statistics and Actuarial
Mathematics, Taras Shevchenko National University of Kyiv, Volodymyrs’ka 64 Str., Kyiv 01601, Ukraine.

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright c⃝ 2015 International Academic Press



M. LUZ AND M. MOKLYACHUK 161

They described basic properties of these processes, found the spectral representation of the stationary increment
and solved the extrapolation problem for processes with stationary nth increments. Other generalizations of the
concept of stationarity can be found in the books by Yaglom [43, 44].

One of the fields of practical applications of the stationary and related stochastic sequences is economical
modeling and financial time series. Most simple examples of stationary linear models are moving average (MA)
sequences, autoregressive (AR) and autoregressive-moving average (ARMA) sequences, state space models, all
of which refer to stationary sequences with rational spectral function without unit AR-roots. Models with trends
and seasonal components are represented by integrated ARMA (ARIMA) sequences and seasonal time series. The
spectral structure of these sequences has unit roots in the autoregressive part. These sequences are most simple
examples of sequences with stationary increments. Such models have been inducing the interest of scientists for
the last 30 years. The main results concerning the model description, parameter estimation, forecasting and further
investigations are described in the classical book by Box, Jenkins and Reinsel [2]. Statistical investigations of
real data found some specific relations between integrated sequences. In some cases linear combinations of such
sequences appears to be stationary. Such property Grander [5] called cointegration. Cointegrated models found
their application in applied and theoretical econometrics and financial time series [11].

As we have already mentioned the problem of estimation of unobserved values of the investigated time series is
important in mathematical studies. The classical methods of extrapolation, interpolation and filtering relay on
the exact information about the spectral densities of the investigated processes. However, in practise none of
the methods of estimation can provide the exact representation of spectral structure of the process. In the case
where spectral densities are not known exactly, but a set of admissible spectral densities are given, we can apply
the minimax (robust) method of estimation, which allows us to determine estimates that minimize the value
of mean-square error for all densities from a given class. Grenander [12] was the first one who applied this
approach to the extrapolation problem for stationary processes. In the papers by Franke [13], Franke and Poor
[14], Kassam and Poor [17] the minimax extrapolation and interpolation problem for stationary sequences was
solved by using convex optimization techniques. In the works by Moklyachuk [27] - [33] problems of extrapolation,
interpolation and filtering for stationary processes and sequences were studied. The minimax extrapolation problem
for functionals which depend on the unknown values of stationary sequences from observations with noise is
solved in the paper by Moklyachuk [26]. The corresponding problems for vector-valued stationary sequences
and processes were investigated by Moklyachuk and Masyutka [30] - [35]. In the articles by Dubovets’ka and
Moklyachuk [6] - [10] and the book by Golichenko and Moklyachuk [3] the minimax estimation problems were
investigated for another generalization of stationary processes – periodically correlated stochastic sequences and
random processes.

Luz and Moklyachuk investigated the classical and minimax extrapolation, interpolation and filtering problems
for sequences and processes with nth stationary increments. They presented solutions of the filtering problem for
the linear functionals Aξ =

∑∞
k=0 a(k)ξ(−k) and ANξ =

∑N
k=0 a(k)ξ(−k) in the papers [21, 23]. The minimax

interpolation problem for the linear functional ANξ =
∑N

k=0 a(k)ξ(k) which depends on the unknown values of
the sequence ξ(k) based on observations with and without noise was investigated in papers [19, 20], and for the
linear functional Aξ =

∫∞
0
a(t)ξ(t)dt which depends on the unknown values of a random process ξ(t) in the paper

[24].
In papers by Luz and Moklyachuk [22, 25] the problem of optimal linear extrapolation of linear functionals which

depend on the unknown values of stochastic sequences and random processes with nth stationary increments from
the observations without noise is investigate. The classical extrapolation problem for a non-stationary sequence
which is observed with a non-stationary noise was studied by Bell [1]. However, he showed that the problem can
be solved under additional assumptions, particularly if we have an additional finite set of values of the sequence
ξ(m).

In the proposed paper we consider the extrapolation problem for the functionals Aξ =
∑∞

k=0 a(k)ξ(k) and
ANξ =

∑N
k=0 a(k)ξ(k) which depend on the unknown values of a stochastic sequence ξ(k) with stationary nth

increments based on observations of the sequence ξ(k) + η(k) at points k = −1,−2, . . ., where η(k) is a stationary
stochastic sequence uncorrelated with the sequence ξ(k). Under the condition of stationarity of the noise η(k) we
solve the problem without additional assumptions described by Bell [1]. The obtained estimates give us a method
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of solvution the extrapolation problem for cointegrated sequences ξ(m) and ζ(m) assuming stationarity of a linear
combination of these sequences. The estimation problem is also solved in the case of spectral uncertainty where
spectral densities of sequences are not exactly known but a set of admissible spectral densities is given. Formulas
that determine the least favorable spectral densities and the minimax-robust spectral characteristic of the optimal
linear estimates of the functional Aξ are derived in the case of spectral uncertainty for some concrete classes of
admissible spectral densities.

2. Stationary increment stochastic sequences. Spectral representation

Definition 1
For a given stochastic sequence {ξ(m),m ∈ Z} the sequence

ξ(n)(m,µ) = (1−Bµ)
nξ(m) =

n∑
l=0

(−1)l
(
n

l

)
ξ(m− lµ), (1)

where
(
n
l

)
= n!

l!(n−l)! , Bµ is a backward shift operator with step µ ∈ Z, such that Bµξ(m) = ξ(m− µ), is called
stochastic nth increment sequence with step µ ∈ Z.

The stochastic nth increment sequence ξ(n)(m,µ) admits the following relations

ξ(n)(m,−µ) = (−1)nξ(n)(m+ nµ, µ), (2)

ξ(n)(m, kµ) =
∑(k−1)n

l=0
Alξ

(n)(m− lµ, µ), k ∈ N, (3)

where coefficients {Al, l = 0, 1, 2, . . . , (k − 1)n} are determined by the representation

(1 + x+ . . .+ xk−1)n =

(k−1)n∑
l=0

Alx
l.

Definition 2
The stochastic nth increment sequence ξ(n)(m,µ) generated by stochastic sequence {ξ(m),m ∈ Z} is wide sense
stationary if the mathematical expectations

Eξ(n)(m0, µ) = c(n)(µ),

Eξ(n)(m0 +m,µ1)ξ
(n)(m0, µ2) = D(n)(m,µ1, µ2)

exist for all m0, µ,m, µ1, µ2 and do not depend on m0. The function c(n)(µ) is called mean value of the nth
increment sequence and the function D(n)(m,µ1, µ2) is called structural function of the stationary nth increment
sequence (or structural function of nth order of the stochastic sequence {ξ(m),m ∈ Z}).

The stochastic sequence {ξ(m),m ∈ Z} which determines the stationary nth increment sequence ξ(n)(m,µ) by
formula (1) is called sequence with stationary nth increments (or integrated sequence of order n).

Theorem 1
The mean value c(n)(µ) and the structural function D(n)(m,µ1, µ2) of the stochastic stationary nth increment
sequence ξ(n)(m,µ) can be represented in the forms

c(n)(µ) = cµn, (4)

D(n)(m,µ1, µ2) =

∫ π

−π

eiλm(1− e−iµ1λ)n(1− eiµ2λ)n
1

λ2n
dF (λ), (5)
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where c is a constant, F (λ) is a left-continuous nondecreasing bounded function with F (−π) = 0. The constant c
and the function F (λ) are determined uniquely by the increment sequence ξ(n)(m,µ).

On other hand, a function c(n)(µ) which has form (4) with a constant c and a function D(n)(m,µ1, µ2) which
has form (5) with a function F (λ) which satisfies the indicated conditions are the mean value and the structural
function of a stationary nth increment sequence ξ(n)(m,µ).

Representation (5) and the Karhunen theorem [4, 16] give us the spectral representation of the stationary nth
increment sequence ξ(n)(m,µ):

ξ(n)(m,µ) =

∫ π

−π

eimλ(1− e−iµλ)n
1

(iλ)n
dZξ(n)(λ), (6)

where Zξ(n)(λ) is a random process with independent increments on [−π, π) connected with the spectral function
F (λ) by the relation

E|Zξ(n)(t2)− Zξ(n)(t1)|2 = F (t2)− F (t1) <∞ for all − π ≤ t1 < t2 < π. (7)

Denote byH(ξ(n)) a subspace generated in the Hilbert spaceH = L2(Ω,F ,P) by elements {ξ(n)(m,µ) : m,µ ∈
Z} and by Hp(ξ(n)), p ∈ Z, a subspace of the space H(ξ(n)) generated by elements {ξ(n)(m,µ) : m ≤ p, µ > 0}.
Let

S(ξ(n)) =
∩
p∈Z

Hp(ξ(n)).

Since the space S(ξ(n)) is a subspace in the Hilbert space H(ξ(n)), the space H(ξ(n)) admits the decomposition

H(ξ(n)) = S(ξ(n))⊕R(ξ(n)),

where R(ξ(n)) is the orthogonal complement of the subspace S(ξ(n)) in the space H(ξ(n)).

Definition 3
A stationary nth increment sequence ξ(n)(m,µ) is called regular if H(ξ(n)) = R(ξ(n)) and it is called singular if
H(ξ(n)) = S(ξ(n)).

Theorem 2
A wide-sense stationary stochastic increment sequence ξ(n)(m,µ) admits a unique representation in the form

ξ(n)(m,µ) = ξ(n)r (m,µ) + ξ(n)s (m,µ), (8)

where {ξ(n)r (m,µ) : m ∈ Z} is a regular increment sequence and {ξ(n)s (m,µ) : m ∈ Z} is a singular increment
sequence. Moreover, the increment sequences ξ(n)r (m,µ) and ξ(n)s (k, µ) are orthogonal for all m, k ∈ Z.

Components of representation (8) are defined by the formulas

ξ(n)s (m,µ) = E[ξ(n)(m,µ)|S(ξ(n))], ξ(n)r (m,µ) = ξ(n)(m,µ)− ξ(n)s (m,µ).

Consider a stochastic sequence {ε(m) : m ∈ Z} of uncorrelated random variables such that Eε(m) = 0 and
Dε2m = 1. Define by Hp(ε) the Hilbert subspace generated by elements {ε(m) : m ≤ p}. We will call the sequence
{ε(m) : m ∈ Z} an innovation sequence for a regular stationary nth increment sequence ξ(n)(m,µ) if the condition
Hp(ξ(n)) = Hp(ε) holds true for all p ∈ Z.

Theorem 3
A stochastic stationary increment sequence ξ(n)(m,µ) is regular if and only if there exists an innovation sequence
{ε(m) : m ∈ Z} and a sequence of complex functions {φ(n)(m,µ) : m ≥ 0},

∑∞
k=0 |φ(n)(k, µ)|2 <∞ such that

ξ(n)(m,µ) =

∞∑
k=0

φ(n)(k, µ)ε(m− k). (9)

Representation (9) is called canonical moving average representation of the stochastic stationary increment
sequence ξ(n)(m,µ).
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Corollary 1
A wide-sense stationary stochastic increment sequence ξ(n)(m,µ) admits a unique representation

ξ(n)(m,µ) = ξ(n)s (m,µ) +

∞∑
k=0

φ(n)(k, µ)ε(m− k), (10)

where
∑∞

k=0 |φ(n)(k, µ)|2 <∞ and {εm : m ∈ Z} is an innovation sequence.

If the stationary nth increment sequence ξ(n)(m,µ) admit the canonical representation (9), then its spectral
function F (λ) has the spectral density f(λ) admitting the canonical factorization

f(λ) = |Φ(e−iλ)|2, Φ(z) =

∞∑
k=0

φ(k)zk, (11)

where the function Φ(z) =
∑∞

k=0 φ(k)z
k has the convergence radius r > 1 and does not have zeros in the unit disk

{z : |z| ≤ 1}. Define

Φµ(z) =

∞∑
k=0

φ(n)(k, µ)zk =

∞∑
k=0

φµ(k)z
k,

where φµ(k) = φ(n)(k, µ) are coefficients from the canonical representation (9). Then the following relation holds
true: ∣∣Φµ(e

−iλ)
∣∣2 =

|1− e−iλµ|2n

λ2n
f(λ). (12)

In the next section we will use spectral representation (6) and canonical factorization (12) for finding the
optimal mean square estimate of the unknown values of the stochastic sequence {ξ(m),m ∈ Z} with nth stationary
increments.

3. Extrapolation problem

Consider a stochastic sequence {ξ(m),m ∈ Z} which generates a stationary nth increment sequence ξ(n)(m,µ)
with absolutely continuous spectral function F (λ) and spectral density f(λ). Let {η(m),m ∈ Z} be an uncorrelated
with the sequence ξ(m) stationary stochastic sequence with absolutely continuous spectral function G(λ) and
spectral density g(λ). From now we will assume that mean values of the increment sequence ξ(n)(m,µ) and
stationary sequence η(m) equal to 0. We will also consider the increment step µ > 0.

In this section our purpose is to solve the problem of linear mean-square optimal estimation of the functionals

Aξ =

∞∑
k=0

a(k)ξ(k), ANξ =

N∑
k=0

a(k)ξ(k)

which depend on unknown values of the sequence ξ(m) based on observations of the sequence ζ(m) = ξ(m) +
η(m) at points m = −1,−2, . . ..

First of all we indicate some conditions which are necessary for solving the considered problem. Assume that
coefficients a(k), k ≥ 0, and the linear transformation Dµ which is defined in the following part of the section
satisfy the conditions

∞∑
k=0

|a(k)| <∞,

∞∑
k=0

(k + 1)|a(k)|2 <∞, (13)

and
∞∑
k=0

|(Dµa)k| <∞,

∞∑
k=0

(k + 1)|(Dµa)k|2 <∞. (14)
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Assume also that spectral densities f(λ) and g(λ) satisfy the minimality condition∫ π

−π

λ2n

|1− eiλµ|2n(f(λ) + λ2ng(λ))
dλ <∞. (15)

In order to find an estimate of the functional Aξ we have to formulate the extrapolation problem in terms of
linear functionals of some stationary sequences. The functional Aξ can be presented as

Aξ = Aζ −Aη,

where Aζ =
∑∞

k=0 a(k)ζ(k), Aη =
∑∞

k=0 a(k)η(k). Under conditions (13) the functional Aη has finite second
moment.

We will exploit the representation of the functionalAζ which is proposed in [25] and is described in the following
lemma.

Lemma 1
A linear functional Aζ =

∑∞
k=0 a(k)ζ(k) admits the representation Aζ = Bζ − V ζ, where

Bζ =

∞∑
k=0

bµ(k)ζ
(n)(k, µ), V ξ =

−1∑
k=−µn

vµ(k)ζ(k),

vµ(k) =

n∑
l=[− k

µ ]
′

(−1)l
(
n

l

)
bµ(lµ+ k), k = −1,−2, . . . ,−µn, (16)

bµ(k) =

∞∑
m=k

a(m)dµ(m− k) = (Dµa)k, k ≥ 0. (17)

where [x]′ denotes the least integer number among numbers which are greater or equal to x, {d(k) : k ≥ 0} are

coefficients determined by the relation
∑∞

k=0 dµ(k)x
k =

(∑∞
j=0 x

µj
)n

, Dµ is a linear operator determined by

elements Dµ
k,j = dµ(j − k) if 0 ≤ k ≤ j , and Dµ

k,j = 0 if j < k, the vector a = (a(0), a(1), a(2), . . .)′.

Corollary 2
The linear functional ANζ admits the representation ANζ = BNζ − VNζ, where

BNζ =

N∑
k=0

bµ,N (k)ζ(n)(k, µ), VNζ =

−1∑
k=−µn

vµ,N (k)ζ(k),

where coefficients vµ,N (k), k = −1,−2, . . . ,−µn, are calculated by the formulas

vµ,N (k) =

min{[N−k
µ ],n}∑

l=[− k
µ ]

′

(−1)l
(
n

l

)
bµ,N (lµ+ k), k = −1,−2, . . . ,−µn,

bµ,N (k) =

N∑
m=k

a(m)dµ(m− k) = (Dµ
NaN )k, k = 0, 1, . . . , N,

Dµ
N is a linear operator with elements (Dµ

N )k,j = dµ(j − k) if 0 ≤ k ≤ j ≤ N , and (Dµ
N )k,j = 0 if j < k or

j, k > N , the vector aN = (a(0), a(1), a(2), . . . , a(N), 0, . . .)′.

Stat., Optim. Inf. Comput. Vol. 3, June 2015



166 MINIMAX PREDICTION PROBLEM FOR STOCHASTIC SEQUENCES WITH STATIONARY INCREMENTS

From Lemma 1 we get the following representation of the functional Aξ:

Aξ = Aζ −Aη = Bζ −Aη − V ζ = Hξ − V ζ,

where Hξ = Bζ −Aη. Denote by ∆(f, g; Âξ) = E|Aξ − Âξ|2 the mean-square error of the optimal estimate
Âξ of the functional Aξ and by ∆(f, g; Ĥξ) = E|Hξ − Ĥξ|2 the mean-square error of the optimal estimate
Ĥη of the functional Hη. Since the functional V ζ is determined by the observed values of ζ(k) at points
k = −µn,−µn+ 1, . . . ,−1, the following relations hold true

Âξ = Ĥξ − V ζ, (18)

∆(f, g; Âξ) = E|Aξ − Âξ|2 = E|Hξ − V ζ − Ĥξ + V ζ|2 = E|Hξ − Ĥξ|2 = ∆(f, g; Ĥξ).

To find the mean-square optimal estimate of the functional Hξ we apply the Hilbert space orthogonal projection
method proposed by Kolmogorov [18]. The stationary stochastic sequence η(m) admits the spectral representation

η(m) =

∫ π

−π

eiλmdZη(λ),

where Zη(λ) is a random process with independent increments on [−π, π) corresponding to the spectral function
G(λ). The random processes Zη(λ) and Zη(n)(λ) are connected by the relation dZη(n)(λ) = (iλ)ndZη(λ), λ ∈
[−π, π), obtained in [23]. The spectral density p(λ) of the sequence ζ(m) is determined by spectral densities f(λ)
and g(λ) by the relation

p(λ) = f(λ) + λ2ng(λ).

The functional Hξ admits the following spectral representation:

Hξ =

∫ π

−π

Bµ(e
iλ)

(1− e−iλµ)n

(iλ)n
dZξ(n)+η(n)(λ)−

∫ π

−π

A(eiλ)dZη(λ),

where

Bµ(e
iλ) =

∞∑
k=0

bµ(k)e
iλk =

∞∑
k=0

(Dµa)ke
iλk, A(eiλ) =

∞∑
k=0

a(k)eiλk.

Denote by H0−(ξ
(n)
µ + η

(n)
µ ) a closed linear subspace of the Hilbert space H = L2(Ω,F,P) of random variables

having finite second moments which is generated by values {ξ(n)(k, µ) + η(n)(k, µ) : k ≤ −1}, µ > 0. Denote by
L0−
2 (f(λ) + λ2ng(λ)) a closed linear subspace of the Hilbert space L2(f(λ) + λ2ng(λ)) which is generated by the

set of functions {
eiλk(1− e−iλµ)n(iλ)−n : k ≤ −1

}
.

The representation

ξ(n)(k, µ) + η(n)(k, µ) =

∫ π

−π

eiλk(1− e−iλµ)n
1

(iλ)n
dZξ(n)+η(n)(λ)

yields a one to one correspondence between elements eiλk(1− e−iλµ)n(iλ)−n of the space L0−
2 (f(λ) + λ2ng(λ))

and elements ξ(n)(k, µ) + η(n)(k, µ) of the space H0−(ξ
(n)
µ + η

(n)
µ ).

Every linear estimate Âξ of the functional Aξ admits the representation

Âξ =

∫ π

−π

hµ(λ)dZξ(n)+η(n)(λ)−
−1∑

k=−µn

vµ(k)(ξ(k) + η(k)), (19)

where hµ(λ) is the spectral characteristic of the estimate Ĥξ. The mean square optimal estimate Ĥξ can be found as
a projection of the elementHξ on the subspaceH0−(ξ

(n)
µ + η

(n)
µ ). This projection is determined by two conditions:
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1) Ĥξ ∈ H0−(ξ
(n)
µ + η

(n)
µ );

2) (Hξ − Ĥξ) ⊥ H0−(ξ
(n)
µ + η

(n)
µ ).

The second condition implies the following relations which hold true for all k ≤ −1:

E(Hξ − Ĥξ)(ξ(n)(k, µ) + η(n)(k, µ))

=
1

2π

∫ π

−π

(
Bµ(e

iλ)(1− e−iλµ)n −A(eiλ)− (iλ)nhµ(λ)
)
e−iλk(1− eiλµ)ng(λ)dλ

+
1

2π

∫ π

−π

(
Bµ(e

iλ)
(1− e−iλµ)n

(iλ)n
− hµ(λ)

)
e−iλk(1− eiλµ)n

1

(−iλ)n
f(λ)dλ = 0.

These relations can be represented in the form∫ π

−π

[(
Bµ(e

iλ)
(1− e−iλµ)n

(iλ)n
− hµ(λ)

)
p(λ)−A(eiλ)g(λ)(−iλ)n

]
(1− eiλµ)n

(−iλ)n
e−iλkdλ = 0, k ≤ −1.

which allows us to derive the spectral characteristic hµ(λ) of the estimate Ĥξ. It has the form

hµ(λ) = Bµ(e
iλ)

(1− e−iλµ)n

(iλ)n
−A(eiλ)

(−iλ)ng(λ)
f(λ) + λ2ng(λ)

− (−iλ)nCµ(e
iλ)

(1− eiλµ)n(f(λ) + λ2ng(λ))
,

Cµ(e
iλ) =

∞∑
k=0

cµ(k)e
iλk,

where cµ(k), k ≥ 0, are unknown coefficients which we need to determine. It follows from condition 1) that the
spectral characteristic hµ(λ) admits the representation

hµ(λ) = h(λ)(1− e−iλµ)n
1

(iλ)n
, h(λ) =

∞∑
k=1

s(k)e−iλk,

where ∫ π

−π

|h(λ)|2|1− eiλµ|2n f(λ) + λ2ng(λ)

λ2n
dλ <∞,

(iλ)nhµ(λ)

(1− e−iλµ)n
∈ L0−

2 ,

which leads to the conditions∫ π

−π

[
Bµ(e

iλ)− A(eiλ)λ2ng(λ)

(1− e−iλµ)n(f(λ) + λ2ng(λ))
− λ2nCµ(e

iλ)

|1− eiλµ|2n(f(λ) + λ2ng(λ))

]
e−iλldλ = 0, l ≥ 0. (20)

Determine for every k, j ∈ Z the Fourier coefficients of the corresponding functions

Tµ
k,j =

1

2π

∫ π

−π

eiλ(j−k) λ2ng(λ)

|1− eiλµ|2n(f(λ) + λ2ng(λ))
dλ;

Pµ
k,j =

1

2π

∫ π

−π

eiλ(j−k) λ2n

|1− eiλµ|2n(f(λ) + λ2ng(λ))
dλ;

Qk,j =
1

2π

∫ π

−π

eiλ(j−k) f(λ)g(λ)

f(λ) + λ2ng(λ)
dλ.

Using these Fourier coefficients we can represent equation (20) in terms of the system of linear equations

bµ(l)−
∞∑

m=0

Tµ
l,maµ(m) =

∞∑
k=0

Pµ
l,kcµ(k), l ≥ 0,
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where

aµ(m) =

min{n;[mµ ]}∑
l=0

(−1)l
(
n

l

)
a(m− µl), m ≥ 0, (21)

This system of equations can be written in the form

Dµa−Tµaµ = Pµcµ,

where cµ = (cµ(0), cµ(1), cµ(2), . . .)
′, aµ = (aµ(0), aµ(1), aµ(2), . . .)

′; Pµ and Tµ are linear operators in the
space ℓ2 defined by the matrices with elements (Pµ)l,k = Pµ

l,k, l, k ≥ 0 and (Tµ)l,m = Tµ
l,k, l, k ≥ 0; the linear

transformation Dµ is defined in Lemma 1. Consequently, the unknown coefficients cµ(k), k ≥ 0, which determine
the spectral characteristic hµ(λ) are calculated by the formula

cµ(k) = (P−1
µ Dµa−P−1

µ Tµaµ)k, k ≥ 0,

where (P−1
µ Dµa−P−1

µ Tµaµ)k, k ≥ 0, is the kth element of the vector P−1
µ Dµa−P−1

µ Tµaµ. Thus, the spectral
characteristic hµ(λ) of the optimal estimate Ĥξ of the functional Hξ is calculated by the formula

hµ(λ) = Bµ(e
iλ)

(1− e−iλµ)n

(iλ)n
−A(eiλ)

(−iλ)ng(λ)
f(λ) + λ2ng(λ)

−
(−iλ)n

∑∞
k=0(P

−1
µ Dµa−P−1

µ Tµaµ)ke
iλk

(1− eiλµ)n(f(λ) + λ2ng(λ))
. (22)

The mean-square error of the estimate Âξ is calculated by the formula

∆(f, g; Âξ) = ∆(f, g; Ĥξ) = E|Hξ − Ĥξ|2

=
1

2π

∫ π

−π

∣∣A(eiλ)(1− eiλµ)nf(λ)− λ2n
∑∞

k=0(P
−1
µ Dµa−P−1

µ Tµaµ)ke
iλk
∣∣2

|1− eiλµ|2n(f(λ) + λ2ng(λ))2
g(λ)dλ

+
1

2π

∫ π

−π

∣∣A(eiλ)(1− eiλµ)nλ2ng(λ) + λ2n
∑∞

k=0(P
−1
µ Dµa−P−1

µ Tµaµ)ke
iλk
∣∣2

λ2n|1− eiλµ|2n(f(λ) + λ2ng(λ))2
f(λ)dλ

= ⟨Dµa−Tµaµ,P
−1
µ Dµa−P−1

µ Tµaµ⟩+ ⟨Qa,a⟩, (23)

where Q is a linear operator in the space ℓ2 defined by the matrix with elements (Q)l,k = Ql,k, l, k ≥ 0;
⟨x, y⟩ =

∑∞
k=0 x(k)y(k) for vectors x = (x(0), x(1), x(2), . . .)′, y = (y(0), y(1), y(2), . . .)′.

These reasonings can be summarized in the form of the theorem.

Theorem 4
Let {ξ(m),m ∈ Z} be a stochastic sequence which defines stationary nth increment sequence ξ(n)(m,µ)
with absolutely continuous spectral function F (λ) which has spectral density f(λ). Let {η(m),m ∈ Z} be an
uncorrelated with the sequence ξ(m) stationary stochastic sequence with absolutely continuous spectral function
G(λ) which has spectral density g(λ). Let the minimality condition (15) be satisfied. Let coefficients {a(k) : k ≥ 0}
satisfy conditions (13) – (14). The optimal linear estimate Âξ of the functional Aξ which depend on the unknown
values of elements ξ(m), m ≥ 0, based on observations of the sequence ξ(m) + η(m) at points m = −1,−2, . . . is
calculated by formula (19). The spectral characteristic hµ(λ) of the optimal estimate Âξ is calculated by formula
(22). The value of the mean-square error ∆(f, g; Âξ) is calculated by formula (23).

Corollary 3
The spectral characteristic hµ(λ) admits the representation hµ(λ) = h1µ(λ)− h2µ(λ), where

h1µ(λ) = Bµ(e
iλ)

(1− e−iλµ)n

(iλ)n
−

(−iλ)n
∑∞

k=0(P
−1
µ Dµa)ke

iλk

(1− eiλµ)n(f(λ) + λ2ng(λ))
, (24)
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h2µ(λ) = A(eiλ)
(−iλ)ng(λ)

f(λ) + λ2ng(λ)
−

(−iλ)n
∑∞

k=0(P
−1
µ Tµaµ)ke

iλk

(1− eiλµ)n(f(λ) + λ2ng(λ))
. (25)

Here h1µ(λ) and h2µ(λ) are the spectral characteristics of the optimal estimates B̂ζ and Âη of the functionals Bζ
and Aη respectively based on observations ξ(k) + η(k) at points k = −1,−2, . . ..

Theorem 4 allows us to obtain the optimal estimate ÂNξ of the functional ANξ which depend on the unknown
values of elements ξ(m), m = 0, 1, 2, . . . , N , based on observations of the sequence ξ(m) + η(m) at points
m = −1,−2, . . .. Put a(k) = 0, k > N . Then the spectral characteristic hµ,N (λ) of the linear estimate

ÂNξ =

∫ π

−π

hµ,N (λ)dZξ(n)+η(n)(λ)−
−1∑

k=−µn

vµ,N (k)(ξ(k) + η(k)), (26)

is calculated by the formula

hµ,N (λ) = Bµ
N (eiλ)

(1− e−iλµ)n

(iλ)n
−AN (eiλ)

(−iλ)ng(λ)
f(λ) + λ2ng(λ)

−
(−iλ)n

∑∞
k=0(P

−1
µ Dµ

NaN −P−1
µ Tµ,Naµ,N )ke

iλk

(1− eiλµ)n(f(λ) + λ2ng(λ))
, (27)

where

Bµ
N (eiλ) =

N∑
k=0

(Dµ
NaN )ke

iλk, AN (eiλ) =

N∑
k=0

a(k)eiλk,

aN = (a(0), a(1), . . . , a(N), 0, . . .)′, aµ,N = (aµ,N (0), aµ,N (1), . . . , aµ,N (N + µn), 0, . . .)′,

aµ,N (m) =

min{[mµ ],n}∑
l=max{[m−N

µ ]
′
,0}

(−1)l
(
n

l

)
a(m− µl), 0 ≤ m ≤ N + µn, (28)

Tµ,N is a linear operator in the space ℓ2 defined by the matrix with elements (Tµ,N )l,m = Tµ
l,m, l ≥ 0, 0 ≤ m ≤

N + µn, and (Tµ,N )l,m = 0, l ≥ 0, m > N + µn. Here [x]′ denotes the least integer number among numbers
which are greater or equal to x. The mean-square error of the estimate ÂNξ is calculated by the formula

∆(f, g; ÂNξ) = ∆(f, g; ĤNξ) = E|HNξ − ĤNξ|2

=
1

2π

∫ π

−π

∣∣AN (eiλ)(1− eiλµ)nf(λ)− λ2n
∑∞

k=0(P
−1
µ Dµ

NaN −P−1
µ Tµ,Naµ,N )ke

iλk
∣∣2

|1− eiλµ|2n(f(λ) + λ2ng(λ))2
g(λ)dλ

+
1

2π

∫ π

−π

∣∣AN (eiλ)(1− eiλµ)nλ2ng(λ) + λ2n
∑∞

k=0(P
−1
µ Dµ

NaN −P−1
µ Tµ,Naµ,N )ke

iλk
∣∣2

λ2n|1− eiλµ|2n(f(λ) + λ2ng(λ))2
f(λ)dλ

= ⟨Dµ
NaN −Tµ,Naµ,N ,P

−1
µ Dµ

NaN −P−1
µ Tµ,Naµ,N ⟩+ ⟨QNaN ,aN ⟩, (29)

where QN is a linear operator in the space ℓ2 defined by the matrix with elements (QN )l,k = Ql,k, 0 ≤ l, k ≤ N ,
and (QN )l,k = 0 otherwise.

The following theorem holds true.

Theorem 5
Let {ξ(m),m ∈ Z} be a stochastic sequence which defines stationary nth increment sequence ξ(n)(m,µ) with
an absolutely continuous spectral function F (λ) which has spectral density f(λ). Let {η(m),m ∈ Z} be an
uncorrelated with the sequence ξ(m) stationary stochastic sequence with an absolutely continuous spectral function
G(λ) which has spectral density g(λ). Let the minimality condition (15) be satisfied. The optimal linear estimate
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ÂNξ of the functional ANξ which depend on the unknown values of elements ξ(k), k = 0, 1, 2, . . . , N , from
observations of the sequence ξ(m) + η(m) at points m = −1,−2, . . . is calculated by formula (26). The spectral
characteristic hµ,N (λ) of the optimal estimate ÂNξ is calculated by formula (27). The value of the mean-square
error ∆(f, g; ÂNξ) is calculated by formula (29).

A particular case of the considered problem is the problem of forecasting of an unobserved value of a stochastic
sequence ξ(p) at point p, p ≥ 0, from observations of the sequence ξ(k) + η(k) at points k = −1,−2, . . .. In
this case the vector aµ,N has coefficients aµ,N (m) = (−1)l

(
n
l

)
if m = p+ µl, l = 0, 1, 2, . . . , n, m ≥ 0, and

aµ,N (m) = 0 otherwise. Let us define a vector an = (an(0), an(1), . . . , an(n), 0, 0, . . .)
′, where an(k) = (−1)k

(
n
k

)
,

k = 0, 1, 2, . . . , n. If we choose µ > p ≥ 0, the spectral characteristic hµ,p(λ) of the optimal estimate

ξ̂(p) =

∫ π

−π

hµ,p(λ)dZξ(n)+η(n)(λ)−
n∑

l=1

(−1)l
(
n

l

)
(ξ(p− µl) + η(p− µl)) (30)

of the value ξ(p), p ≥ 0, can be calculated by the formula

hµ,p(λ) =
(1− e−iλµ)n

(iλ)n

p∑
k=0

dµ(p− k)eiλk − eiλp(−iλ)ng(λ)
f(λ) + λ2ng(λ)

−
(−iλ)n

∑∞
k=0(P

−1
µ dµ,p −P−1

µ Tµ,pan)ke
iλk

(1− eiλµ)n(f(λ) + λ2ng(λ))
, (31)

where dµ,p = (dµ(p), dµ(p− 1), dµ(p− 2), . . . , dµ(0), 0, . . .)
′, Tµ,p is a linear operator in the space ℓ2 defined by

the matrix with elements (Tµ,p)l,k = Tµ
l,p+µk, l ≥ 0, 0 ≤ k ≤ n, and (Tµ,p)l,k = 0, l ≥ 0, k > n. The mean-square

error of the estimate is calculated by the formula

∆(f, g; ξ̂(p)) = ∆(f, g; η̂(p)) = E|η(p)− η̂(p)|2

=
1

2π

∫ π

−π

∣∣eiλp(1− eiλµ)nf(λ)− λ2n
∑∞

k=0(P
−1
µ dµ,p −P−1

µ Tµ,pan)ke
iλk
∣∣2

|1− eiλµ|2n(f(λ) + λ2ng(λ))2
g(λ)dλ

+
1

2π

∫ π

−π

∣∣eiλp(1− eiλµ)nλ2ng(λ) + λ2n
∑∞

k=0(P
−1
µ dµ,p −P−1

µ Tµ,pan)ke
iλk
∣∣2

λ2n|1− eiλµ|2n(f(λ) + λ2ng(λ))2
f(λ)dλ

= ⟨dµ,p −Tµ,pan,P
−1
µ dµ,p −P−1

µ Tµ,pan⟩+Q0,0. (32)

Thus, we have the following statement.

Corollary 4
The optimal linear estimate ξ̂(p) of the unknown value ξ(p), p ≥ 0, of a stochastic sequence with nth stationary
increments from observations of the sequence ξ(k) + η(k) at points k = −1,−2, . . . is calculated by formula (30).
The spectral characteristic hµ,p(λ) of the optimal estimate ξ̂(p) is calculated by formula (31). The value of the
mean-square error ∆(f, g; ξ̂(p)) is calculated by formula (32).

Theorems 4, 5 and Corollary 4 determine solutions of the extrapolation problem for the linear functionals Aξ,
ANξ and the value ξ(p), p ≥ 0, using the Fourier coefficients of the functions

λ2n

|1− eiλµ|2n(f(λ) + λ2ng(λ))
,

λ2ng(λ)

|1− eiλµ|2n(f(λ) + λ2ng(λ))
.

However, the problem of finding the inverse operator (Pµ)
−1 to the operator Pµ defined by the Fourier coefficients

of the function
λ2n

|1− eiλµ|2n(f(λ) + λ2ng(λ))
is complicated in most cases.
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Fortunately, the proposed formulas can be simplified under the assumption that the functions

|1− eiλµ|2n(f(λ) + λ2ng(λ))

λ2n
,

λ2n

|1− eiλµ|2n(f(λ) + λ2ng(λ))
, g(λ) (33)

admit the canonical factorizations

|1− eiλµ|2n(f(λ) + λ2ng(λ))

λ2n
=

∣∣∣∣∣
∞∑
k=0

θµ(k)e
−iλk

∣∣∣∣∣
2

, (34)

λ2n

|1− eiλµ|2n(f(λ) + λ2ng(λ))
=

∣∣∣∣∣
∞∑
k=0

ψµ(k)e
−iλk

∣∣∣∣∣
2

, (35)

g(λ) =

∞∑
k=−∞

g(k)eiλk =

∣∣∣∣∣
∞∑
k=0

ϕ(k)e−iλk

∣∣∣∣∣
2

. (36)

Let G be a linear operator in the space ℓ2 defined by the matrix with elements (G)l,k = g(l − k), l, k ≥ 0. The
following lemmas give us representations of the functionals Pµ, Tµ and G.

Lemma 2

Suppose that the functions
λ2n

|1− eiλµ|2n(f(λ) + λ2ng(λ))
and g(λ) admit factorizations (35) and (36) respectively.

Let linear operators Ψµ and Φ in the space ℓ2 be defined by matrices (Ψµ)k,j = ψµ(k − j) and (Φ)k,j = ϕ(k − j)
for 0 ≤ j ≤ k, (Ψµ)k,j = 0 and (Φ)k,j = 0 for j > k, k, j ≥ 0. Then

a) The function
g(λ)λ2n

|1− eiλµ|2n(f(λ) + λ2ng(λ))
admits the factorization

g(λ)λ2n

|1− eiλµ|2n(f(λ) + λ2ng(λ))
=

∣∣∣∣∣
∞∑
k=0

υµ(k)e
−iλk

∣∣∣∣∣
2

, (37)

where

υµ(k) =

k∑
j=0

ψµ(j)ϕ(k − j) =

k∑
j=0

ϕ(j)ψµ(k − j).

b) The linear operator Υµ in the space ℓ2 defined by the matrix (Υµ)k,j = υµ(k − j) for 0 ≤ j ≤ k, (Υµ)k,j = 0
for j > k, k, j ≥ 0, admits the representation

Υµ = ΨµΦ = ΦΨµ. (38)

Proof. Statement a) follows from the equalities( ∞∑
k=0

ψµ(k)e
−iλk

)( ∞∑
k=0

ϕ(k)e−iλk

)
=

∞∑
j=0

∞∑
k=j

ψµ(j)ϕ(k − j)e−iλk =

∞∑
k=0

(
k∑

j=0

ψµ(j)ϕ(k − j)

)
e−iλk.

Statement b) follows from the equalities

υµ(i− j) =

i−j∑
k=0

ψµ(k)ϕ(i− j − k) =

i∑
p=j

ϕ(i− p)ψµ(p− j) = (ΦΨµ)i,j = (ΨµΦ)i,j , i ≥ j. 2
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Lemma 3
Suppose that functions (33) admit factorizations (34) – (36). Let linear operators Ψµ and Υµ in the space ℓ2 be
defined as in Lemma 2 and a linear operator Θµ in the space ℓ2 be defined by the matrix (Θµ)k,j = θµ(k − j) for
0 ≤ j ≤ k, (Θµ)k,j = 0 for j > k, k, j ≥ 0. Then

a) Linear operators Pµ, Tµ and G in the space ℓ2 admit the factorizations Pµ = Ψ′
µΨµ, Tµ = Υ′

µΥµ and
G = Φ′Φ.

b) An inverse operator Vµ = (Pµ)
−1 admits the factorization (Pµ)

−1 = ΘµΘ
′
µ and elements of the matrix which

determines the operator Vµ are calculated by the formula

V µ
k,j =

min(k,j)∑
p=0

θµ(k − p)θµ(j − p), k, j ≥ 0.

Proof. We give a proof of statement a) for the linear operator Pµ only. Factorization (35) implies

λ2n

|1− eiλµ|2n(f(λ) + λ2ng(λ))
=

∞∑
m=−∞

Pµ(m)eiλm =

∣∣∣∣∣
∞∑
k=0

ψµ(k)e
−iλk

∣∣∣∣∣
2

=

−1∑
m=−∞

∞∑
k=−m

ψµ(k)ψµ(k +m)eiλm +

∞∑
m=0

∞∑
k=0

ψµ(k)ψµ(k +m)eiλm.

Thus, Pµ(m) =
∑∞

k=0 ψµ(k)ψµ(k +m), m ≥ 0, and Pµ(−m) = Pµ(m), m ≥ 0. For i ≥ j we have the equalities

Pµ
i,j = Pµ(i− j) =

∞∑
l=i

ψµ(l − i)ψµ(l − j) = (Ψ′
µΨµ)i,j

and for i < j we have the equalities

Pµ
i,j = Pµ(i− j) = Pµ(j − i) =

∞∑
l=j

ψµ(l − j)ψµ(l − i) = (Ψ
′
µΨ)i,j .

that prove statement a).
Statement 2) comes from the relation ΨµΘµ = ΘµΨµ = I , which we need to prove. From factorizations (34)

and (35) one can obtain

1 =

( ∞∑
k=0

ψµ(k)e
−iλk

)( ∞∑
k=0

θµ(k)e
−iλk

)
=

∞∑
j=0

(
j∑

k=0

ψµ(k)θµ(j − k)

)
e−iλj .

These equalities imply the following ones:

δi,j =

i−j∑
k=0

ψµ(k)θµ(i− j − k) =

i∑
p=j

θµ(i− p)ψµ(p− j) = (ΘµΨµ)i,j = (ΨµΘµ)i,j , 2

Lemma 4
Suppose that the function g(λ) admits factorization (36). Let a linear operator S in the space ℓ2 be defined by a
matrix with elements (S)k,j = g(k + j), k, j ≥ 0, and a linear operator K in the space ℓ2 be defined by a matrix
with elements (K)k,j = ϕ(k + j), k, j ≥ 0. Then the operators S and K admit the relation

S = KΦ = Φ′K,

where the linear operator Φ is defined in Lemma 2.
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Proof. In the same way as in the proof of Lemma 3 a) we obtaine the relation g(m) =
∑∞

k=0 ϕ(k)ϕ(k +m),
m ≥ 0. Thus g(i+ j) =

∑∞
l=j = ϕ(i+ l)ϕ(l − j) = (KΦ)i,j , i, j ≥ 0. Since the matrices S and K are symmetric,

we have S = S′ = Φ′K. 2
Under the conditions of Lemma 2 and Lemma 3 on the spectral densities f(λ) and g(λ) formulas (22) and (23)

can be simplified. These lemmas give us the factorizations of the linear functionals Tµ and P−1
µ Tµ:

Tµ = Υ′
µΥµ = Ψ′

µΦ
′ΦΨµ,

P−1
µ Tµ = ΘµΘ

′
µΨ

′
µΦ

′ΦΨµ = ΘµGΨµ.

Denote eµ = GΨµaµ. Factorization (35) allows us to make the following transformations:

λ2n
∑∞

k=0(P
−1
µ Tµaµ)ke

iλk

|1− eiλµ|2n(f(λ) + λ2ng(λ))
=

( ∞∑
k=0

ψµ(k)e
−iλk

) ∞∑
j=0

∞∑
k=0

ψµ(j)(Θµeµ)ke
iλ(k+j)

=

( ∞∑
k=0

ψµ(k)e
−iλk

) ∞∑
m=0

m∑
p=0

m∑
k=p

ψµ(m− k)θµ(k − p)eµ(p)e
iλm

=

( ∞∑
k=0

ψµ(k)e
−iλk

) ∞∑
m=0

∞∑
p=0

δm,peµ(p)e
iλm =

( ∞∑
k=0

ψµ(k)e
−iλk

) ∞∑
m=0

eµ(m)eiλm,

where eµ(m) = (GΨµaµ)m, m ≥ 0, is the mth element of the vector eµ = GΨµaµ. Since

(GΨµaµ)m =

∞∑
j=0

∞∑
p=j

g(m− p)ψµ(p− j)aµ(j) =

∞∑
j=0

∞∑
l=0

g(m− j − l)ψµ(l)aµ(j),

the following equality holds true:

λ2n
∑∞

k=0(P
−1
µ Tµaµ)ke

iλk

|1− eiλµ|2n(f(λ) + λ2ng(λ))
=

( ∞∑
k=0

ψµ(k)e
−iλk

) ∞∑
m=0

∞∑
j=0

∞∑
l=0

g(m− j − l)ψµ(l)aµ(j)e
iλm. (39)

Using factorizations (35) and (36) we make the following transformations:

Aµ(e
iλ)λ2ng(λ)

|1− eiλµ|2n(f(λ) + λ2ng(λ))
=

∣∣∣∣∣
∞∑
k=0

ψµ(k)e
iλk

∣∣∣∣∣
2 ∞∑
j=0

∞∑
m=−∞

g(m− j)aµ(j)e
iλm

=

( ∞∑
k=0

ψµ(k)e
−iλk

) ∞∑
m=−∞

∞∑
j=0

∞∑
l=0

g(m− j − l)ψµ(l)aµ(j)e
iλm. (40)

Equalities (39) and (40) let us rewrite expression (25) for the spectral characteristic h2µ(λ) of the optimal estimate
Âη of the functional Aη as

h2µ(λ) =
(1− e−iλµ)n

(iλ)n

(
Aµ(e

iλ)λ2ng(λ)

|1− eiλµ|2n(f(λ) + λ2ng(λ))
−

λ2n
∑∞

k=0(P
−1
µ Tµaµ)ke

iλk

|1− eiλµ|2n(f(λ) + λ2ng(λ))

)

=
(1− e−iλµ)n

(iλ)n

( ∞∑
k=0

ψµ(k)e
−iλk

) ∞∑
m=0

∞∑
j=0

∞∑
l=0

g(m+ j + l)ψµ(l)aµ(j)e
−iλm
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=
(1− e−iλµ)n

(iλ)n

( ∞∑
k=0

ψµ(k)e
−iλk

) ∞∑
m=1

(Cµψµ)me
−iλm,

where (Cµψµ)m, m ≥ 1, is the mth element of the vector Cµψµ = Ψ
′
µSaµ, ψµ = (ψµ(0), ψµ(1), ψµ(2), . . .)

′,
Cµ is a linear operator defined by a matrix with elements (Cµ)k,j = cµ(k + j), k, j ≥ 0. Here cµ = Saµ is a
vector, S is a linear operator defined by a matrix with elements (S)k,j = g(k + j), k, j ≥ 0. From Lemma 4 the
operator S admits representation S = KΦ = Φ′K, where K is a linear operator defined by a matrix with elements
(K)k,j = ϕ(k + j), k, j ≥ 0.

The spectral characteristic h1µ(λ) of the optimal estimate B̂ξ of the functional Bξ in the case where spectral
densities admit canonical factorization (34) is of the form

h1µ(λ) = Bµ(e
iλ)

(1− e−iλµ)n

(iλ)n
− (1− e−iλµ)n

(iλ)n

( ∞∑
k=0

ψµ(k)e
−iλk

) ∞∑
m=0

(DµAθµ)me
iλm

=
(1− e−iλµ)n

(iλ)n

( ∞∑
k=0

ψµ(k)e
−iλk

) ∞∑
m=1

((B̃µ)
′θµ)me

−iλm,

where θµ = (θµ(0), θµ(1), θµ(2), . . .)
′; A is a linear operator defined by a matrix with elements (A)k,j = a(k + j),

k, j ≥ 0; B̃µ is a linear operator defined by the matrix with elements (B̃µ)k,j = bµ(k − j) for 0 ≤ j ≤ k,
(B̃µ)k,j = 0 for j > k, k, j ≥ 0, bµ = Dµa. This representation of the spectral characteristic h1µ(λ) shows that
the spectral characteristic hµ(λ) of the estimate Âξ can be calculated by the formula

hµ(λ) =
(1− e−iλµ)n

(iλ)n

( ∞∑
m=1

((B̃µ)
′θµ −Cµψµ)me

−iλm

) ∞∑
k=0

ψµ(k)e
−iλk

= Bµ(e
iλ)

(1− e−iλµ)n

(iλ)n
− h̃µ(λ), (41)

h̃µ(λ) =
(1− e−iλµ)n

(iλ)n

( ∞∑
m=1

(Cµψµ)me
−iλm +

∞∑
m=0

(DµAθµ)me
iλm

) ∞∑
k=0

ψµ(k)e
−iλk,

The mean square error of the estimate ∆(f, g; Âξ) is presented as follows:

∆(f, g; Âξ) = ∆(f, g; Ĥξ) = E|Hξ − Ĥξ|2

=
1

2π

∫ π

−π

|A(eiλ)|2g(λ)dλ+
1

2π

∫ π

−π

|h̃µ(eiλ)|2(f(λ) + λ2ng(λ))dλ

− 1

2π

∫ π

−π

h̃µ(e
iλ)A(eiλ)(iλ)ng(λ)dλ− 1

2π

∫ π

−π

h̃µ(eiλ)A(e
iλ)(−iλ)ng(λ)dλ

= ⟨Φa,Φa⟩+ ⟨Θ′
µD

µa−GΨµaµ,Θ
′
µD

µa⟩ − ⟨Ψ′
µΦ

′
Kaµ,Ψ

′
µΦ

′
Kaµ⟩1 − ⟨ΦΘ′

µD
µa,ΦΨµaµ⟩

= ⟨Ga,a⟩+ ⟨DµAθµ −GÃµψµ, D
µAθµ⟩ − ⟨Cµψµ,Cµψµ⟩1 − ⟨GDµAθµ, Ãµψµ⟩, (42)

where Ãµ is a linear operator in the space ℓ2 defined as (Ãµ)k,j = aµ(k − j) for 0 ≤ j ≤ k, (Ãµ)k,j = 0 for j > k,
k, j ≥ 0; ⟨x, y⟩1 =

∑∞
k=1 x(k)y(k) for vectors x = (x(0), x(1), x(2), . . .)′, y = (y(0), y(1), y(2), . . .)′.

The obtained results are summarized in the following theorem.
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Theorem 6
Let {ξ(m),m ∈ Z} be a stochastic sequence which defines a stationary nth increment sequence ξ(n)(m,µ)
with absolutely continuous spectral function F (λ) which has spectral density f(λ). Let {η(m),m ∈ Z} be an
uncorrelated with the sequence ξ(m) stationary stochastic sequence with absolutely continuous spectral function
G(λ) which has spectral density g(λ). Suppose that spectral densities f(λ) and g(λ) admit canonical factorizations
(35) – (36). Suppose also that coefficients {a(k) : k ≥ 0} satisfy conditions (13) – (14). Then the spectral
characteristic hµ(λ) of the optimal estimate Âξ of the functional Aξ which depend on the unknown values of
elements ξ(m), m ≥ 0, based on observations of the sequence ξ(m) + η(m) at points m = −1,−2, . . . can be
calculated by formula (41). The value of the mean-square error ∆(f, g; Âξ) can be calculated by formula (42).

Remark 1
Since ∫ π

−π

∣∣∣∣ln |1− e−iλµ|2n

λ2n

∣∣∣∣ dλ <∞

for every n ≥ 1 and µ ≥ 1, there exists a function wµ(z) =
∑∞

k=0 wµ(k)z
k such that

∑∞
k=0 |wµ(k)|2 <∞,

|1− e−iλµ|2n

λ2n
= |wµ(e

−iλ)|2 (see, for example, [4] for details). The function wµ(z) can be calculated with the
help of the relation

wµ(z) = exp

{
1

4π

∫ π

−π

eiλ + z

eiλ − z
ln

|1− e−iλµ|2n

λ2n
dλ

}
. (43)

Provided factorization (34) or factorization (35) take place, the function f(λ) + λ2ng(λ) admits the canonical
factorization

f(λ) + λ2ng(λ) =

∣∣∣∣∣
∞∑
k=0

θ(k)e−iλk

∣∣∣∣∣
2

=

∣∣∣∣∣
∞∑
k=0

ψ(k)e−iλk

∣∣∣∣∣
−2

. (44)

Let linear operators Θ, Ψ and Wµ in the space ℓ2 be defined as (Θ)k,j = ψ(k − j), (Ψ)k,j = ψ(k − j) and
(Wµ)k,j = Wµ(k − j) for 0 ≤ j ≤ k, (Θ)k,j = 0, (Ψ)k,j = 0 and (Uµ)k,j = 0 for j > k, k, j ≥ 0. Let Uµ =
W−1

µ . Then the operators Θµ, Ψµ and Θ, Ψ are connected by the relations

Θµ = ΘWµ = WµΘ, Ψµ = ΨUµ = UµΨ,

which is obtained in the same way as relation (38) in Lemma 2. What is more,

θµ = Wµθ, ψµ = Uµψ, (45)

where θ = (θ(0), θ(1), θ(2), . . .)′, ψ = (ψ(0), ψ(1), ψ(2), . . .)′.

Example 1
Consider an ARIMA(0,1,1) sequence {ξ(m),m ∈ Z}. In this case the first order increments ξ(1)(m,µ) are
stationary and increments ξ(1)(m, 1) with step µ = 1 form an one-sided moving average stochastic sequence of
order 1 with parameter ω, −1 < ω < 1. The sequence ξ(m) has the spectral density

f(λ) =
λ2|1− ωe−iλ|2

|1− e−iλ|2
.

Let {η(m),m ∈ Z} be an uncorrelated with ξ(m) moving average stochastic sequence of order 1 with parameter
ϕ, −1 < ϕ < 1, and spectral density g(λ) = |1− ϕe−iλ|2. Then the stochastic sequence {ξ(m) + η(m),m ∈ Z} is
an ARIMA(0,1,2) sequence with the spectral density

f(λ) + λ2g(λ) =
xλ2|1− ye−iλ − ze−2iλ|2

|1− e−iλ|2
,
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where

x =
ϕ

t
, y =

t

t− 1

(1 + ϕ)2 − ω

ϕ
, z = t,

where t is a solution of the equation

ct3 − (2c+ 3)t2 + (c+ 2)t− 1 = 0,

c =
1

ϕ
(ω2 + ϕ2 − (1 + ϕ)2).

Suppose that t = ϕ. This assumption holds true if the parameters ϕ and ω satisfy the equation

(1− ϕ)2(ω2 − 2ϕ− 2) = 2ϕ2.

In this case we have

x = 1, y =
ω − (1 + ϕ)2

1− ϕ
, z = ϕ.

Consider the problem of finding the mean square optimal linear estimate of the functional A1ξ = aξ(0) + bξ(1)
which depends on unknown values ξ(0), ξ(1) of the sequence ξ(m) from observations of the sequence ξ(m) +

η(m) at points m = −1,−2, . . .. To calculate the spectral characteristic of the optimal estimate Â1ξ of the
functional A1ξ we use formula (41). Coefficients ϕ(k), k ≥ 0, from factorization (36) are the following: ϕ(0) = 1,
ϕ(1) = −ϕ, ϕ(i) = 0 for l ≥ 2. Thus the operator S is determined by the matrix with elements (S)0,0 = 1 + ϕ2,
(S)0,1 = (S)1,0 = −ϕ and (S)k,j = 0 otherwise. Coefficients aµ(k) = a1(k), k ≥ 0, are the following: a1(0) = a,
a1(1) = b− a, a1(2) = −b and a1(l) = 0 for l ≥ 3. Thus the operator Cµ = C1 is determined by the matrix
with elements (Cµ)0,0 = a(1 + ϕ+ ϕ2)− bϕ, (Cµ)0,1 = (Cµ)1,0 = −aϕ and (Cµ)k,j = 0 otherwise. Coefficients
ψµ(k) = ψ1(k), k ≥ 0, from factorization (35) are found using the equality Ψ1Θ1 = I from the proof of Lemma 3
putting θ1(0) = 1, θ1(1) = −x, θ1(2) = −y and θ1(l) = 0 for l ≥ 3:

ψ1(0) = 1, ψ1(1) = y, ψ1(l) = yψ1(l − 1) + zψ1(l − 2) for l ≥ 2.

Coefficients b1(k), k ≥ 0, are: b1(0) = a+ b, b1(1) = b, b1(l) = 0, l ≥ 2. Thus the vector (B̃µ)
′θµ = ((a+ b)−

bx,−x(a+ b)− by,−y(a+ b), 0, . . .)′. Finally, the spectral characteristic of the estimate Â1ξ is calculated by the
formula

h1,1(λ) =
1− e−iλµ

iλ

(
(aψ − x(a+ b)− by)e−iλ − y(a+ b)e−2iλ

) ∞∑
k=0

ψ1(k)e
−iλk

=
1− e−iλµ

iλ

∞∑
k=1

s(k)e−iλk,

where
s(1) = (aψ − x(a+ b)− by)ψ1(0),

s(k) = (aψ − x(a+ b)− by)ψ1(k − 1)− y(a+ b)ψ1(k − 2), k ≥ 2.

The optimal estimate Â1ξ of the functional A1ξ is calculated by the formula

Â1ξ = (a+ b)(ξ(−1) + η(−1)) +

∞∑
k=1

s(k)(ξ(1)(−k, 1) + η(1)(−k, 1))

= (a+ b+ s(1))(ξ(−1) + η(−1)) +

∞∑
k=2

(s(k)− s(k − 1))(ξ(−k) + η(−k)).
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4. Extrapolation of cointegrated sequences

Let {ξ(m),m ∈ Z} and {ζ(m),m ∈ Z} be two integrated stochastic sequences which define stationary nth
increment sequences ξ(n)(m,µ) and ζ(n)(m,µ) with absolutely continuous spectral functions F (λ) and P (λ) and
spectral densities f(λ) and p(λ) correspondingly.

Definition 4
Two integrated stochastic sequences {ξ(m),m ∈ Z} and {ζ(m),m ∈ Z} are called cointegrated if there exists a
constant β ̸= 0 such that the stochastic sequence {ζ(m)− βξ(m),m ∈ Z} is stationary.

The extrapolation problem for cointegrated stochastic sequences means that we have to find the mean-square
optimal linear estimates of the functionals

Aξ =

∞∑
k=0

a(k)ξ(k), ANξ =

N∑
k=0

a(k)ξ(k)

which depend on the unknown values of the sequence ξ(m) based on observations of the sequence ζ(m) at points
m = −1,−2, . . .. To find a solution to this problem we can use results presented in the preceding section provided
the sequences ξ(m) and ζ(m)− βξ(m) are uncorrelated.

Let the following condition holds true: ∫ π

−π

λ2n

|1− eiλµ|2np(λ)
dλ <∞. (46)

Then we can determine operators Pβ
µ, Tβ

µ, Qβ with the help of the Fourier coefficients

Pµ,β
k,j =

1

2π

∫ π

−π

eiλ(j−k) λ2n

|1− eiλµ|2np(λ)
dλ;

Tµ,β
k,j =

1

2π

∫ π

−π

eiλ(j−k)λ
2n(p(λ)− β2f(λ))

|1− eiλµ|2np(λ)
dλ;

Qβ
k,j =

1

2π

∫ π

−π

eiλ(j−k) f(λ)p(λ)− β2f2(λ)

p(λ)
dλ.

of the functions
λ2n

|1− eiλµ|2np(λ)
,

p(λ)− β2f(λ)

|1− eiλµ|2np(λ)
,

f(λ)p(λ)− β2f2(λ)

λ2np(λ)
(47)

in the same way as we defined operators Pµ, Tµ, Q in Section 3. It follows from Theorem 4 that the spectral
characteristic hβµ(λ) of the optimal estimate

Âξ =

∫ π

−π

hβµ(λ)dZζ(n)(λ)− Vµζ, (48)

of the functional Aξ is calculated by the formula

hβµ(λ) = Bµ(eiλ)
(1− e−iλµ)n

(iλ)n
−A(eiλ)

p(λ)− β2f(λ)

(iλ)np(λ)
−

(−iλ)nCβ
µ (e

iλ)

(1− eiλµ)np(λ)
. (49)

where

Cβ
µ (e

iλ) =

∞∑
k=0

((Pβ
µ)

−1Dµa− (Pβ
µ)

−1Tβ
µaµ)ke

iλk.
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The mean-square error of the estimate is calculated by the formula

∆(f, g; Âξ)

=
1

2π

∫ π

−π

∣∣A(eiλ)(1− eiλµ)nβ2f(λ)− λ2nCβ
µ (e

iλ)
∣∣2

λ2n|1− eiλµ|2np2(λ)
p(λ)dλ

−β
2

2π

∫ π

−π

∣∣A(eiλ)(1− eiλµ)nβ2f(λ)− λ2nCβ
µ (e

iλ)
∣∣2

λ2n|1− eiλµ|2np2(λ)
f(λ)dλ

+
1

2π

∫ π

−π

∣∣A(eiλ)(1− eiλµ)n(p(λ)− β2f(λ)) + λ2nCβ
µ (e

iλ)
∣∣2

λ2n|1− eiλµ|2np2(λ)
f(λ)dλ

= ⟨Dµa−Tβ
µaµ, (P

β
µ)

−1Dµa− (Pβ
µ)

−1Tβ
µaµ⟩+ ⟨Qβa,a⟩, (50)

Now we can summarize the obtained results in the following statement.

Theorem 7
Let the cointegrated stochastic sequences {ξ(m),m ∈ Z} and {ζ(m),m ∈ Z} have absolutely continuous spectral
functions F (λ) and G(λ) with the spectral densities f(λ) and p(λ). Let the spectral density p(λ) satisfy condition
(46) and let coefficients {a(k) : k ≥ 0} satisfy conditions (13) – (14). If the sequences ξ(m) and ζ(m)− βξ(m)

are uncorrelated, then the optimal linear estimate Âξ of the functional Aξ which depend on the unknown values
of elements ξ(m), m ≥ 0, based on observations of the sequence ζ(m) at points m = −1,−2, . . . is calculated by
formula (48). The spectral characteristic hβµ(λ) of the optimal estimate Âξ is calculated by formula (49). The value
of the mean-square error ∆(f, g; Âξ) is calculated by formula (50).

Define operators Pβ
µ, Tβ

µ,N , Qβ
N determined by the Fourier coefficients of functions (47) in the same way as we

defined operators Pµ, Tµ,N , QN in Section 3. Theorem 5 implies that the spectral characteristic hβµ,N (λ) of the
optimal estimate

ÂNξ =

∫ π

−π

hβµ,N (λ)dZζ(n)(λ)− Vµ,Nζ (51)

of the functional ANξ is calculated by the formula

hβµ,N (λ) = Bµ
N (eiλ)

(1− e−iλµ)n

(iλ)n
−AN (eiλ)

p(λ)− β2f(λ)

(iλ)np(λ)
−

(−iλ)nCβ
µ,N (eiλ)

(1− eiλµ)np(λ)
, (52)

where Cβ
µ,N (eiλ) =

∑∞
k=0((P

β
µ)

−1Dµ
NaN − (Pβ

µ)
−1Tβ

µ,Naµ,N )ke
iλk. The mean-square error of the estimate ÂNξ

is calculated by the formula
∆(f, g; ÂNξ)

=
1

2π

∫ π

−π

∣∣∣AN (eiλ)(1− eiλµ)nβ2f(λ)− λ2nCβ
µ,N (eiλ)

∣∣∣2
λ2n|1− eiλµ|2np2(λ)

p(λ)dλ

−β
2

2π

∫ π

−π

∣∣∣AN (eiλ)(1− eiλµ)nβ2f(λ)− λ2nCβ
µ,N (eiλ)

∣∣∣2
λ2n|1− eiλµ|2np2(λ)

f(λ)dλ

+
1

2π

∫ π

−π

∣∣∣AN (eiλ)(1− eiλµ)n(p(λ)− β2f(λ)) + λ2nCβ
µ,N (eiλ)

∣∣∣2
λ2n|1− eiλµ|2np2(λ)

f(λ)dλ

= ⟨Dµ
NaN −Tβ

µ,Naµ,N , (P
β
µ)

−1Dµ
NaN − (Pβ

µ)
−1Tβ

µ,Naµ,N ⟩+ ⟨Qβ
NaN ,aN ⟩. (53)

The following theorem holds true.
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Theorem 8
Let the cointegrated stochastic sequences {ξ(m),m ∈ Z} and {ζ(m),m ∈ Z} have absolutely continuous spectral
functions F (λ) and G(λ) with the spectral densities f(λ) and p(λ). Let the spectral density p(λ) satisfy condition
(46). If the sequences ξ(m) and ζ(m)− βξ(m) are uncorrelated, then the optimal linear estimate ÂNξ of the
functional ANξ which depend on the unknown values of elements ξ(m), 0 ≤ m ≤ N , based on observations of the
sequence ζ(m) at points m = −1,−2, . . . is calculated by formula (51). The spectral characteristic hβµ,N (λ) of the
optimal estimate ÂNξ is calculated by formula (52). The value of the mean-square error ∆(f, g; ÂNξ) is calculated
by formula (53).

Suppose that spectral densities f(λ) and p(λ) admit the following canonical factorizations:

|1− eiλµ|2np(λ)
λ2n

=

∣∣∣∣∣
∞∑
k=0

θβµ(k)e
−iλk

∣∣∣∣∣
2

=

∣∣∣∣∣
∞∑
k=0

ψβ
µ(k)e

−iλk

∣∣∣∣∣
−2

, (54)

p(λ) =

∣∣∣∣∣
∞∑
k=0

θβ(k)e−iλk

∣∣∣∣∣
2

=

∣∣∣∣∣
∞∑
k=0

ψβ(k)e−iλk

∣∣∣∣∣
−2

, (55)

p(λ)− β2f(λ) =

∣∣∣∣∣
∞∑
k=0

ϕβ(k)e−iλk

∣∣∣∣∣
2

. (56)

Define operators Kβ , Ψβ and Φβ by coefficients of the canonical factorizations (54)-(56) in the same way as we
defined operators K, Ψ and Φ in Section 3. It follows from Theorem 6 that the spectral characteristic hβµ(λ) of the
optimal estimate Âξ of the functional Aξ is calculated by the formula

hβµ(λ) =
(1− e−iλµ)n

(iλ)n

( ∞∑
m=1

((B̃µ)
′θβµ −Cβ

µψ
β

µ)me
−iλm

) ∞∑
k=0

ψβ
µ(k)e

−iλk, (57)

where Cβ
µψ

β
µ = U

′
µΨ

β
′
Φβ

′
Kβaµ. The mean-square error of the estimate is calculated by the formula

∆(f, g; Âξ) = ⟨Gβa,a⟩+ ⟨DµAθβµ −GβAµψ
β

µ, D
µAθβµ⟩ − ⟨Cβ

µψ
β

µ,C
β
µψ

β

µ⟩1 − ⟨GβDµAθβµ,Aµψ
β

µ⟩. (58)

Theorem 9
Let the cointegrated stochastic sequences {ξ(m),m ∈ Z} and {ζ(m),m ∈ Z} satisfy conditions of Theorem 7.
If spectral densities f(λ) and p(λ) admit factorizations (54) – (56), then the spectral characteristic hβµ(λ) of the
optimal linear estimate Âξ of the functional Aξ which depend on the unknown values of elements ξ(m), m ≥ 0,
based on observations of the sequence ζ(m) at points m = −1,−2, . . . can be calculated by formula (57). The
value of the mean-square error ∆(f, g; Âξ) is calculated by formula (58).

5. Minimax-robust method of extrapolation

The values of the mean-square errors ∆(hµ(f, g); f, g) := ∆(f, g; Âξ) and ∆(hµ,N (f, g); f, g) := ∆(f, g; ÂNξ)

and the spectral characteristics hµ(f, g) and hµ,N (f, g) of the optimal linear estimates Âξ and ÂNξ of the
functionals Aξ and ANξ which depend on the unknown values of the sequence ξ(m) based on observations of
the stochastic sequence ξ(k) + η(k) can be calculated by formulas (23), (22) and (29), (27) correspondingly under
the condition that spectral densities f(λ) and g(λ) of stochastic sequences ξ(m) and η(m) are exactly known.
Having canonical factorizations (35) and (36) we can calculate the values of mean-square errors ∆(hµ(f, g); f, g)
and spectral characteristics hµ(f, g) by formulas (42), (41) respectively. However, such situation does not appear
in practice since we do not know exactly spectral densities of the observed sequences. If in this case we can
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determine a set D = Df ×Dg of admissible spectral densities, the minimax (robust) approach to estimation of
linear functionals which depend on the unknown values of stochastic sequence with stationary increments can be
applied. It consists in finding an estimate that minimizes the maximum value of the mean-square errors for all
spectral densities from a given class D = Df ×Dg of admissible spectral densities simultaneously.

To formalize this approach we present the following definitions.

Definition 5
For a given class of spectral densities D = Df ×Dg spectral densities f0(λ) ∈ Df , g0(λ) ∈ Dg are called least
favorable in the class D for the optimal linear extrapolation of the functional Aξ if the following relation holds
true:

∆(f0, g0) = ∆(h(f0, g0); f0, g0) = max
(f,g)∈Df×Dg

∆(h(f, g); f, g).

Definition 6
For a given class of spectral densities D = Df ×Dg the spectral characteristic h0(λ) of the optimal linear estimate
of the functional Aξ is called minimax-robust if there are satisfied the conditions

h0(λ) ∈ HD =
∩

(f,g)∈Df×Dg

L0−
2 (f(λ) + λ2ng(λ)),

min
h∈HD

max
(f,g)∈Df×Dg

∆(h; f, g) = max
(f,g)∈Df×Dg

∆(h0; f, g).

Using the derived in the previous sections formulas and the introduced definitions we can conclude that the
following statements hold true.

Lemma 5
Spectral densities f0 ∈ Df , g0 ∈ Dg which satisfy condition (15) are least favorable in the class D = Df ×Dg for
the optimal linear extrapolation of the functionalAξ if operators P0

µ, T0
µ, Q0 determined by the Fourier coefficients

of the functions

λ2n

|1− eiλµ|2n(f0(λ) + λ2ng0(λ))
,

λ2ng0(λ)

|1− eiλµ|2n(f0(λ) + λ2ng0(λ))
,

f0(λ)g0(λ)

f0(λ) + λ2ng0(λ)

determine a solution of the constraint optimisation problem

max
(f,g)∈Df×Dg

(⟨Dµa−Tµaµ,P
−1
µ Dµa−P−1

µ Tµaµ⟩)

= ⟨Dµa−T0
µaµ, (P

0
µ)

−1Dµa− (P0
µ)

−1T0
µaµ⟩+ ⟨Q0a,a⟩. (59)

The minimax spectral characteristic is determined as h0 = hµ(f
0, g0) if hµ(f0, g0) ∈ HD.

Lemma 6
Spectral densities f0 ∈ Df , g0 ∈ Dg which admit canonical factorizations (35) and (36) are least favorable in the
class D = Df ×Dg for the optimal linear extrapolation of the functional Aξ if coefficients {θ0(k), ψ0(k), ϕ0(k) :
k ≥ 0} of factorizations

f0(λ) + λ2ng0(λ) =

∣∣∣∣∣
∞∑
k=0

θ0(k)e−iλk

∣∣∣∣∣
2

=

∣∣∣∣∣
∞∑
k=0

ψ0(k)e−iλk

∣∣∣∣∣
−2

, g0(λ) =

∣∣∣∣∣
∞∑
k=0

ϕ0(k)e−iλk

∣∣∣∣∣
2

. (60)

determine a solution to the constraint optimisation problem

⟨Ga,a⟩+ ⟨DµAθµ −GAµψµ, D
µAθµ⟩ − ⟨Cµψµ,Cµψµ⟩1 − ⟨GDµAθµ,Aµψµ⟩ → sup, (61)

f(λ) =

∣∣∣∣∣
∞∑
k=0

θ(k)e−iλk

∣∣∣∣∣
2

− λ2n

∣∣∣∣∣
∞∑
k=0

ϕ(k)e−iλk

∣∣∣∣∣
2

=

∣∣∣∣∣
∞∑
k=0

ψ(k)e−iλk

∣∣∣∣∣
−2

− λ2n

∣∣∣∣∣
∞∑
k=0

ϕ(k)e−iλk

∣∣∣∣∣
2

∈ Df ,
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g(λ) =

∣∣∣∣∣
∞∑
k=0

ϕ(k)e−iλk

∣∣∣∣∣
2

∈ Dg.

The minimax spectral characteristic is determined as h0 = hµ(f
0, g0) if hµ(f0, g0) ∈ HD.

Lemma 7
Spectral density g0 ∈ Dg which admit canonical factorization (36) with the known spectral density f(λ)
is least favorable in the class Dg for the optimal linear extrapolation of the functional Aξ if coefficients
{θ0(k), ψ0(k), ϕ0(k) : k ≥ 0} of factorizations

f(λ) + λ2ng0(λ) =

∣∣∣∣∣
∞∑
k=0

θ0(k)e−iλk

∣∣∣∣∣
2

=

∣∣∣∣∣
∞∑
k=0

ψ0(k)e−iλk

∣∣∣∣∣
−2

, g0(λ) =

∣∣∣∣∣
∞∑
k=0

ϕ0(k)e−iλk

∣∣∣∣∣
2

. (62)

determine a solution to the constraint optimisation problem

⟨Ga,a⟩+ ⟨DµAθµ −GAµψµ, D
µAθµ⟩ − ⟨Cµψµ,Cµψµ⟩1 − ⟨GDµAθµ,Aµψµ⟩ → sup, (63)

g(λ) =

∣∣∣∣∣
∞∑
k=0

ϕ(k)e−iλk

∣∣∣∣∣
2

∈ Dg.

The minimax spectral characteristic is determined as h0 = hµ(f, g
0) if hµ(f, g0) ∈ HD.

If spectral density g(λ) is known and admits canonical factorization (36), extremum problem (61) is an extremum
problem with respect to variables {θ(k), ψ(k) : k ≥ 0}.

Lemma 8
Spectral density f0 ∈ Df which admit canonical factorization (35) with the known spectral density g(λ) is least
favorable in the class Df for the optimal linear extrapolation of the functional Aξ if coefficients {θ0(k), ψ0(k) :
k ≥ 0} of the factorization

f0(λ) + λ2ng(λ) =

∣∣∣∣∣
∞∑
k=0

θ0(k)e−iλk

∣∣∣∣∣
2

=

∣∣∣∣∣
∞∑
k=0

ψ0(k)e−iλk

∣∣∣∣∣
−2

, (64)

determine a solution to the constraint optimisation problem

⟨Cµψµ,Cµψµ⟩1 + ⟨GDµAθµ,Aµψµ⟩ − ⟨DµAθµ −GAµψµ, D
µAθµ⟩ → inf, (65)

f(λ) =

∣∣∣∣∣
∞∑
k=0

θ(k)e−iλk

∣∣∣∣∣
2

− λ2n

∣∣∣∣∣
∞∑
k=0

ϕ(k)e−iλk

∣∣∣∣∣
2

=

∣∣∣∣∣
∞∑
k=0

ψ(k)e−iλk

∣∣∣∣∣
−2

− λ2n

∣∣∣∣∣
∞∑
k=0

ϕ(k)e−iλk

∣∣∣∣∣
2

∈ Df .

The minimax spectral characteristic is determined as h0 = hµ(f
0, g) if hµ(f0, g) ∈ HD.

The function h0 and the pair (f0, g0) form a saddle point of the function ∆(h; f, g) on the set HD ×D. The
saddle point inequalities

∆(h; f0, g0) ≥ ∆(h0; f0, g0) ≥ ∆(h0; f, g) ∀f ∈ Df , ∀g ∈ Dg, ∀h ∈ HD

hold true if h0 = hµ(f
0, g0) and hµ(f

0, g0) ∈ HD, where (f0, g0) is a solution of the constraint optimisation
problem

∆̃(f, g) = −∆(hµ(f
0, g0); f, g) → inf, (f, g) ∈ D, (66)

where
∆(hµ(f

0, g0); f, g)
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=
1

2π

∫ π

−π

∣∣A(eiλ)(1− eiλµ)nf0(λ)− λ2n
∑∞

k=0((P
0
µ)

−1Dµa− (P0
µ)

−1T0
µaµ)ke

iλk
∣∣2

|1− eiλµ|2n(f0(λ) + λ2ng0(λ))2
g(λ)dλ

+
1

2π

∫ π

−π

∣∣A(eiλ)(1− eiλµ)nλ2ng0(λ) + λ2n
∑∞

k=0((P
0
µ)

−1Dµa− (P0
µ)

−1T0
µaµ)ke

iλk
∣∣2

λ2n|1− eiλµ|2n(f0(λ) + λ2ng0(λ))2
f(λ)dλ

or the constraint optimisation problem

∆̃(f, g) = −∆(hµ(f
0, g0); f, g) → inf, (f, g) ∈ D, (67)

where
∆(hµ(f

0, g0); f, g) =

=
1

2π

∫ π

−π

∣∣r0µ,g(e−iλ)
∣∣2

f0(λ) + λ2ng0(λ)
f(λ)dλ+

1

2π

∫ π

−π

λ2n
∣∣r0µ,f (e−iλ)

∣∣2
f0(λ) + λ2ng0(λ)

g(λ)dλ.

Here

r0µ,g(e
−iλ) = Bµ(e

iλ)

∞∑
k=0

θ0µ(k)e
−iλk −

∞∑
k=1

(C0
µψ

0

µ + (B̃µ)
′θ0µ)ke

−iλk,

r0µ,f (e
−iλ) =

(
Bµ(e

iλ)− A(eiλ)

(1− e−iλµ)n

) ∞∑
k=0

θ0µ(k)e
−iλk −

∞∑
k=1

(C0
µψ

0

µ + (B̃µ)
′θ0µ)ke

−iλk.

These constraint optimisation problems (66),(67) are equivalent to the unconstraint optimisation problem [39]

∆D(f, g) = ∆̃(f, g) + δ(f, g|Df ×Dg) → inf, (68)

where δ(f, g|Df ×Dg) is the indicator function of the set D = Df ×Dg. Solution (f0, g0) to this unconstraint
optimisation problem is characterized by the condition 0 ∈ ∂∆D(f

0, g0), where ∂∆D(f
0, g0) is the subdifferential

of the functional ∆D(f, g) at point (f0, g0) ∈ D = Df ×Dg, that is the set of all continuous linear functionals
Λ on L1 × L1 which satisfy the inequality ∆D(f, g)−∆D(f

0, g0) ≥ Λ((f, g)− (f0, g0)), (f, g) ∈ D (see books
[15, 39, 40] for more details).

The form of the functional ∆(hµ(f
0, g0); f, g) is convenient for application the Lagrange method of indefinite

multipliers for finding solution to the problem (68). Making use the method of Lagrange multipliers and the form
of subdifferentials of the indicator functions δ(f, g|Df ×Dg) of the set Df ×Dg of spectral densities we describe
relations that determine least favourable spectral densities in some special classes of spectral densities (see books
[15, 33, 35] for additional details).

6. Least favorable spectral densities in the class D0
f × D0

g

Consider the problem of minimax extrapolation of the functional Aξ which depend on unobserved values of a
stochastic sequence ξ(m) with stationary nth increments based on observations of the sequence ξ(m) + η(m) at
points of time m = −1,−2, . . . under the condition that spectral densities of the sequences are not known exactly,
but the set of admissible spectral densities D = D0

f ×D0
g is given, where

D0
f =

{
f(λ)| 1

2π

∫ π

−π

f(λ)dλ ≤ P1

}
, D0

g =

{
g(λ)| 1

2π

∫ π

−π

g(λ)dλ ≤ P2

}
.

Let us assume that densities f0 ∈ D0
f , g0 ∈ D0

g and the functions

hµ,f (f
0, g0) =

∣∣A(eiλ)(1− eiλµ)nλ2ng0(λ) + λ2n
∑∞

k=0((P
0
µ)

−1Dµa− (P0
µ)

−1T0
µaµ)ke

iλk
∣∣

|λ|n|1− eiλµ|n(f0(λ) + λ2ng0(λ))
, (69)
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hµ,g(f
0, g0) =

∣∣A(eiλ)(1− eiλµ)nf0(λ)− λ2n
∑∞

k=0((P
0
µ)

−1Dµa− (P0
µ)

−1T0
µaµ)ke

iλk
∣∣

|1− eiλµ|n(f0(λ) + λ2ng0(λ))
(70)

are bounded. In this case the functional ∆(hµ(f
0, g0); f, g) is continuous and bounded in the L1 × L1 space. The

condition 0 ∈ ∂∆D(f
0, g0) leads to the equation for the least favorable densities f0 ∈ D0

f , g0 ∈ D0
g:∣∣∣∣∣A(eiλ)(1− eiλµ)nλ2ng0(λ) + λ2n

∞∑
k=0

((P0
µ)

−1Dµa− (P0
µ)

−1T0
µaµ)ke

iλk

∣∣∣∣∣
= α1|λ|n|1− eiλµ|n(f0(λ) + λ2ng0(λ)), (71)∣∣∣∣∣A(eiλ)(1− eiλµ)nf0(λ)− λ2n

∞∑
k=0

((P0
µ)

−1Dµa− (P0
µ)

−1T0
µaµ)ke

iλk

∣∣∣∣∣
= α2|1− eiλµ|n(f0(λ) + λ2ng0(λ)), (72)

where α1 ≥ 0 and α2 ≥ 0 are such constants that α1 ̸= 0 if
1

2π

∫ π

−π
f0(λ)dλ = P1 and α2 ̸= 0 if

1

2π

∫ π

−π
g0(λ)dλ =

P2.
Thus, we have the following statements.

Theorem 10
Let spectral densities f0(λ) ∈ D0

f and g0(λ) ∈ D0
g satisfy condition (15), let functions hµ,f (f0, g0) and hµ,g(f0, g0)

be bounded. The spectral densities f0(λ) and g0(λ) determined by equations (71), (72) are least favorable in the
class D = D0

f ×D0
g for the optimal linear estimation of the functional Aξ if they determine a solution of extremum

problem (59). The function hµ(f0, g0) determined by formula (22) is minimax spectral characteristic of the optimal
estimate of the functional Aξ.

Theorem 11
Suppose that spectral density f(λ) is known, spectral density g0(λ) ∈ D0

g and conditions (15) is satisfied. Let the
function hµ,g(f, g0) be bounded. Spectral density g0(λ) is least favorable in the class D0

g for the optimal linear
extrapolation of the functional Aξ if it is of the form

g0(λ) =
1

λ2n
max

{
0,

∣∣A(eiλ)(1− eiλµ)nf(λ)− λ2n
∑∞

k=0((P
0
µ)

−1Dµa− (P0
µ)

−1T0
µaµ)ke

iλk
∣∣

α2|1− eiλµ|n
− f(λ)

}

and the pair (f, g0) determines a solution to extremum problem (59). The function hµ(f, g0) determined by formula
(22) is minimax spectral characteristic of the optimal estimation of the functional Aξ.

Theorem 12
Let spectral density g(λ) be known, spectral density f0(λ) ∈ D0

f and condition (15) be satisfied. Let the function
hµ,f (f

0, g) be bounded. Spectral density f0(λ) is least favorable in the class D0
f for the optimal linear extrapolation

of the functional Aξ if it is of the form

f0(λ) = max

{
0,

|λ|n
∣∣A(eiλ)(1− eiλµ)ng(λ) +

∑∞
k=0((P

0
µ)

−1Dµa− (P0
µ)

−1T0
µaµ)ke

iλk
∣∣

α1|1− eiλµ|n
− λ2ng(λ)

}

and the pair (f0, g) determines a solution to extremum problem (59). The function hµ(f0, g) determined by formula
(22) is minimax spectral characteristic of the optimal estimation of the functional Aξ.
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7. Least favorable spectral densities which admit factorization in the class D0
f × D0

g

Consider the problem of minimax extrapolation of the functional Aξ from observations ξ(k) + η(k), k ≤ −1,
provided that spectral densities f(λ) and g(λ) admit canonical factorizations (35) – (36) and belong to the set
D = D0

f ×D0
g , where

D0
f =

{
f(λ)| 1

2π

∫ π

−π

f(λ)dλ ≤ P1

}
, D0

g =

{
g(λ)| 1

2π

∫ π

−π

g(λ)dλ ≤ P2

}
.

The condition 0 ∈ ∂∆D(f
0, g0) implies that least favorable densities f0 ∈ D0

f , g0 ∈ D0
g satisfy equations

f0(λ) + λ2ng0(λ) = α1

∣∣∣∣∣Bµ(e
iλ)

∞∑
k=0

θµ(k)e
−iλk −

∞∑
k=1

(Cµψµ + (B̃µ)
′θµ)ke

−iλk

∣∣∣∣∣
2

, (73)

f0(λ) + λ2ng0(λ) = α2λ
2n
∣∣rµ,f (e−iλ)

∣∣2 , (74)

rµ,f (e
−iλ) =

(
Bµ(e

iλ)− A(eiλ)

(1− e−iλµ)n

) ∞∑
k=0

θµ(k)e
−iλk −

∞∑
k=1

(Cµψµ + (B̃µ)
′θµ)ke

−iλk,

where coefficients α1 ≥ 0, α2 ≥ 0, the matrix Cµ, vectors θµ = (θµ(0), θµ(1), θµ(2), . . .)
′ and ψµ =

(ψµ(0), ψµ(1), ψµ(2), . . .)
′ are determined by factorizations (36) and (44) of the functions g0(λ) and f0(λ) +

λ2ng0(λ), relation (45) and the conditions

1

2π

∫ π

−π

f(λ)dλ = P1,
1

2π

∫ π

−π

g(λ)dλ = P2. (75)

Thus, the following statements come true.

Theorem 13
Least favorable spectral densities f0(λ) ∈ D0

f and g0(λ) ∈ D0
g for the optimal linear estimation of the functionalAξ

which admit canonical factorizations (36), (44) are determined by equations (73) – (74), relation (45), conditions
(61) and (75).

Theorem 14
Assume that spectral density f(λ) is known and admits the canonical factorization. Then spectral density

g0(λ) =
1

λ2n

[
α2λ

2n
∣∣rµ,f (e−iλ)

∣∣2 − f(λ)
]
+

from the class D0
g is the least favorable spectral density for the optimal linear estimation of the functional Aξ.

The coefficient α2 ≥ 0, matrix Cµ, vectors θµ = (θµ(0), θµ(1), θµ(2), . . .)
′ and ψµ = (ψµ(0), ψµ(1), ψµ(2), . . .)

′

are determined by canonical factorizations (36), (44) of the functions g0(λ) and f(λ) + λ2ng0(λ), relation (45),
conditions (63) and

∫ π

−π
g(λ)dλ = 2πP2.

Theorem 15
Assume that spectral density g(λ) is known and admits the canonical factorization. Then the spectral density

f0(λ) =

α1

∣∣∣∣∣Bµ(e
iλ)

∞∑
k=0

θµ(k)e
−iλk −

∞∑
k=1

(Cµψµ + (B̃µ)
′θµ)ke

−iλk

∣∣∣∣∣
2

− λ2ng(λ)


+

from the class D0
f is the least favorable spectral density for the optimal linear estimation of the functional Aξ. The

matrix Cµ is known and defined by coefficients of factorization (36) of the spectral density g(λ). The coefficient
α1 ≥ 0 and vectors θµ = (θµ(0), θµ(1), θµ(2), . . .)

′, ψµ = (ψµ(0), ψµ(1), ψµ(2), . . .)
′ are determined by canonical

factorization (44) of the function f0(λ) + λ2ng(λ), relation (45), conditions (65) and
∫ π

−π
f(λ)dλ = 2πP1.
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8. Least favorable densities in the class D = Du
v × Dε

Consider the problem of optimal linear extrapolation of the functional Aξ for the set of spectral densities
D = Du

v ×Dε, where

Du
v =

{
f(λ)|v(λ) ≤ f(λ) ≤ u(λ),

1

2π

∫ π

−π

f(λ)dλ = P1

}
,

Dε =

{
g(λ)|g(λ) = (1− ε)g1(λ) + εw(λ),

1

2π

∫ π

−π

g(λ)dλ = P2

}
.

Here spectral densities u(λ), v(λ), g1(λ) are known and fixed, and spectral densities u(λ), v(λ) are bounded.
Let spectral densities f0 ∈ Dv

u, g0 ∈ Dε be such that functions hµ,f (f0, g0) and hµ,g(f
0, g0) determined by

formulas (69), (70) are bounded. From the condition 0 ∈ ∂∆D(f
0, g0) we get the following equations defining

least favorable densities∣∣∣∣∣A(eiλ)(1− eiλµ)nλ2ng0(λ) + λ2n
∞∑
k=0

((P0
µ)

−1Dµa− (P0
µ)

−1T0
µaµ)ke

iλk

∣∣∣∣∣
= |λ|n|1− eiλµ|n(f0(λ) + λ2ng0(λ))(γ1(λ) + γ2(λ) + α−1

1 ), (76)∣∣∣∣∣A(eiλ)(1− eiλµ)nf0(λ)− λ2n
∞∑
k=0

((P0
µ)

−1Dµa− (P0
µ)

−1T0
µaµ)ke

iλk

∣∣∣∣∣
= |1− eiλµ|n(f0(λ) + λ2ng0(λ))(β(λ) + α−1

2 ), (77)

where γ1(λ) ≤ 0 and γ1(λ) = 0 if f0(λ) ≥ v(λ); γ2(λ) ≥ 0 and γ2 = 0 if f0(λ) ≤ u(λ); β(λ) ≤ 0 and β(λ) = 0
when g0(λ) ≥ (1− ε)g1(λ).

The following statements hold true.

Theorem 16
Let spectral densities f0(λ) ∈ Dv

u, g0(λ) ∈ Dε satisfy condition (15). Let functions hµ,f (f0, g0) and hµ,g(f0, g0)
determined by formulas (69), (70) be bounded. Spectral densities f0(λ) and g0(λ) determined by equations (76),
(77) are least favorable in the class D = Du

v ×Dε for the optimal linear extrapolation of the functional Aξ if they
determine a solution of extremum problem (59). The function hµ(f0, g0) determined by (22) is minimax spectral
characteristic of the optimal estimate of the functional Aξ.

Theorem 17
Let spectral density f(λ) be known, spectral density g0(λ) ∈ Dε and condition (15) be satisfied. Assume that the
function hµ,g(f, g0) determined by formula (70) is bounded. Spectral density g0(λ) is least favorable in the class
Dε for the optimal linear extrapolation of the functional Aξ if it is of the form

g0(λ) =
1

λ2n
max {(1− ε)g1(λ), f1(λ)} ,

f1(λ) =
α2

∣∣A(eiλ)(1− eiλµ)nf(λ)− λ2n
∑∞

k=0((P
0
µ)

−1Dµa− (P0
µ)

−1T0
µaµ)ke

iλk
∣∣

|1− eiλµ|n
− f(λ),

and the pair (f, g0) determines a solution to extremum problem (59). The function hµ(f, g0) determined by formula
(22) is minimax spectral characteristic of the optimal estimate of the functional Aξ.

Theorem 18
Suppose spectral density g(λ) is known, spectral density f0(λ) ∈ Du

v and condition (15) is satisfied. Let the
function hµ,f (f0, g) be bounded. Spectral density f0(λ) is least favorable in the class Du

v for the optimal linear
extrapolation of the functional Aξ if it is of the form

f0(λ) = min {v(λ),max {u(λ), g2(λ)}} ,
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g2(λ) =
α1|λ|n

∣∣A(eiλ)(1− eiλµ)ng(λ) +
∑∞

k=0((P
0
µ)

−1Dµa− (P0
µ)

−1T0
µaµ)ke

iλk
∣∣

|1− eiλµ|n
− λ2ng(λ)

and the pair (f0, g) determines a solution to extremum problem (59). The function hµ(f0, g) determined by formula
(22) is minimax spectral characteristic of the optimal estimation of the functional Aξ.

9. Least favorable spectral densities which admit factorization in the class D = Du
v × Dε

Consider the problem of minimax extrapolation of the functional Aξ from observations ξ(k) + η(k), k ≤ −1,
provided spectral densities f(λ) and d(λ) admit canonical factorizations (35) – (36) and belong to the set
D = Du

v ×Dε, where

Du
v =

{
f(λ)|v(λ) ≤ f(λ) ≤ u(λ),

1

2π

∫ π

−π

f(λ)dλ = P1

}
,

Dε =

{
g(λ)|g(λ) = (1− ε)g1(λ) + εw(λ),

1

2π

∫ π

−π

g(λ)dλ = P2

}
.

Here spectral densities u(λ), v(λ), g1(λ) are known and fixed, spectral density w(λ) is unknown. The condition
0 ∈ ∂∆D(f

0, g0) implies that least favorable densities f0 ∈ Du
u , g0 ∈ Dε satisfy the equations

f0(λ) + λ2ng0(λ) = α1

∣∣rµ,g(e−iλ)
∣∣2 (γ1(λ) + γ2(λ) + 1)−1, (78)

rµ,g(e
−iλ) = Bµ(e

iλ)

∞∑
k=0

θµ(k)e
−iλk −

∞∑
k=1

(Cµψµ + (B̃µ)
′θµ)ke

−iλk

f0(λ) + λ2ng0(λ) = α2λ
2n
∣∣rµ,f (e−iλ)

∣∣2 (β(λ) + 1)−1, (79)

rµ,f (e
−iλ) =

(
Bµ(e

iλ)− A(eiλ)

(1− e−iλµ)n

) ∞∑
k=0

θµ(k)e
−iλk −

∞∑
k=1

(Cµψµ + (B̃µ)
′θµ)ke

−iλk,

where γ1(λ) ≤ 0 and γ1(λ) = 0 if f0(λ) ≥ v(λ); γ2(λ) ≥ 0 and γ2 = 0 if f0(λ) ≤ u(λ); β(λ) ≤ 0 and β(λ) =
0 when g0(λ) ≥ (1− ε)g1(λ). Coefficients α1 ≥ 0, α2 ≥ 0, matrix Cµ, vectors θµ = (θµ(0), θµ(1), θµ(2), . . .)

′

and ψµ = (ψµ(0), ψµ(1), ψµ(2), . . .)
′ are determined by factorizations (36) and (44) of the functions g0(λ) and

f0(λ) + λ2ng0(λ), relation (45) and conditions (75).
Thus, the following statements come true.

Theorem 19
Least favorable spectral densities f0(λ) ∈ Du

v and g0(λ) ∈ Dε for the optimal linear estimation of the functionalAξ
which allow canonical factorizations (36), (44) are determined by equations (78) – (79), relation (45), conditions
(61) and (75).

Theorem 20
Assume that spectral density f(λ) is known and admits canonical factorization. Then the spectral density

g0(λ) =
1

λ2n
max

{
α2λ

2n
∣∣rµ,f (e−iλ)

∣∣2 − f(λ), (1− ε)g1(λ)
}

from the class Dε is the least favorable spectral density for the optimal linear estimation of the functional Aξ. A
coefficient α2 ≥ 0, matrix Cµ, vectors θµ = (θµ(0), θµ(1), θµ(2), . . .)

′ and ψµ = (ψµ(0), ψµ(1), ψµ(2), . . .)
′ are

determined by canonical factorizations (36), (44) of the functions g0(λ) and f(λ) + λ2ng0(λ), relation (45),
conditions (63) and

∫ π

−π
g(λ)dλ = 2πP2.
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Theorem 21
Assume that spectral density g(λ) is known and admits canonical factorization. Then spectral density

f0(λ) = min
{
max

{
α1

∣∣rµ,g(e−iλ)
∣∣2 − λ2ng(λ), v(λ)

}
u(λ)

}
from the class Du

v is the least favorable spectral density for the optimal linear estimation of the functional
Aξ. Matrix Cµ is known and defined by the coefficients of factorization (36) of the spectral density g(λ). A
coefficient α1 ≥ 0 and vectors θµ = (θµ(0), θµ(1), θµ(2), . . .)

′ and ψµ = (ψµ(0), ψµ(1), ψµ(2), . . .)
′ are determined

by canonical factorization (44) of the function f0(λ) + λ2ng(λ), relation (45), conditions (65) and
∫ π

−π
f(λ)dλ =

2πP1.

10. Conclusions

In this article we propose solutions to the extrapolation problem for the functionals Aξ =
∑∞

k=0 a(k)ξ(k) and
ANξ =

∑N
k=0 a(k)ξ(k), which depend on unobserved values of a stochastic sequence ξ(m) with stationary nth

increments. Estimates are based on observations of the sequence ξ(m) + η(m) at points of time m = −1,−2, . . . ,
where η(m) is an uncorrelated with ξ(m) stationary sequence. We derive formulas for calculation values of the
mean-square errors and spectral characteristics of the optimal linear estimates of the functionals in the case of
spectral certainty where spectral densities of the sequences are known. The obtained results are applied to finding
solution to the extrapolation problem for cointegrated sequences. In the case of spectral uncertainty where spectral
densities are not known exactly, but a set of admissible spectral densities is specified, the minimax-robust method
is applied. Formulas that determine least favorable spectral densities and minimax (robust) spectral characteristics
are derived for some special sets of admissible spectral densities. The extrapolation problem for ARIMA(0,1,1)
sequence is analyzed as an example of application of the developed method.
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